导航:首页 > 交易市场 > 核电什么时候进入碳交易

核电什么时候进入碳交易

发布时间:2024-11-13 06:09:38

A. 电力行业碳达峰碳中和的7个路径

2021年年底, 中电联规划发展部发布《电力行业碳达报告》,报告提出了电力行业碳达峰碳中和实施的7个路径:

一是构建多元化能源供应体系,形成低碳主导的电力供应格局;

二是发挥电网基础平台作用,提高资源优化配置能力,支持部分地区率先达峰;

三是大力提升电气化水平,服务全 社会 碳减排;

四是大力实施管理创新,推动源网荷高效协同利用;

五是大力推动技术创新,为碳中和目标奠定坚实基础;

六是强化电力安全意识,防范电力安全重大风险;

七是健全和完善市场机制,适应碳达峰碳中和新要求。

内容摘要

实现碳达峰碳中和目标,电力行业既迎来转型发展的重大机遇,也面临艰巨挑战。以保障电力安全供应为基础,以低碳化、电气化、数字化为基本方向,重点研究了电力行业碳达峰时序、电源和电网结构以及电力供应成本。通过综合分析电力电量平衡、低碳电源贡献率、考虑规模化发展及技术进步的经济性,研究提出了确保2030年前、力争2028年电力行业实现碳达峰,并逐步过渡到稳中有降阶段。在此基础上,提出了碳达峰碳中和实施路径: 一是 构建多元化能源供应体系,形成低碳主导的电力供应格局; 二是 发挥电网基础平台作用,提高资源优化配置能力,支持部分地区率先达峰; 三是 大力提升电气化水平,服务全 社会 碳减排; 四是 大力实施管理创新,推动源网荷高效协同利用; 五是 大力推动技术创新,为碳中和目标奠定坚实基础; 六是 强化电力安全意识,防范电力安全重大风险; 七是 健全和完善市场机制,适应碳达峰碳中和新要求。

内容简介

一、发展基础

清洁低碳转型取得新成效。截至2020年底,全国非化石能源发电装机9.6亿千瓦,占总装机的43.4%。非化石能源消费占比从2015年的12.1%提高到2019年的15.3%,提前一年完成“十三五”规划目标。截至2019年底,我国单位国内生产总值二氧化碳排放强度较2005年降低约48%,提前完成2020年碳减排目标。

安全高效发展达到新水平。截至2020年底,全国建成投运“十四交十六直”30个特高压工程,220千伏及以上输电线路79.4万公里,变电容量45.3亿千伏安。2019年,火电、水电、燃气轮机与核电机组的等效可用系数均达到90%以上,变压器、架空线路等主要输变电设施的可用系数均超过99%。

电力 科技 创新日新月异。核电、超超临界发电、新能源发电等技术取得积极进展,世界上输电电压等级最高、距离最远的 1100千伏准东 皖南特高压直流工程建成投运,世界首个特高压多端混合直流工程乌东德电站送广东广西工程提前投产。

终端用能电气化水平持续提升。2019年,我国电能占终端能源消费比重为26%,高于世界平均水平17%。2016 2019年,电能替代累计新增用电量约5989亿千瓦时,对全 社会 用电增长的贡献率达到38.5%。

市场机制建设积极推进。电力市场交易体系初步建立,各类交易方式和交易品种逐渐丰富。发电行业率先开展碳交易。截至2020年8月底,碳交易试点累计成交量约4.06亿吨二氧化碳当量,成交额约92.8亿元。

国际合作取得积极进展。截至2019年底,中国主要电力企业境外投资金额57.9亿美元。中国主要电网企业建成10条跨国输电线路,12回110千伏及以上与周边国家相联的线路走廊,能源互联网理念得到广泛认同。

实现碳达峰碳中和目标,电力行业既迎来转型发展的重大机遇,也面临艰巨挑战。欧盟等发达经济体二氧化碳排放已经达峰,从“碳达峰”到“碳中和”有50 70年过渡期。我国二氧化碳排放体量大,从碳达峰到碳中和仅有30年时间,任务更为艰巨。能源电力减排是我国的主战场,能源燃烧占全部二氧化碳排放的88%左右,电力行业排放占约41%。电力行业不仅要加快清洁能源开发利用,推动行业自身的碳减排,还要助力全 社会 能源消费方式升级,支撑钢铁、化工、建材等重点行业提高能源利用效率,满足全 社会 实现更高水平电气化要求。

