A. 揭开“量化交易”的神秘面纱
量化交易( quantitative trading )是金融术语,即以数学模型代替人为主观判断,以计算机程序从还想历史数据中筛选出多种“大概率事件”并总结出规律,从而制定相应的投资策略。有了量化交易策略,就较容易减少投资者情绪波动的影响,避免在市场狂热或悲观的情况下做出非理性的投资决策。
在量化交易出现之前,股票和证券市场的投资操作都是人工完成的。着名的股神巴菲特,他的故事投资秘诀就是价值投资,即通过大量研读财报选出优质的公司,并长期持有。价值投资利润固然高明,但知易行难,绝大多数的投资者并没有耐心和毅力去逐一研读每家企业的资料,分析基本面,等等。以美股为例,14000+家公司,每份财报都有好几百页,怎么看得完。更何况,很多机构和投资者都是炒短线的,根本没时间按价值投资的思路去做资料分析。
在此背景下,很多金融创新就应运而生了。比如金融学上有一个很着名的交易策略叫动量交易(momentum trading),即股票价格向上突破到某个比例时买入,下跌某比例时卖出。这个原则说起来容易,人工操作就很困难。而有了计算机之后,交易员只需要输入具体明确的交易策略的指令,剩下的具体操作就可以由电脑自动完成了,非常轻松。
20世纪70年代,随着计算机算力的突飞猛进,金融数据的大数据分析变得简单易行,接着一大批划时代的金融理论诞生了,比如投资组合理论、资产定价理论、期权定价理论,都是在这一时期出现的,这些理论为挖掘金融数据提供了理论基础。另一方面,市场上需要管理的钱越来越多,证券的种类也越来越多。计算能力、金融理论基础、市场需求,这三个条件在一个时代同时实现,量化交易也就应运而生了。
率先使用量化交易技术的是投资银行们。他们利用计算机技术在海量的数据里面挖掘信息,设计很多很复杂的金融产品,放大杠杆,获取着令人难以置信的高额利润。由于计算机技术的大面积应用,很多IT天才云集华尔街,他们大都是穿着T恤和牛仔裤不修边幅的宅男,与西装革履的传统银行家形成了鲜明的对比。2006年,来自摩根史丹利,高盛,德意志银行等投行的顶级“宽客”(Quants,量化交易专家)平均年收入是5.7亿美金,年龄最小的才30岁左右。
经过投行们的推波助澜之后,量化交易在金融市场上占据着相当大的份额。目前的美股市场上,量化交易大概占到60%的比重。
量化交易的核心竞争力就是对海量数据进行分析计算,进而提炼出一定的规律,并据此作出预测。比如,对于某一只农业概念股,除了常规的坎财务数据、历史产量,还可以利用卫星数据来分析天气,然后把农产品的历史产量和其它先关数据全都难过来,进过整合分析之后预测这产品的未来产量,进而对该只农业股的股价进行预测。在市场平稳发展、规律性较强的情况下,只要精确地捕捉到这些规律,投入一些本金,并加上一定的杠杆,就可以实现很高比例的盈利,可谓是一本万利,这也是前文提到很多量化交易的IT专家能够获取天量收入的秘诀。
这个原理听起来确实很诱人,然而却不是容易做到的。毕竟从海量繁杂的数据中持续捕捉规律,并作出准确预测,是非常复杂和烧脑的劳动,费一般人力所能及。因此,大多数投行都是到MIT(麻省理工学院)、普林斯顿等最牛的高校里挖最牛的人才来组建团队。这些精英们也经常自诩,他们是用模拟天体运行规律的方式来解读金融世界。简言之,这是智商密集型的精英领域,非一般人可以涉足。
然而,经济世界和金融领域的运行状况,跟天文物理、化学生物等稳态结构领域的规律是大相径庭的,没有必然和连续的规律 。量化交易确实厉害,但却非稳赚不赔的必杀神技。实际上,量化交易的风险非常大。关键在于,量化交易的本质是基于历史数据挖掘规律,因此它依赖于过去的趋势。而如果这些趋势依存的条件发生变化,趋势也就不复存在。进而,基于这些趋势所做的投资策略,也就面临着失败的厄运。
