‘壹’ 什么是股票的量化
关于你那个问题,我觉得修正下问题可能我没理解清楚你的问题或者你说的过于片面,无论选择什么标的的前提是 对于该标的的规则,规模,都要有个正确认知。
整个交易架构上参与者是谁,他们有什么限制,例如 所有基金管理人的现金留存量是一定,走货的比例也是相对限制的。又或者,类似 vix这样的期货,他的价格结构是如何构成,他诞生的作用是用于做SNP对冲使用,更多的知道表面的意思,重要内在价格变化结构是与一般期货不相同的很多小白/从业人员是无法理解的。
目前暴露出来一个最深的问题就是---认知。
那么一般投资者如何去打破,这个几乎无法能做到的。既然你那么喜欢个股咋们来说,个人之所以不做的原因就是,个股需要,对故事,预期,业绩,宏观环境,参与者比例,价格结构,消息成面的理解都是过于主观的,等等,数不胜数的不确定因素,在这个市场中老生常谈的是市场害怕的是不确定因素。
那么参与者必定是听过 量化基金,量化操作,他这个诞生的原意图,因为,人有三点,特点,盲点,缺点,通过多样的数据收集,建立一个模型,去消除人性的 特点,盲点,缺点,让机器代替人工去进行交易,另一方面准确定义,为了消除其中一个不稳定因素-人性的特点,盲点,缺点。如果说量交易作算是沾点边工具的话。那么在个股,或者去选择某个标的时候,要确定的因素,必定是对风险的锁定。同样用大众的话语有一句叫,会买不是厉害的,会卖才是厉害的。
这句话个人定义是准确消除了不确定因素。锁定利润。那么消除的不确定因素的方法根据不同的标的选择合理的 工具,如果是现货,那么可以期货锁,如果是期货,可以用期权锁,如果是个股可以通过关联的标的锁,例子,SNP与VIX。甚至是基金,otc市场中的 合约。以上未完全说明解析你众多问题中的其中一个至关重要的问题,认知。
众所周知的名人,巴菲特,索罗斯,宏茄纯达里欧,所有数的上名号的人,哪个不是见过大风大浪,哪个不是通过无数认知过程中逐渐成长。又是老生常谈的一个人--巴菲特的价值投资理蔽咐论有没有错?没错的呀。我赞同,但是市面文章在这次大跌过程中都去取笑他,(他的确很有钱,但是他当时所存在的时空,时机/环境造就他现在的成就,那么目前的时空是否与当时一致呢?答案绝对客观--不一致。同样的策略能否在不断修改规则,不断推出新的东西的环境中得到有效的实施-这一点个人表示怀疑。
所有人都知道他斩仓出局,但是写文章的人怎么知道他的实际操作呢,他是否是通过大量 沽出相关衍生品去进行一个替换操作呢。毕竟这些仓位小又可以达到如此大的杠杆,且不需公布。一个未实战过的新闻体系中人,又如何能理解他的操作行为?(个人不带一点崇拜),理解详细的变化交换机制。用咋们的古诗-横看成岭竖成峰,远近高低各不同 来充分表达认知上的差距。没有认知,哪里有后续学习。相信多数人都玩过游戏,去升级高级技能时,必定会有学习前置技能,才能去学习高级技能,人都是从加减乘除学起来的,微积分难道脱离加减乘除的规则? 上讲的都是概念,实际交易过程中又是如何应用,又是如何正确理解。同样又会诞生众多概念的普及,在知乎这个平台上,只教会了一个人。且是硕士学历,当然学历不是最重要的,重要的是没有学历可以,但必须要有同样学历的思维逻辑。 我从她/他的整个对市场认知的普及,到价格结构,到实战当中的解说,用了多日多夜。可能是觉得是废话,可能觉得有用。
可能看到这里大家觉得没有干货,有一种道理我都懂,然而并没有什么卵用的感觉。
毕竟每个人的程度都不一样,问题无法一致,多日未更新,主要原因在于这个平台上,我还是未能看到同样让我信服的文/人。我相信大家的工作种类不同,面对不同的问题都有独立的思考逻辑,但目标是一致的-----赚钱。
anyway,太多零碎的问题,无从答起,虽然我不能纳销针对所有问题作出回答,但起码我知道怎么找答案。
‘贰’ 什么是股票量化交易
什么是量化投资?