二、电力行业碳达峰碳中和研究

(一)电力行业碳排放现状

碳排放量增长有效减缓。以2005年为基准年,全国非化石能源装机、发电量分别累计提升19、16个百分点,火电供电煤耗累计下降61.5克/千瓦时;电力行业累计减少二氧化碳排放超过160亿吨。碳排放强度持续下降。2019年,全国单位火电发电量二氧化碳排放约838克/千瓦时,比2005年下降20%;单位发电量二氧化碳排放约577克/千瓦时,比2005年下降32.7%。电力碳排放占全 社会 四成左右。2019年我国二氧化碳排放总量约102亿吨,电力行业、交通行业、建筑和工业碳排放占比分别为41%、28%和31%,火力发电二氧化碳排放总量约42亿吨。

(二)电力行业碳达峰碳中和研究

我国电力需求还处在较长时间的增长期。双循环发展新格局带动用电持续增长,新旧动能转换,传统用电行业增速下降,高技术及装备制造业和现代服务业将成为用电增长的主要推动力量。新型城镇化建设将推动电力需求刚性增长。能源转型发展呈现明显的电气化趋势,电能替代潜力巨大。综合考虑节能意识和能效水平提升等因素,预计2025年、2030年、2035年我国全 社会 用电量分别为9.5万亿、11.3万亿、12.6万亿千瓦时,“十四五”、“十五五”、“十六五”期间年均增速分别为4.8%、3.6%、2.2%。预计2025年、2030年、2035年我国最大负荷分别为16.3亿、20.1亿、22.6亿千瓦,“十四五”、“十五五”、“十六五”期间年均增速分别为5.1%、4.3%、2.4%。

研究对“十四五”及中长期电源发展设置了新能源、核电不同发展节奏的三种情景,情景一是新能源加速发展,2030年电力行业碳排放达峰,投资最省。情景二是核电+新能源加速发展,2028年电力行业碳达峰,投资比情景一高0.6万亿元。情景三新能源跨越式发展,2025年电力行业碳达峰,投资比情景一高1.6万亿元,但“十四五”期间主要依赖电化学储能技术成熟度,具有不确定性。综合分析,推荐情景二, 2030年前、力争2028年电力行业碳达峰,峰值规模47亿吨左右。

“十四五”期间,为保障电力供应安全,需要新增一定规模煤电项目。水电、核电项目建设工期长,一般需要5年左右时间,“十四五”期间新投产规模比较确定,预计到2025年水电达到4.7亿千瓦(含抽水蓄能0.8亿千瓦),核电0.8亿千瓦。新能源按照年均新增0.7亿千瓦考虑,到2025年风电达到4.0亿千瓦,太阳能发电达到5.0亿千瓦。由于新能源可参与电力平衡的容量仅为10 15%,为保障电力供应安全,满足电力实时平衡要求,“十四五”期间,需新增煤电1.9亿千瓦。考虑退役情况,到2025年煤电装机达到12.5亿千瓦。

“十五五”中后期,电力行业实现碳排放达峰,并逐步过渡到稳中有降阶段。“十五五”期间,按照新能源年均新增1.2亿千瓦,核电年均增加8 10台机组。预计2030年左右煤电装机达峰,电力行业碳排放于2028年达峰。“十六五”期间,电动 汽车 广泛参与系统调节,进一步支撑更大规模新能源发展。新能源年均新增2.0亿千瓦,核电发展节奏不变。新能源、核电、水电等清洁能源发电低碳贡献率分别为58%、20%、22%,电力行业碳排放进入稳中有降阶段。

碳达峰碳中和目标的实现将推高发电成本。考虑规模化发展及技术进步,核电、新能源及储能设施的建设成本呈加速下降趋势。但由于新能源属于低能量密度电源,为满足电力供应,需要建设更大规模的新能源装机,导致电源和储能设施年度投资水平大幅上升,据测算,“十四五”“十五五”“十六五”期间,电源年度投资分别为6340亿、7360亿、8300亿元(“十一五”“十二五”“十三五”期间,电源年度总投资分别为3588亿、3831亿、3524亿元)。相比2020年,2025年发电成本提高14.6%,2030年提高24.0%,2035年提高46.6%。