最着名的案例就是着名的投行“所罗门兄弟”,它里面有一个叫梅瑟维夫的天才,自己组建了着名的量化基金“长期资本管理公司”。在1998年之前,这家公司的业绩非常好,年化收益达到32%,在同行之中一骑绝尘。但是经过俄罗斯卢布崩盘的黑天鹅事件之后,一切灰飞烟灭。
1998年俄罗斯卢布大幅贬值,市场上到处抛售俄罗斯债券。长期资本管理公司根据自己设定的量化模型,不但不抛售,反而激进地抄底,想着等市场反弹之后大赚一笔。然而1998年8月17日,俄罗斯政府发表声明不再偿还任何债务。卢布应声而落,长期资本管理公司爆仓,一天就亏掉几亿美金,在一个月之后,这家天才云集的公司就破产清盘了。
量化交易把金融市场当作稳态结构,以为一切皆有序可循。然而,金融市场不是天体世界,它归根到底是人的市场。人性的贪婪、恐惧、欲望都会随着市场情况的变化而变化。因此它是一个规律和任性相互作用的动态过程,没有一成不变的规律,也没有料事如神的预测模型。用李善友教授近两年广为人知的说法,叫“ 不连续性 ”。
当今的量化交易已经回归到了一个正常状态:一方面,认识到量化交易在数据挖掘和科学决策方面的优势,但是另外一方面,人们也认识到量化交易是有局限的,尤其是应对这种突如其来的规律变化的时候,这种纯量化交易可能会面临更大的风险。
作为全球重要的金融市场之一,中国也有一定规模的量化交易的,但仍处于萌芽的发展状态。炒过股票的同学都知道,中国股市虽然长期收益率不错,但仍总体而言仍是“消息市”、“题材市”、“概念市”,一旦政策或者环境有点风吹草动,中国市场的变动是非常非常频繁的,而且波动的幅度特别大。在市场起伏很大、无规律性非常明显的情况下,量化交易策略就难以凑效,更遑论赚取暴利。
2013年中国有一个光大“乌龙指”事件,就跟量化交易有密切的关系。当时是光大证券的交易员不小心输错了一个数字,下了一个70亿的天量买单,瞬间拉动股价大涨,进而触发了很多量化交易程序的自动执行条件,很快导致300多亿的资金涌入场内,几分钟之内上证指数就拉升了100多点,59支权重股瞬间涨停。很多不明就里的散户盲目跟进,结果损失惨重。事后很多人除了控诉光大证券,也指责采用量化交易的机构,因为量化交易数倍放大了“乌龙指”效应,明显影响了整个股市,进而间接促成他们的跟进损失。
在2013-2014期间,有些量化交易机构收益不错,但经过2015年股灾之后,整个A股市场的情绪和资金面都发生了巨大的变化,过去行之有效的策略通通报废,以量化交易为核心的私募基金倒掉了300多家。
因此,量化交易在中国市场的成长壮大,路漫漫其修远兮。我们普通人,还是老老实实学巴菲特,踏踏实实研读财报,搞价值投资吧^_^
B. 做量化交易策略的人在公司应该如何维护自己的利益
像这样的问题我也是有遇到的,不管到什么公司老员工总会觉得比你有地位资历比你高,所以对于做量化交易策略的人在公司应该如何维护自己的利益?我是这样理解的:
我的经验是,无论对于公司还是对个人来说,任何想要要投机取巧的想法都是非常危险的。
创建一个完全由你的领导的组成的新策略。 当然,目前你只有一个试探,也你还不够强大,无法独立运行。 然后尝试制作足够的信号,足以单独运行。 额外的诀窍是,这样的信号最好是难以添加到某人现有的战略框架或被吞并。
C. 什么是量化交易个人如何做量化交易
一、何谓量化交易
量化交易(Quantitative Trading),即使用现代统计学和数学工具,借助计算机建立数量模型,制定策略,严格按照既定策略交易。具体又可分为高频交易和非高频交易,其中非高频交易适合一般个人投资者和中小机构。
量化交易是以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额预期年化预期收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