简单来讲,量化投资就是利用计算机科技并采用一定的数学模型去践行投资理念、实现投资策略的过程。
传统的投资方法主要有基本面分析法和技术分析法两种,与它们不同的是,量化投资主要依靠数据和模型来寻找投资标的和投资策略。
主要有哪些量化投资策略呢?
第一,也是最重要的一类策略:量化选股
量化选股就是采用数量的方法判断某家公司是否值得买入的行为。根据某种方法,如果该公司满足了该方法的条件,则放入股票池;如果不满足,则从股票池中剔除。量化选股的方法有很多种,总的来说,可以分为公司估值法、趋势法和资金法三大类。
公司估值法通过比较公司估值法得出的公司理论股票价格与市场价格的差异,判断股票的市场价格是否被高估或者低估,从而寻找出价值被低估或被高估的股票。这种就是基本面量化。
趋势法就是根据市场表现,如强势、弱势、盘整等不同的形态,做出对应的投资行为的方法。可以追随趋势,也可以进行反转操作等。这种就是技术面量化。
资金法的本质思想是追随市场主力资金的方向,如果资金流入,则应该伴随着价格上涨;如果资金流出,则应该伴随着价格下跌。资金法本质上是一种跟风策略,追随主流热点,从而期望在短时间内获得超额收益。这种是交易行为量化。
通过量化方法选出来的股票,通过不断的轮换,就可以获得超额收益。
第二类策略是:量化择时
传统的有效市场假认为金融市场是不可预测的,价格充分反映了所有相关的信息,价格变化服从随机游走,对金融产品价格的预测将毫无意义。
但是随着计算机技术、混沌、分形理论的发展,众多研究发现,股价的波动不是完全随机的,它貌似随机、杂乱,但在其复杂表面的背后,却隐藏着确定性的机制,因而存在可预测成分。例如利用一种叫 Hurst 指数的工具,可以在较大的时间刻度上判断出大盘的高点和低点。
根据量化择时的策略判断,可以进行大盘的高抛低吸,例如熊市底部抄底,牛市顶部抛顶。
第三类策略是:对冲套利
对冲套利就是利用两个相关性比较高的品种,同时进行做多和做空的操作的一种交易策略,当两个品种的价差偏差超过了合理区间,存在较大的概率回归,这是对冲套利策略的理论逻辑。
举个例子,工商银行和建设银行的股价往往同涨通跌,因此如果当工商银行涨的时候,可以卖出工商银行,买入建设银行。当两者价差回复正常的时候,卖出建设银行,再买入工商银行。这样来回的操作,可以获得一个超越牛熊的收益。
目前国内资本市场可以进行的对冲套利策略包括:期现套利、跨期套利、跨品种套利、跨市场套利、ETF 套利、分级基金套利等。
例如 2018 年 10 月,因为在 2015 年在股灾中,大量进行 ETF 交易的几个私募基金,给证监会重罚,其中东海恒信给罚款 2 亿多,他们就是利用 EFT 套利的策略,在 2013 到 2015 年期间,盈利超过 10 亿。
有了对冲套利策略,无论是熊市还是牛市,都可以获得比较稳健的收益。
第四类策略是:期权套利
期权套利交易是指同时买进卖出同一相关期货,但不同敲定价格或不同到期月份的看涨或看跌期权合约,希望在日后对冲交易部位或履约时获利的交易。
期权套利的交易策略和方式多种多样,有多种相关期权交易的组合。特别是期权的高杠杆特征,使得在 2018 年的熊市中,有不少优秀的交易员依然可以获得超过 50% 的收益率。
第五类策略是:资产配置
学术界有一个公认的结论,投资中真正赚钱的关键是资产配置,而不是具体的交易。通过对主要的大基金的绩效归因可以得出结论,90% 的收益来自于正确的资产配置,也就说,选择市场比交易更加重要。