重大技术创新助力电力行业实现碳中和目标。 诸如碳中性气体、液体燃料取得重大突破,包括氢、氨和烃类等载体可以长期储存电力或用于发电, 将大范围替代火电机组,增加系统转动惯量,保障大电网稳定运行,电力生产进入低碳、零碳阶段,并辅以碳捕集、林业碳汇,实现电力行业碳中和。实现碳中和,将以新型电力系统为基础平台,特高压输电技术、智能电网技术、长周期新型储能技术、氢能利用技术、碳捕集技术等绿色低碳前沿技术创新为依托,共同推进目标实现。

三、实施路径

(一)构建多元化能源供应体系

坚持集中式和分布式并举,大力提升风电、光伏发电规模。以西南地区主要河流为重点,有序推进流域大型水电基地建设。安全有序发展核电,合理布局适度发展气电。按照“控制增量、优化存量”的原则,发挥煤电托底保供作用,适度安排煤电新增规模。因地制宜发展生物质发电,推进分布式能源发展。

(二)发挥电网基础平台作用

优化电网主网架建设,新增一批跨区跨省输电通道,建设先进智能配电网,提高资源优化配置能力。支持部分地区率先达峰。

(三)大力提升电气化水平

深入实施工业领域电气化升级,大力提升交通领域电气化水平,积极推动建筑领域电气化发展,加快乡村电气化提升工程建设。

(四)推动源网荷高效协同利用

多措并举提高系统调节能力,提升电力需求侧响应水平。推动源网荷储一体化和多能互补发展,推进电力系统数字化转型和智能化升级。

(五)大力推动技术创新

推动抽水蓄能、储氢、电池储能、固态电池、锂硫电池、金属空气等新型储能技术跨越式发展。促进低碳化发电技术广泛应用与智能电网技术迭代升级,加大前瞻性降碳脱碳技术创新力度。

(六)强化电力安全意识

强化新能源发电出力的随机性和间歇性给电力供应安全、电力电子设备的广泛接入给大电网安全运行、技术创新存在不确定性等带来的风险识别。加强应急保障体系建设,防范电力安全重大风险。

(七)健全和完善市场机制

积极发挥碳市场低成本减碳作用,加快建设全国统一电力市场,持续深化电力市场建设。推动全国碳市场与电力市场协同发展。

四、保障措施

制定电力行业碳达峰行动方案、开展电力行业碳达峰碳中和重大问题研究、加大关键技术研发投入支持力度、推动形成科学合理的电价机制、实施财税金融投资政策引导、推动“双碳”目标电力行业任务落地实施。

B. 中国核电发展的现状及前景

近年来,中国核能发电量持续上涨。2016年中国核能发电量2105.2亿千瓦时,2020年中国核能发电量3662.4亿千瓦时。2021年1-8月,中国核能发电量2698.5亿千瓦时,同比增长13.3%。

未来发展趋势:

1.我国核电将在确保安全的前提下向积极有序发展的新阶段转变

在碳达峰、碳中和的背景下,我国能源电力系统清洁化、低碳化转型进程将进一步加快,核能作为近零排放的清洁能源,将具有更加广阔的发展空间,预计保持较快的发展态势,我国自主三代核电会按照每年6~8台的核准节奏,实现规模化批量化发展。

预计到2025年,我国核电在运装机7000万千瓦左右;到2030年,核电在运装机容量达到1.2亿千瓦,核电发电量约占全国发电量的8%。

2.科技创新将进一步增强核能产业自立自强能力

核能科技创新对维护国家能源安全、建设科技强国、促进国民经济高质量发展的作用突出。

发展背景:中国发电量逐年增加,清洁能源逐步替代火电

核反应堆是由原子分裂驱动的,这一过程称为裂变,其中一个粒子(一个“中子”)射向一个原子,然后分裂成两个更小的原子和一些额外的中子。一些被释放的中子撞击其他原子,导致它们也裂变并释放更多的中子。这叫做连锁反应。

