1. 目前市面上的量化交易平台做到了什么程度
根据账户状况和交易信号来推动交易订单,使用类似于Pascal TBL语言开发策略模型的语法。 TB为定量模型开发中的战略发展提供更为全面的账户和交易功能,市场数据功能和统计功能。 它提供了最近的国内TICK数据和多周期历史市场数据。 它还为战略绩效评估提供了基础。提供丰富的战略回溯报告项目。 就定量交易而言,单一的结核病终端支持同时接受报价和交易的20-30个单一物种图表,但由于客户技术架构,缺乏对高频率和更复杂政策的支持。 现阶段结核病在市场低端定量交易平台上有很多期货公司的合作份额较高。
安易金融终端是国内期货和券商独立开发的股票自动化交易工具。 交易模型是使用通用脚本语言和技术指标进行图表驱动的自动交易。 在这个阶段,Ahn免费使用程序化交易工具,为国内期货和股票提供历史价格。 相对简单的股票,对冲期货和图表交易都可以进行。
2. 量化交易真的有作用吗
我从另个方面理解你的这个问题,如果有什么认识错误的我们在沟通。
1、量化交易能赚钱吗?
能。从量化交易其中的三个特点谈一谈。系统性、套利思想、和概率取胜。目前A股有3000多支股票,必然是存在错误定价、错误估值。如果单纯通过人力来索搜这个机会,当然也是能找出的,但其中的人力代价必然是高昂。相反,通过量化交易就能发现这个机会。问题就回到了套利可以赚钱吗?不一定每一笔都能,但长期来看必然是能的(获得超额收益)
2、量化交易相对其他方式能有什么优势?
纪律性。
目前,国内量化交易平台公司已经都发展不错了,给人耳目一新的便是Ricequant,从编程体验、数据、API来说,都能满足用户的研究、投资需求。现Ricequant量化已加入实时模拟 ( Paper Trading ) ,并在不久的将来加入实盘交易。国内的有一家平台,它的像素级的拷贝,圈内人也是人尽皆知的,不提也罢。
3. 量化交易程序开发是做什么的
量化交易是利用计算机程序语言编写程序来实现,分析行情走势,分析公司基本面,分析经济数据,也可以实现自动化交易,举个简单例子,以前的价值投资者投资股票调研,你需要实地考察,现在很简单,我投资某上市公司,想调用它的产品,我只需要检测跟这产品有关的活跃论坛,群,几大网络销售平台的销量评价,就能获得一手调用数据了。量化交易比普通际交易者的优势就在于,他的分析效率高,你问一个主观交易者MACD指标在三千多只股票里哪只收益最高,那只收益最差,最优参数是多少,主观交易者会告诉你指标不能信那东西都是主力骗人的。因为他不可能知道人工回测三千多只股票的MACD指标一个金叉一个死叉的算还没优化参数呢,人都得累死。但你问量化交易者他几行代码,计算机跑一会,三千多只股票就回策完了。并告诉你历史上那些参数是最优的哪些是最差的。
量化交易还有很多优势,但量化交易本质上和主观交易没区别,只是效率大大提高,交易的策略还是以人的思维为主导地位的。目前机器学习还不能自己独立交易,计算机都是按照人设计好的策略,来执行交易指令的。
4. 量化交易有什么用
量化交易指使用数学模型取代人为的主观性判断,利用计算机技术从庞大的历史数据中甄选能为企业带来超额收益的大概率事件以制定有利于企业发展的策略。
从18世纪开始,金融投资的先驱已经开始探索各种不同的投资方法,经过多年的进化,已经尝试了从价值分析、风险套利到日间交易等不同的方向。那么,在目前不断变化的中国资本市场,什么投资方向迫切需要我们深入探索。笔者认为,量化投资作为中国市场的新兴投资方法,正在引来越来越多的关注。
中国投资者对数量化投资,虽不陌生,却仍懵懂。量化投资理论是借助现代统计学和数学的方法,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,用数量模型验证及固化这些规律和策略,然后严格执行已固化的策略来指导投资,以求获得可持续的、稳定且高于平均的超额回报。
本条内容来源于:中国法律出版社《法律生活常识全知道系列丛书》
5. 量化交易是什么量化交易有哪些优缺点