二、量化交易的发展
对多数普通投资者而言,量化交易仍是一个较为陌生的概念,但该模式已在国内流行了数十年。2010年,国内股指期货上市,成交量在两年内增加了倍,为量化交易提供了极佳的交易标的,国内量化交易便快速发展。
据华联期货介绍,2012年上半年,量化交易量占国内证券市场总交易量8%左右,但占股指期货交易量的比例已达20%左右。绝大部分的券商和期货公司开始进行量化交易,部分私募公司和个人投资者也开始使用量化交易产品。
事实上,3年多来,在股市连续下跌的大环境中,传统投资策略纷纷失效,而一批以股指期货、商品期货、债券为投资标的,以量化投资、程序化交易为工具的新兴投资方式,却在国内投资市场崭露头角,并实现了较为稳定的预期年化预期收益。
“传统投资策略依靠人的主观感觉来投资;而量化投资是根据数学统计模型,由计算机来实现自动化交易。”国信证券东莞营业部财富管理中心负责人林玉伟指出,量化投资的应用涵盖几乎所有金融投资领域,是在计算机和网络的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。
据华联期货介绍,量化投资主要应用于期货交易、ETF套利、条件选股、权证套利交易等,主流平台包括文华财经、交易开拓者、金字塔,此外Multicharts、龙软、高手、金钱豹、Yesterday等平台在业内的使用也较为广泛。
三、量化交易的特点
“量化产品的特点就是任何行情阶段都能盈利。”国信证券东莞营业部投资顾问蔡恩侠告诉,量化产品一般都是多空对冲,因此无论牛熊市均能盈利,不过其也有弱点,即牛市跑不赢一般的股票类投资产品,“2007年大牛市,也就30%左右的预期年化预期收益,但2008年大熊市也有15%左右的预期年化预期收益。”
“资金不会一直朝一个方向直线形地前进,资金增值是一个艰难的曲折前进过程。”莞香资本CEO江国栋则提醒道,回撤即是资金增长行进中的停顿,也可看做是期货交易的机会成本。“因此,必须正确看待策略参数优化结果,不刻意追求最高预期年化预期收益,不过度拟合行情;同时,坚持正确的交易理念和交易方法,严格执行和坚持不懈是持续盈利的前提。”
量化投资的应用涵盖几乎所有金融投资领域,是在计算机和网络的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。
D. 国内散户如何玩量化投资具体是什么步骤呢
量化交易是指投资者将交易策略的逻辑与参数经过电脑程序运算后,将交易策略系统化,然后通过电脑自动下单来完成交易。
在量化交易过程中,散户可以这样做:
1、根据个股的历史数据,进行多因子选股,比如,把市盈率、市净率、市销率等作为选股标准,选出一些价值被低估,或者处于合理区域的个股。
2、顺势交易,即在上涨的趋势中买入,在下跌的趋势中卖出。
3、进行合理的仓位管理,即采取漏斗型仓位管理法、矩形仓位管理法、金字塔形仓位管理法等,好应对个股后期的风险。
4、再根据个股的历史走势,寻找个股的支撑位和压力位,把它们作为止损、止盈点,即在压力位置,且获得收益的时候及时卖出;在跌破支撑位时,且股票亏损的时候及时卖出股票,避免更大的损失。
量化投资的最终目标
是让投资者做到知行合一,克制人性的贪念,让自己成为理性的投资者。优柔寡断,是投资者面临损失最常见的问题。量化投资的模型,将所有的数据模型化,不再给出多个方案选择,只给自己定下唯一的参考标准。
量化投资的问题在于,当模型被市场打破后,在没有找出根本的原因,是否能够做到静观其变。即使错过了机遇,也不为此而叹息,以原则坚守为主。简单的理解,将炒股的各种参数量化,像机器人一样简单,消除各种幻觉。不以亏损而恐慌,不以赚钱而自大,盈亏有道。
如果想在股市中长期生存,请给自己设置一个模型!