链式反应中原子的裂变也以热的形式释放出大量能量。产生的热量通过循环流体(通常是水)从反应器中移除。这些热量可以用来产生蒸汽,驱动涡轮机发电。

在全球能源危机不断加剧及环保要求日趋严格的大背景下,各地区能源转型之路不断加速,核电作为清洁的基荷电源,对“双碳”建设具有重要意义。

C. 核电的发展历史是怎样的

您好!核电自1951年12月美国实验增殖堆1号(EBR-1)首次利用核能发电,1954年6月苏联第一座核电厂首次向电网送电,到现在已有近50年的历史,大致经过了验证示范、高速发展和滞缓发展三个阶段。现在处于复苏之前的过渡阶段。
1验证示范阶段

1942年12月美国在芝加哥大学建成世界上第一座核反应堆,证明了实现受控核裂变链式反应的可能性。但当时正处于第二次世界大战期间,核能主要为军用服务。美国、苏联、英国和法国,配合原子弹的发展,先后建成了一批钚生产堆,随后开发了潜艇推进动力堆。
从50年代初开始,美、苏、英、法等国把核能部分地转向民用,利用已有的军用核技术,开发建造以发电为目的的反应堆,从而进入核电验证示范的阶段。美国在潜艇动力堆的技术基础上,于1957年12月建成希平港(Shippingport)压水堆核电厂,于1960年7月建成德累斯顿(Dresden-1)沸水堆核电厂,为轻水堆核电的发展开辟了道路。英国于1956年10月建成卡尔德霍尔(CalderHallA)产钚、发电两用的石墨气冷堆核电厂。苏联于1954年建成奥布宁斯克(APS-1)压力管式石墨水冷堆核电厂后,于1964年建成新沃罗涅日压水堆核电厂。加拿大于1962年建成NPD天然铀重水堆核电厂。这些核电厂显示出比较成熟的技术和低廉的发电成本,为核电的商用推广打下了基础。
2高速发展阶段

60年代末70年代初,各工业发达国家的经济处于上升时期,电力需求以十年翻了一番的速度迅速增长。各国出于对化石燃料资源供应的担心,寄希望于核电。美、苏、英、法等国都制订了庞大的核电发展计划。后起的联邦德国和日本,也挤进了发展核电的行列。一些发展中国家,如印度、阿根廷、巴西等,则以购买成套设备的方式开始进行核电厂建设。
美国轻水堆核电的经济性得到验证之后,首先形成核电厂建设的第一个高潮, 1967年核电厂订货达到25.6GW;从1969年开始,美国核电总装机容量超过英国,居世界第一位,1973年美国核电总装机容量占世界的2/3。1973年世界第一位石油危机后,为摆脱对中东石油的依赖,形成了第二个核电厂建设高潮。1973、1974两年,共订货66.9GW,核电设备制造能力达到每年25~30GW。美国还通过出口轻水堆技术和开放分离功市场,使轻水堆成为世界核电厂建设的主导堆型。
在核电大发展的形势下,美、英、法、联邦德国等国还积极开发了快中子增殖堆和高温气冷堆,建成一批实验堆和原型堆。
3滞缓发展阶段