近些日子,一则“量化交易是什么?”的问题,引发了广大网友们的热议,在网上闹的沸沸扬扬。那么,量化交易是什么呢?量化交易也可以叫自动化交易,就是使用数学模型来自动交易,摒弃了认为主观的判断。量化交易的优点是什么?量化交易的优点就是去除了认为的操作,不会受到情绪的影响,都是拿概率说话。量化交易的缺点是什么?量化交易的缺点是不懂得炒作热点,不会分析时事。那么具体的情况是什么呢?我来给大家分享一下我的看法。
一.量化交易是什么量化交易,也叫自动化交易。就是指利用数学的模型,制作出一套能够稳定盈利的方法,然后让计算机自动的进行买如何卖出的操作。量化交易模型越好,那么交易的盈利能力,以及稳定性则是越强。
以上就是我对于这个问题所发表的看法,纯属个人观点,仅供参考。大家有什么不同的看法都可以在评论区留言,大家一起讨论一下。大家看完,记得点赞,加关注哦。
6. 股票量化交易系统有用吗
股市是一门经济学,哲学,概率学,心理学的综合体,想要成功,需要不断去感悟去总结每一次的失败,这样才能走的更好更远。
第一个理念:
顺势而为
股市的大趋势决定个股的走势,当指数大涨时个股更容易爆发,这个时候适合重仓介入,当然要注意获利就出;当市场处于弱势时,就要考虑轻仓介入,不盲目追涨。
第二个理念:
选定有价值的公司
在投资中,选定有价值的公司很重要,因为这些公司有很强的上涨潜力,一旦市场有好的信号,或者公司有大利好时,股价就会飞速上涨,所以这样的公司更容易让普通股民赚到钱。
第三个理念:
分批建仓 坚持到底
在投资中,投资者要住的是要做好投资策略,一般的策略就是分批建仓,在市场下跌时以倒金字塔形态建仓,在市场上涨时,以金字塔形态减仓。如果股票短期被套,市场情况还可以的话,则要选择坚持持仓。
天字一号量化交易系统通过设定不同的各种指标条件,一旦市场交易情况满足这些条件时就自动弹出一些操作指示;设定值达到开仓条件,系统会弹出买入信号、设定值达到减仓条件卖出一半或者全部卖出等。
7. 什么是量化交易,未来前景如何知道的讲讲。
量化交易是指借助现代统计学和数学的方法,利用计算机技术来进行交易的证券投资方式。在国外的期货交易市场,程序化渐渐地成为主流,国内则刚刚起步。今天我们就来分析一下它的优势和劣势。
这个平台犹如币圈的一个缩影,每一个人都心惊胆战地伏在荷官的膝下,聆听骰子撞击的声音,殊不知荷官才是他们中的头号玩家。“职业投资者都知道有庄家”,张威直言。多数的量化平台可能会推出更复杂的止损策略和更出色的套利机制,但除非平台拥有足够雄厚的资本成为游戏的庄家,否则就只有被收割的命运。
量化作为工具,或许无可厚非,但许多数字货币基金以“量化”为名,公开募集资金,行走在法律的边缘。中国人民大学教授赵锡军认为,金融行业和其他行业不同,参与金融活动,动用的是别人的钱,发生风险,别人会有损失,因此政府需要更加严格地监管。
量化交易一念天堂,一念地狱。小编在这里希望广大投资者切莫游走在法律的边缘,以身试法,否则等待你的将是法律的制裁
8. 量化网上的量化交易能稳定盈利吗
量化交易一定赚钱吗?
量化交易可以赚钱,但并不是所有人都能赚钱。影响量化交易盈利的因素有很多,主要有四个。策略模型的适应性,交易员过硬的心态,交易员的认知水平,以及成熟的风控系统。
第一取决于策略模型的适应性。真正优秀且能够稳定盈利的高频策略,目前在市场上很难找到。因为研发成本巨大,基本都被各大基金公司垄断。市场上面能够找到的高频策略,基本上都有设计缺陷,只在一部分行情中有效,或者纯粹就是拿风险换盈利,遇到突发行情直接玩完。这种策略基金和大户都不会用,但市场上一些别有用心的人,利用散户认知不够,经常拿来设计圈套,赚取手续费。至于波段策略,开发起来相对简单,运行下来真正能够长期稳定盈利的也是极少数,愿意分享的人凤毛麟角,大部分优秀的策略一样被私藏。市场中能够找到的波段策略,多数属于适应部分行情的,策略针对的是某一类行情,适应性有限,能否盈利,和盈利多少和行情关系巨大。最后一类是趋势跟踪策略,起源道氏理论,经过多代人的验证,是一种简单有效性的策略。长期跟踪下来能够稳定盈利策略不在少数,但收益率有限,遇到震荡行情盈利会有一定回撤。
第二,取决于交易员的心态。交易员的心态决定能不能把制定的策略运行方案执行到位,是否能扛过策略的正常回撤,在策略持仓出现盈利的情况下会不会提前出局。过硬的心态是投资交易的地基,没有这个基础再好的策略也难以发挥出优势。