量化投资管理将传统投资组合理论与量化分析技术结合,极大地丰富了资产配置的内涵,形成了现代资产配置理论的基本框架。
‘叁’ 股市量化交易什么意思
“量化交易”有两层含义:一是狭义的,指量化交易的内容,将交易条件转化为程序,自动下单;第二,广义上是指系统交易方式,是一个综合的交易系统。也就是说,根据一系列的交易条件,一个智能的辅助决策系统,将丰富的经验与交易条件相结合,在交易过程中管理风险控制。
拓展资料:
在A股市场上,股票买卖遵循以下的交易规则:
T+1交易方式,即当天买入的股票,需要下一个交易日卖出。
买入最小单位为1手,即100股,且必须每次买入的数量必须是100股的整数倍,卖出可以不整100股卖出,但是不足100股的部分,必须一次性卖出。
遵循“时间优先,价格优先”的原则,即较高买进申报优先满足于较低买进申报,较低卖出申报优先满足于较高卖出申报;同价位申报,先申报者优先满足。
除此之外,在a股市场上,投资者只能进行做多操作,不能进行做空操作;其委托交易时,其委托价格必须在个股的当天涨跌幅限制内,否则无效;委托单在当日的交易时间内有效,收盘之后,其委托单无效。
涨跌幅限制:
新股上市及重组成功上市股票首日无涨跌幅限制,一般情况下涨跌幅限制为前一交易日收市价上下10%,即一个交易日最大振幅为20%。
ST股票及*ST股票涨跌幅限制为前一交易日收市价上下5%,即一个交易日最大振幅为10%。股票涨(跌)幅价格=股票前一日收盘价格×10%(或5%)。
权证涨跌幅限制权证涨(跌)幅价格=标的证券前日涨(跌)幅价格×125%×行权比例。
具体交易时间规定:
每周一至周五,每天上午9:30至11:30,下午1:00至3:00,法定假期除外。
集合竞价:上午9:15——9:25,其中9:15——9:20可以撤单,9:20——9:25不能撤单,9:25以成交量最大的价格为开盘价。
连续竞价:上午9:30——11:30,下午1:00——3:00
成交顺序:
价格优先——较高价格买进申报优先于较低价格买进申报,较低价格卖出申报优先于较高价格卖出申报;
时间优先——买卖方向、价格相同的,先申报者优先于后申报者。先后顺序按交易主机接受申报的时间确定。
‘肆’ 股票里面的量化是什么意思
股票里面的量化指的是用先进的数学模型代替主观判断,然后从庞大的历史数据中海选能带来超额收益的情况以制定策略,随后用数量模型验证及固化这些规律和策略。此外,量化交易是指利用统计学,数学,计算机技术和现代的金融理论,来辅助投资者更好地盈利。
拓展资料
一、常见的十大量化投资策略
01、海龟交易策略
海龟交易策略是一套非常完整的趋势跟随型的自动化交易策略。这个复杂的策略在入场条件、仓位控制、资金管理、止损止盈等各个环节,都进行了详细的设计,这基本上可以作为复杂交易策略设计和开发的模板。
02、阿尔法策略
阿尔法的概念来自于二十世纪中叶,经过学者的统计,当时约75%的股票型基金经理构建的投资组合无法跑赢根据市值大小构建的简单组合或是指数,属于传统的基本面分析策略。
在期指市场上做空,在股票市场上构建拟合300指数的成份股,赚取其中的价差,这种被动型的套利就是贝塔套利。
03、多因子选股