E. 量化交易下散户怎么办
所谓量化交易就是,编一套相当于交易系统的程序,由电脑程序(又称机器人),自动完成操作。
这个交易程序涵盖,如何选股,如何确定买卖点,并进行自动买卖的,完整过程。
选股一般用基本面选股,也有用技术形态选股的。
买卖点,一般都是短期技术上的买卖点。
人们设定好程序后,电脑程序自动运行,代替人操作。
量化交易技术在机构中已经非常普及了,确实是很靠谱的交易方法,不过散户或是个人想使用这种交易方法的话成本很高,光是技术问题就难以解决,其实这种方法应用起来并不复杂,所以建议题主还是使用一些成熟的量化交易产品比较好,最近在使用的策略炒股就非常方便,手机上就能用,回测准确,而且推送功能非常贴心,只要选定策略就不用管了,自动推送交易信息,然后交易的时候照着做,非常方便。
在理论上看,量化交易,是有理性交易的优势。
由于设定好“选股+买卖点”的自动买卖程序,可以让机器自动操作。
电脑程序自动操作,克服了人们在买卖中的各种情绪,显得比较理性。
如果量化交易程序,真的科学合理,又克服了情绪因素,将提高交易的效率,提高成功率。
F. 【策略】量化对冲的三种策略
期货市场行情瞬息万变,交易本身也蕴含极大风险。不过,投资并非一定是“刀口舔血”,通过数据分析和特定的交易软件,投资者也可获得稳定的收益。如今进入衍生品时代,量化对冲交易将成为投资者的核心策略。
▌市场有波动就能赚钱
2011年底,国际大宗商品市场的波动越来越多地显示出资金面的重要性,而非传统的基本面在决定市场波动。这种新变化,使投资者越来越依赖资金的分析来做出决策,这也在一定程度上推动了量化对冲交易的发展。
所谓量化投资,其本质就是利用数据和模型来进行投资决策工作。东方证券资深分析师丁鹏表示,目前国内的量化对冲交易仍处于起步阶段,但国际市场上早已不乏成功案例。如在美国,由“对冲基金之王”詹姆斯·西蒙斯管理的“大奖章”基金连续20年年均盈利达35%。西蒙斯的主要策略就是利用强大的数学模型和计算机软件,通过对历史数据的相关性分析来预测未来,在全球市场的不同产品中进行高频交易,赚取微小的波动差,从而获取一个稳健持续的收益。
丁鹏指出,对冲交易更多的属于中性策略,不太受到牛熊市大环境的影响,只要有波动就能赚钱。他认为,投资的暴利时代已经结束,在衍生品时代,虽然市场操作的难度大大增加,但稳健盈利将会成为资产管理的核心竞争力,且绝对收益产品也将变成高净值客户的追求。因此,量化对冲交易将成为获取绝对收益的核心。
丁鹏表示,目前国内市场应用较多的还是期现的套利交易,而实际上,量化的概念包括期货、期权套利及算法交易等。以股指期货套利为例,其基本概念是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或同时进行不同期限、不同(但相近)类别股票指数合约交易来赚取差价的行为,其主要方法包括期现、跨期、跨市、跨品种套利等。
而期权套利的优点在于收益无限的同时,风险损失却有限,因此很多时候利用期权取代期货来做空,进行套利交易,比单纯利用期货套利具有更小的风险和更高的收益率。其主要方法包括股票—期权套利、转换套利、跨式套利、宽跨式套利、“蝶式”套利和“飞鹰式”套利等。
▌量化对冲三种交易策略
流动性回扣交易
为争取更多的交易订单,美国所有的证券交易所都为那些创造流动性的券商提供一定的交易费用回扣,通常为0.25美分/股。不论买单还是卖单,只要交易成功,交易所即向该流动性的原始提供券商支付回扣,同时向利用该流动性进行交易的券商征收更高的费用。随着这种激励机制的普及,越来越多以专门获取交易回扣为赢利目的交易策略便应运而生。
例:假设机构投资者的心理成交价格在30-30.05美元。如果交易系统中的第一个买单(如100股)配对成功,以30美元成交。这样,交易系统中第二个买单(如500股)便显示出来。假设该买单也配对成功,以30美元成交,根据上述交易信息,专门从事流动性回扣策略的高频交易者的计算机系统即可能察觉到机构投资者其他后续30美元买单的存在,遂迅速采取行动,报出价格为30.01美元的买单100股。毫无疑问,那些曾以30美元出售股票的券商更愿以30.01美元的价格出售给该回扣交易商。
交易成功后,回扣交易商立刻调整交易方向,将刚刚以30.01美元购得的100股股票以相同价格,即30.01美元挂单卖出。由于30美元股价已不复存在,故该卖单很可能被机构投资者接受。
这样一来,尽管回扣交易商在整个交易过程中没有赢利,但由于第二个主动卖单给市场提供了流动性,从而获得交易所提供的每股0.25美分的回扣佣金。不言而喻,回扣交易商所获得的每股0.25美分的盈利是以机构投资者多付出的1.0美分为代价的。