第三,取决于交易员的认知,分析水平。成熟的交易员不会迷恋量化策略,知道量化只是一个工具,只是一个支持自动下单的交易软件。会去仔细了解策略的优势和缺点,分析策略适合的行情,找出策略不适合的行情。分析出因为不可控因素出现的正常回撤是多少,分析出行情适合的时候能有多少盈利。最后通盘布局,制定出策略使用的具体方案细节。例如,启动策略的时间,关闭时间,什么情况下手动干预,添加止盈止损,什么情况下提前手动平仓,根据单子的方向等等。
第四,取决于风险控制。每一个策略都有可以承载资金量的限制,也有正常的回撤,这就要求交易员通盘考虑,不能肆意放大交易仓位。量化交易虽然有着各种各样的优势,但并不能降低投资的风险,要考虑突发事件对策略的影响。需要合理分配资金和仓位,设定停止交易的红线,设计参与和退出的机制等。
9. 量化交易不是保赚的也没有什么高大上!揭开量化交易的神秘面纱
量化交易是近几年来一个金融交易领域的流行词汇。所谓量化,就是指数量化。量化交易就是把交易行为以 定量的形式为交易者提供交易的依据,使交易结果尽可能排除和 避免 主观交易的随意性和心理波动。
量化交易在美国已经搞了30多年了,最着名的是数学家西蒙斯和他的文艺复兴公司的大奖章基金, 从1989年期起,复兴 科技 公司的大奖章基金( Medallion )的年回报率平均高达35%,大奖章基金被誉为是最成功的对冲基金。
狭义的角度讲量化交易就是十几年前就已经开始的程序化交易,它是把交易过程中运用到的交易方法,用计算机语言编成计算机软件程序,实现机器选股,自动下单买卖等行为。通过计算机程序可以省去一些人力成本(人力分析慢,毕竟现在市场上已经4000多只股票,未来会更多),同时也省去了一些交易员不必要的盯盘时间,也一定程度规避情绪心理因素影响。
广义的角度讲量化交易就是我们交易者在交易过程中运用的系统化交易。根据一些固定的交易模型进行交易的系统化的方法,系统化交易是股票交易盈利的前提条件。比如基本面的价值投资法,把很多财务数据和指标进行数量化的梳理成固定的模型,这属于基本面量化;人们包括利用技术分析理论编成的各种指标,选股条件等,属于技术面量化;
另外量化交易又根据交易的形式分为:算法交易(也就是高频交易,主要用于抢单),套利交易(期货品种的跨期套利和跨品种套利),根据现有的各种技术分析理论编成的实现全自动交易的计算机程序等等。
量化交易不是盈利的保证,它必须建立在一定的成功概率的模型基础上才能应用的实战交易中。我们都知道赌场盈利的根本其实就是比玩家盈利的概率高1%而已,这高出的1%盈利概率保证了赌场久赌必赢。所以量化交易其实追求的就是比市场上大多数人盈利的概率高出1%即可。但是这1%不是普通投资者可以做到的。需要大量的实战总结和复盘总结,最终形成所谓量化交易模型。
最后提醒投资者注意:量化交易模型主要来源于以下两种模式:
1、数据挖掘,从 历史 数据中找到在以往 历史 中盈利概率大的模型,这种模型一般为黑箱模型,黑箱就是你只能看到结果,不知道其中的逻辑,比如现在流行的机器学习模型,就是典型的黑箱模型。它的缺点非常明显,就是你不清楚盈利原理,未来是否还能继续出现符合上述模型的情况的概率有多少,也就是说,这种模型, 历史 业绩非常好,但是未来能否盈利非常的不确定。
2、来源于主观交易者的盈利模型,根据盈利的主观交易者的系统化的交易方法,用计算机语言编成的交易程序。这种交易模型有的可以量化,有的不可量化,如果可以量化的部分较多,而且量化后回测 历史 数据盈利概率较高的话,那么很大概率就是可以用于实盘 。可惜这种模型凤毛麟角,可遇不可求。另外一种就是少部分可以量化,多数不能量化,而能量化的部分在 历史 回测中表现很差,主观交易者的盈利多数可能来源于主观判断,此种模型占绝大多数。比如徐翔的涨停板敢死队的打板模型,在涨停板上买入可以量化,但是如果仅仅是涨停板买入,却不能实现盈利,盈利的更大原因在于盘手所谓的盘感,所以这些盘感的挖掘数量化,才是这类模型的关键。
综上所述,量化交易仅是交易的一个小分支而已,不是盈利方法。不要迷信所谓量化交易。
其实把交易系统化才是关键,系统化关键又是尽量把主观交易数量化客观化。祝投资顺利!