多因子模型是量化选股中最重要的一类模型,基本思想是找到某些和收益率最相关的指标,并根据该指标,构建一个股票组合,期望该组合在未来的一段时间跑赢或跑输指数。如果跑赢,则可以做多该组合,同时做空期指,赚取正向阿尔法收益;如果是跑输,则可以组多期指,融券做空该组合,赚取反向阿尔法收益。多因子模型的关键是找到因子与收益率之间的关联性。
04、双均线策略
双均线策略,通过建立m天移动平均线,n天移动平均线,则两条均线必有交点。若m>n,n天平均线“上穿越”m天均线则为买入点,反之为卖出点。该策略基于不同天数均线的交叉点,抓住股票的强势和弱势时刻,进行交易。
双均线策略中,如果两根均线的周期接近,比如5日线,10日线,这种非常容易缠绕,不停的产生买点卖点,会有大量的无效交易,交易费用很高。如果两根均线的周期差距较大,比如5日线,60日线,这种交易周期很长,趋势性已经不明显了,趋势转变以后很长时间才会出现买卖点。也就是说可能会造成很大的亏损。所以两个参数选择的很重要,趋势性越强的品种,均线策略越有效。
05、行业轮动
行业轮动是利用市场趋势获利的一种主动交易策略其本质是利用不同投资品种强势时间的错位对行业品种进行切换以达到投资收益最大化的目的。
06、跨品种套利
跨品种套利指的是利用两种不同的、但相关联的指数期货产品之间的价差进行交易。这两种指数之间具有相互替代性或受同一供求因素制约。跨品种套利的交易形式是同时买进和卖出相同交割月份但不同种类的股指期货合约。主要有相关商品间套利和原料与成品之间套利。
跨品种套利的主要作用一是帮助扭曲的市场价格回复到正常水平;二是增强市场的流动性。
07、指数增强
增强型指数投资由于不同基金管理人描述其指数增强型产品的投资目的不尽相同,增强型指数投资并无统一模式,唯一共同点在于他们都希望能够提供高于标的指数回报水平的投资业绩。为使指数化投资名副其实,基金经理试图尽可能保持标的指数的各种特征。
08、网格交易
网格交易是利用市场震荡行情获利的一种主动交易策略,其本质是利用投资标的在一段震荡行情中价格在网格区间内的反复运动以进行加仓减仓的操作以达到投资收益最大化的目的。通俗点讲就是根据建立不同数量,不同大小的网格,在突破网格的时候建仓,回归网格的时候减仓,力求能够捕捉到价格的震荡变化趋势,达到盈利的目的。
09、跨期套利
跨期套利是套利交易中最普遍的一种,是股指期货的跨期套利(Calendar Spread Arbitrage)即为在同一交易所进行同一指数、但不同交割月份的套利活动。
10、高频交易策略
高频交易是指从那些人们无法利用的极为短暂的市场变化中寻求获利的计算机化交易,比如,某种证券买入价和卖出价差价的微小变化,或者某只股票在不同交易所之间的微小价差。这种交易的速度如此之快,以至于有些交易机构将自己的“服务器群组”安置到了离交易所的计算机很近的地方,以缩短交易指令通过光缆以光速旅行的距离。(该策略源码模板暂无)
‘伍’ 量化投资
量化投资
是指通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易。量化投资和基本面分析、技术面分析并称为三大主流方法。传统的投资方法主要有基本面分析法和技术分析法两种,与它们不同的是,量化投资主要依靠数据和模型来寻找投资标的和投资策略。
量化投资的优势:
1、是它以数理统计为基础,它更加接近于一门科学,使得未来容易预测与感知。
2、是其可以全年无休地实时监控所有市场并交易,人类则不行。
3、它避免了人的情绪化,完全由机器自动执行。
4、严格执行纪律。过程、风险更可控。
量化到底是什么呢?