1979年世界发生了第二次石油危机。在这以后,各国经济发展速度迅速减缓,加上大规模的节能措施和产业结构调整,电力需求增长率大幅度下降。1980年仅增长1.7%,1982年下降了2.3%。许多新的核电厂建设项目被停止或推迟,订货合同被取消。例如1983年以前美国共取消了108台核电机组以及几十台火电机组的合同。
1979年3月美国发生了三里岛核电厂事故, 1986年4月苏联发生了切尔诺贝利核电厂事故,对世界核电的发展产生重大影响,公众接受问题成为核电发展的障碍之一,有一些国家如瑞士、意大利、奥地利等已暂时停止发展核电。
为保证核电的安全性,美国在三里岛事故后所采取的提高安全性的措施,使核电厂建设工期拖长,投资增加,核电厂的经济竞争力下降,特别是投资风险的不确定性阻滞了核电的继续发展。
从80年代末到90年代初开始,各核工业发达国家积极为核电的复苏而努力,着手制订以更安全、更经济为目标的设计标准规范。美国率先制订了先进轻水堆的电力公司要求文件(Utility Requirements Document,URD),同时理顺核电厂安全审批程序。西欧国家制订了欧洲的电力公司要求文件(EUR),日本、韩国也在制订类似的文件(分别为JURD和KURD)。这些文件的基本思想和原则都是一致的。各核电设备供应厂商通用电气按URD的要求进行了更安全、更经济轻水堆型的开发研究,美国通用电气公司同日本东芝公司、日立公司联合开发了改良型沸水堆ABWR,美国ABB-CE开发了改良型压水堆系统80+,美国西屋公司开发了非能动安全型压水堆AP-600,法国法马通公司和德国西门子公司联合开发了改良型欧洲压水堆EPR等,其中ABWR、系统80+和AP-600已获得美国核监管委员会(USNRC)的最终设计批准书(final design approval,FDA),并有两台ABWR机组在日本建成投产,运行情况良好。另有四台ABWR机组正分别在日本(两台)和中国台湾(两台)建造。与此同时,一些发展中国家也继续坚持发展核电。中国大陆在90年代初建成三台机组,目前在建的有8台。中国还在帮助巴基斯坦建造300MW的恰希马压水堆核电厂。此外,印度、巴西、伊朗等国也在建设核电厂。1998年底在建的36台核电机组中大部分属于发展中国家。
4美国的核电发展

美国原子能委员会在1951年规定,要在优先发展军用生产堆和动力堆的条件下,发展民用发电堆。1953年5月原子能委员会给国会两院提出报告,美国应在民用核能方面保持世界领先地位。1954年艾森豪威尔政府向国会提出修改原子能法,允许私营企业取得反应堆所有权,但核燃料仍归政府掌握,允许私人使用。在此政策指引下,美国政府与私营企业签订合同,建设了第一批实验验证性核电厂。这个时期的核电发展,由美国政府负责研究开发及核岛的建设和运行,私营企业仅负责厂址准备和常规岛建设。合同期满后,由原子能委员会负责拆除退役,核电厂的风险绝大部分由政府承担。1957年9月颁布的普赖斯-安德生法案又规定,一旦发生核事故,全部赔偿金额限于5.6亿美元,其中由政府承担5亿美元,进一步推进了核电的发展。1962年美国原子能委员会向肯尼迪总统建议:认为核电经济性已优于常规火电,发展核电可为电力供应节约大量资金,并提出了一系列的政策,包括核燃料私有。该建议在1964年原子能法的再次修改中被采纳。在核电技术趋于成熟时,为占领核电的国际市场,60年代末美国政府批准低富集铀的出口,把美国的轻水堆推向世界。70年代后期,美国的核电发展转入低潮,1978年以后没有任何核电厂订货。
关于快中子增殖堆的研究发展,1971年6月尼克松总统宣布要在1980年建成快中子商用示范性克林奇河核电厂。1977年4月卡特总统以防止核扩散为由,提出了限制核电发展的政策,决定停止克林奇河快中子堆核电厂的建设和燃料后处理技术的开发。
5苏联(俄罗斯)的核电发展

苏联在军用石墨水冷型生产堆的基础上,开发建设了一批石墨水冷堆核电厂,最大机组容量达1500MW。又在军用潜艇动力堆的基础上,开发了具有苏联特点的压水堆核电厂,有440MW(WWER-440)和1000MW(WWER-1000)两个级别的机组,不仅在国内建造,还出口到东欧各国和芬兰。
苏联国家计划委员会于60年代提出了能源发展政策,决定在乌拉尔山以西地区不再建造常规火电厂,只建造核电厂。同时考虑到天然铀资源的长期持续稳定供应问题,决定大力开发快中子增殖堆核电厂。苏联成为快中子增殖堆技术最先进的国家之一。70年代建成的原型快堆BN-350和示范快堆BN-600,至今仍在运行,都取得了很好的成绩。
苏联在发展核电过程中缺乏国际交流。特别是切尔诺贝利核电厂,由于缺乏安全意识,基本安全原则和装置设计有缺陷,于1986年酿成灾难性事故,其后果远远超越了国界。在切尔诺贝利核事故之后积极采取措施改进安全性,其中包括建立独立于核工业的国家核安全监管机构,实施质量保证制度,加强同西方国家交流经验,以及争取国际机构和西方国家的支援。
在苏联解体以后,俄罗斯的核工业体制进行了重组,把一些原来在乌克兰等国生产的设备,逐步转到俄罗斯的工厂生产。随着世界各国向更安全、更经济的新一代堆型发展,俄罗斯也积极进行新堆型的开发,如百万千瓦级WWER-1000机组的改良型V-428型和WWER-640型中型核电机组。
6英国的核电发展