猎物算法交易
在美国,超过一半的机构投资者的算法报单遵循国家最佳竞价原则。根据该原则,当一个报单由于价格更为优先,从而在排序上超过另一个报单时,为能成交第二个报单,常常调整股价并与前者保证一致。事实上,一只股票的算法报单价格常以极快的速度相互攀比追逐,从而使该股票价格呈现出由高到低、由低到高的阶段性变动趋势,这也正是在实际交易中经常看到数量有限的100股或500股小额交易常常将股价推高或拉低十美分至几十美分的原因。
所谓猎物算法交易策略,就是在对上述股价变动历史规律进行研究的基础上而设计,即通过制造人为的价格来诱使机构投资者提高买入价格或降低卖出价格,从而锁定交易利润。
例:假设机构投资者遵循国家最佳竞价原则,且心理成交价格在30-30.05美元。像上例中流动性回扣交易商一样,猎物算法交易商用非常相似的程序和技术来寻找其他投资者潜在的连续算法订单。在计算机确认价格为30美元的算法报单的存在后,猎物算法交易程序即发起攻击:报出价格为30.01美元的买单,迫使机构投资者迅速将后续买单价格调高至30.01美元。然后猎物算法交易商进一步将价格推高至30.02美元,诱使机构投资者继续追逐。
以此类推,猎物算法交易商瞬间将价格推至机构投资者能接受的价格上限30.05美元,并以此价格将股票卖给后者。交易商知道30.05美元的人为价格一般难以维持,从而在价格降低时补仓赚取利润。
自动做市商交易
做市商的主要功能即为交易中心提供交易流动性。与普通做市商一样,自动做市商高频交易者通过向市场提供买卖订单来提高流动性。不同的是,他们通常与投资者进行反向操作。自动做市商高频交易者的高速计算机系统,具有通过发出超级快速订单来发现其他投资者投资意向的能力。比如,在以极快速度发出一个买单或卖单后,如果没有迅速成交,该订单将被马上取消。然而,如果成交,系统即可捕捉到大量潜在、隐藏订单存在的信息。
例:假设机构投资者向其算法交易系统发出价格在30.01-30.03美元之间的系列买单,外界无人知道。为发现潜在订单的存在,自动做市商高频交易者的高速计算机系统以30.05美元的价格发出一个100股的卖单。由于价格高于投资者价格上限,因此没引起任何反应,该卖单被撤销;计算机又以30.04美元再次探试,还是没引起反应,该卖单也被撤销;计算机再以30.03美元探试,结果交易成功。
基于此,计算机系统即意识到一定数量价格上限为30.03美元的隐藏买单的存在。于是,运算功能强大的该计算机系统随即发出30.01美元的买单,并利用其技术优势赶在机构投资者之前进行成交,然后再以30.03美元的价格反卖给机构投资者。
G. 散户如何做量化交易
定量投资是标准化投资环节的交易方式,主要包括选股、购买、销售三个环节.在量化交易过程中,散户可以这样做:1、根据个股的历史数据,进行多因子选股,比如,把市盈率、市净率、市销率等作为选股标准,选出一些价值被低估,或者处于合理区域的个股。 2、顺势交易,即在上涨的趋势中买入,在下跌的趋势中卖出。
一、散户是怎么量化交易的?
1、根据股票的历史数据,进行多因子股票选择.例如,将股价收益率、股价收益率、市场收益率等作为股票选择基准,选择价值被低估或处于合理地区的股票.
2、顺势交易,以上升趋势购买,以下降趋势销售.
3、进行合理的仓库管理,即采用漏斗型仓库管理法、矩形仓库管理法、金字塔形仓库管理法等,应对股票后期风险.
4、根据股票的历史趋势,寻找股票的支持位置和压力位置,以此为止损、止损点,在压力位置,获得收益时立即销售的支持位置,股票损失时立即销售股票,避免更大的损失.
二、散户如何做量化交易
确保管理公司所有的活动遵守法规规定,确保对付给基金管理公司的费用和付给投资者的收益计算符合法规和契约规定负责.同时,受托委员会负贵监督和核查托管人是否合法、合规、高效地进行基金资产净值核算、报酬的计提和支付、资金的划付,以及收益的分配等.委员会还应有权审查管理公司及托管机构高级人员个人账户及证券交易的详细内容.并定期对交易、资产净值、服务合同进行审查,定期向监管部门提交相关报告。
三、量化交易系统的出现能够解决什么问题?
1.减少客观因素(情绪化交易)带来的影响,从而达到稳定持续盈利目的。
2.有严格风险控制机制,可杜绝过量交易、重仓交易、大幅亏损等问题。
3 解放操盘时间,降低重复工作带来的时间消耗,从而达到提高效率目的。
H. 什么是量化投资如何做到程序化交易
所谓量化投资是将投资环节标准化的交易方式,主要包括选股、买入、卖出三个环节,而真正的量化投资是完全自动化交易,不需要人为参与,投资者只要监管程序是否正常运行,参数设置是否合理,指标选择是否在既定目标范围内。