英国在1956年10月建成卡尔德霍尔产钚、发电两用石墨气冷堆核电厂之后,陆续建设了一批石墨气冷堆核电厂,因利用镁合金作包壳,称为镁诺克斯反应堆(MGR)。英国曾一度是世界上核电总装机容量最大的国家。
70年代美国轻水堆占领国际市场后,英国的石墨气冷堆很难同美国的轻水堆相竞争,为提高机组的经济性,研究开发了改进气冷堆(AGR),但仍不能同美国轻水堆相竞争,终于未能打进国际市场。
英国也重视其他堆型的发展,曾建设了一座高温气冷堆(Dragon),一座实验快堆(DFR)和一座原型快堆(PFR)。
英国核电发展长期处于低潮的主要原因:一是在北海发现了大型油田,能源问题得到缓解,对核电的需求不迫切;二是英国在核能发展上实行国家所有制,主管核能开发的国家原子能局UKAEA和经营核电厂的国家电力局CEGB和SEGB未能及早下决心放弃石墨气冷堆的技术路线。直到80年代后期才决定引进美国技术,建造压水堆核电厂(Sizewell-B),已比法国晚了20年。
7法国的核电发展

法国早期发展核电的路线大体上同英国类似,采用石墨气冷堆。所不同的是,当英国进行批量化建设时,法国注意了每建一座都有所改进,因此在技术上比英国进步快。
60年代末,石墨气冷堆难于同美国轻水堆竞争的问题一出现,法国政府就十分重视,组织论证,由蓬皮杜总统做出决策,改为发展压水堆,从美国引进技术,消化吸收,建立自己的压水堆设备制造工业体系。法马通公司就是这时由法国同美国西屋公司合资成立的,后来变成为法国的独资公司。法国此时已解决了富集铀的大量生产问题,因此法国政府决定实施标准化、批量化建设方针,制订了一个每年投产七台百万千瓦级压水堆机组的庞大的核电发展规划,取得了很好的经济效益。法国建造核电厂的比投资是世界上最便宜的,发电成本也低于火电。由于经济上的优越性,促使核电替代火电取得成功,到1998年核发电量已占全国总发电量的76%。
8加拿大的核电发展

加拿大发展核电起步较早,在50年代即开始了重水慢化、冷却的天然铀动力堆的开发。1962年,第一座实验堆NPD(22MW)投入运行。1967年,第一座原型堆道格拉斯角(Douglas Point,208MW)建成投产。加拿大重水堆的特点是使用天然铀燃料,采用燃料管道承压的独特结构,实行不停堆换料,称作坎杜(CANDU,由Canada,Deuterium和Uranium三字缩成)型。
在原型堆运行成功后,加拿大开展了较大规模商用坎杜堆的建造工作,于1971~1973年先后建成皮克灵(Pickering)核电厂的4台515MW的机组。在此基础上经过改进,在1976~1979年陆续建成布鲁斯(Bruce)核电厂的4台848MW的机组。80年代以后,加拿大在本国又先后建造了14台坎杜型机组。自80年代至90年代初,加拿大原子能公司(AECL)采用计算机控制等先进技术,不断改进、完善设计,使得CANDU-6型成为当前世界上技术比较成熟的核电厂之一。
加拿大的坎杜型重水堆对发展中国家颇具吸引力,因为:①大型设备较少,便于实现国产化,减少对外国的依赖;②使用天然铀燃料,容易取得;③不停堆换料提高了电厂可利用率,使核电厂有良好的经济性。所以在70年代初即向巴基斯坦和印度出口,随后陆续又向韩国、阿根廷、罗马尼亚出口7台机组。中国秦山三期核电厂两台728MW的机组也采用CANDU-6型,将于2003年投产。
9日本的核电发展

同美、苏、英、法相比,日本在发展核电方面是个后起的国家。由于日本能源资源缺乏,工业发展较快,能源的持续稳定供应是日本政府最关注的问题之一。日本政府认为由于核燃料便于储备,核电可视作“半国产的能源”,有助于减少石油的进口,对实现能源多样化、克服脆弱的能源供应结构有重要作用。因此日本政府一贯积极推进发展核电,70年代石油危机之后也并未因世界核电发展进入低潮而动摇。
日本第一座商用核电厂(166MW的东海村)是从英国进口的石墨气冷堆核电厂(1966年投产,1998年关闭)。后来改为采用美国的轻水堆。有四家电力公司采用压水堆,五家电力公司采用沸水堆。由日本的设备制造厂商三菱公司同美国西屋公司合作掌握了压水堆核电技术,东芝公司和日立公司同美国通用电气公用合作掌握了沸水堆核电技术。
在新一代更安全更经济的堆型开发上,日本在同美国合作中发挥更大作用。标准化的1350MW先进压水堆APWR于1990年完成设计工作。标准化的先进沸水堆ABWR在柏崎·刈羽核电厂6号、7号机组中被采用,于1991年订货,1997~1998年建成投产,是世界上最早建成的满足电力公司要求文件的新一代堆型。
为解决核燃料的长期稳定供应问题,日本政府还积极支持快中子增殖堆技术的开发,先后建成常阳(Joyo)快中子实验堆和文殊(Monju)快中子原型堆。为研究钚的再循环利用,建成了一座普贤(Fugen)先进转化堆ATR。
10中国的核电发展

中国为了打破超级大国的核垄断,保卫世界和平,从50年代后期即着手发展核武器,并很快掌握了原子弹、氢弹和核潜艇技术。中国掌握的石墨水冷生产堆和潜艇压水动力堆技术为中国核电的发展奠定了基础。80年代初期,中国政府制订了发展核电的技术路线和技术政策,决定发展压水堆核电厂。采用“以我为主,中外合作”的方针,引进外国先进技术,逐步实现设计自主化和设备国产化。
自主设计建造的秦山核电厂300MW压水堆核电机组,于1991年底并网发电,1994年4月投入商业运行。同香港合资,从外国进口成套设备建造的广东大亚湾核电厂,两台930MW压水堆机组,分别于1994年2月1日和5月4日投入商业运行。
目前正在建设4座核电厂8台机组。秦山二期核电厂两台600MW压水堆机组按自主设计、自主管理方式建设。岭澳核电厂两台1000MW压水堆机组按大亚湾核电厂方式建设,改为完全由中方自主管理,请外商当顾问,提高了设备国产化的比例。秦山三期核电厂两台700MW坎杜型重水堆机组由加拿大原子能公司按交钥匙方式总承包建设。田湾核电厂两台WWER-1000(V-428型)压水堆机组从俄罗斯进口成套设备。以上各机组计划于2003年至2005年建成。
中国台湾现有三座核电厂6台机组,其中4台是沸水堆,2台是压水堆,总装机容量为4884MW,都是引进美国技术建造的。正在建设的第四座核电厂,两台机组都采用美国通用电气公司同日本东芝、日立公司联合开发的先进沸水堆(ABWR),装机容量为1300MW。谢谢阅读!

阅读全文

与核电什么时候进入碳交易相关的资料

热点内容
如何把数据添加入饼状图 浏览:327
虞城市大市场什么时候拆迁 浏览:63
飞机场打包箱子用的什么技术 浏览:691
如何下载小程序到手机里 浏览:667
收市后还有交易是怎么回事 浏览:193
应用程序怎么发布 浏览:552
天祝酸类化工产品包括哪些 浏览:631
如何靠股票技术赚钱 浏览:380
layui前台怎么把数据传给后台 浏览:974
怎么能成为免检产品 浏览:9
二手市场怎么建 浏览:916
天翔环境退市怎么交易 浏览:452
地下手表批发市场在哪里 浏览:610
同城交易平板哪个靠谱 浏览:372
北京通州花鸟鱼虫市场哪个好 浏览:312
怎么查自己的车辆信息是哪里的 浏览:420
菲诗小铺如何代理 浏览:964
如何看出化妆品是不是三无产品 浏览:73
一个人的专业技术很强怎么表述 浏览:795
印度什么技术发展最好 浏览:336