打个通俗的比方:一般的人炒股或者期货就像看病中医一样,通过望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,定性程度上大一些,很大程度上通过依靠经验和感觉判断来进行操作;量化交易就像西医,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药,量化像依靠模型判断,模型在定量投资作用就像CT机对于笑大医生的作用。
模型对整个市场进行检查和扫描,满足你所编写的程序模型,就会进行处理皮差(下单之类,都是可以自己设碰握竖置的,看你的模型怎么编写)。当“量化”遇见“程序”理解了“量化”,程序化交易就很好理解了,就是量化的交易策略通过计算机编程执行,进行自动或半自动下单交易。
‘陆’ 量化交易的特点和前景
量化交易 是将传统交易理念规则化、变量化、系列化、模型化,利用计算机的数据处理能力,对宏观周期内投资产品的市场结构、估值成长、盈利质量、市场情绪等多个角度进行分析,借以制定新型投资策略,形成一整套操作系统,在实盘中使用电脑自动执行。
以人工智替代投资者在某些环节中做决策,能极大地减少了情绪波动的影响,增强投资的一致性,可以大幅提升投资的稳定。相较主观交易者经常会应用“盘感”、“经验”、“第六感”作为其下单的策略,量化交易强调数据的重要性,一套策略一定是清晰明了的,首先得能说得清,道的明,策略是一套完整的闭环,无论开仓、平仓、止盈、止损,都有明确的条件,否则计算机也无法识别。
这样的好处也很明显,会让我们的交易变得清晰、成体系。我们能在此基础上,改良、精进,可以设立投资组合,交易不同的标的,使用不同的策略,而又相互不影响,能通过策略、资金管理、执行成体系的交易,而非停留在构建虚无缥缈且无法验证的策略这个阶段。交易系统扮演着“宪法”的角色,并不是具体的法令,剩余的细节则由操盘手借助自身经验来微调量化交易中的参数处理。量化交易也可以理解为是人工智能、数据分析在金融领域的一种应用。
量化交易与普通交易的区别类似于西医和中医,普通交易是中医,一番望、闻、问、切之后,依据个人经验和主观感觉开出药方;量化交易是西医,要化验、拍片,取得大量客观数据后开出药方。虽然都治病,但依据截然不同。量化交易运作之前,会先用模型对整个市场进行一次全面的检查和扫描,然后根据检查和扫描结果做出投资决策。
采取股票量化交易的目的就是以明确的指标和规则指导交易,量化策略在实际使用的过程中可以脱离人为判断,执行速度更快,运作效率得到了提高。不论是否采用程序化的执行手段,量化交易策略都能够在实际交易中减少人的负担,也就减少了许多重复性的劳动。早先的时候,投资市场都是交易员自己盯盘,根据市场动向来进行买卖。但是人的精力毕竟有限,随着金融市场的发展,股票越来越多,交易员很难再靠自己去分析和盯盘。后来,投行家们就想到了利用计算机大数据分析来进行金融操作,只要设定好相应的规则,编写好相应的程序,依靠计算机强大的数据处理能力,就可以轻松地进行市场操作了。
在科学不断进步的今天,越来越多的先进技术被创造出来并应用到各种情境之下。通过结合多个不同学科的知识和相应的数学模型,量化交易策略更有可能发现一些隐藏较深的复杂数据规律,而这些规律往往不太容易被主观交易者察觉得到。随着大数据、人工智能等技术的飞速进展,金融投资正在逐步由人主导转向由科技引领,人与技术在投资过程中如何更好地结合,成为未来投资的关键。在此背景下,量化投资日益得到国内大量基金公司的重视,特别是在监管逐步趋严、市场有效性逐步提升的过程中,量化交易具有广阔的成长空间。
作者: 公众号 量化交易小课堂
‘柒’ 股票量化是什么意思
所谓量化交易,是指以先进的数学模型替代人为的主观判断,同时利用计算机技术从庞大的历史数据中海选出能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为,研究表明,板块、行业轮动在机构投资者的交易中最为获利的盈利模式是基于行业层面进行周期性和防御性的轮动配置,这也是机构投资者最普遍采用的策略。此外,周期性股票在扩张性货币政策时期表现较好,而在紧缩环境下则支持非周期性行业。行业收益差在扩张性政策和紧缩性政策下具有显着的差异。
拓展资料:
一、量化交易特点
1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
二、量化交易潜在风险
1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。
‘捌’ 什么是量化交易
这是一个量化小白站在大门口的一点思考,想法可能会有很多问题,仅仅作为抛出来的砖,希望后续的学习中能雕磨出玉。
不知道大家入门量化之前,有没有像我一样肢迅游的困惑,分不清什么是量化,什么是程序化。
经过我不成熟的思考,我觉得用定量的方式来确定交易策略,就是量化。将交易逻辑编写成程序,交给电脑来执行,就是程序化。换句话说,其实量化是选择交易(或投资)策略的一种方式,而程序化是执行交易(或投资)策略的一种方式。另外两者也是包含和被包含的关系。因为电脑没有主观的判断,想要把交易逻辑写成程序,必须先将其量化,所以一般地,程序化都是量化的。而量化出来的交易策略不一定用程序执行,也可以手工执行,所以量化不一定是程序化的(参考海龟那样,不知道这样说准不准确?)。
你们有没有好奇过,量化都是什么类型的呢?
根据《打开量化投资的黑箱》这本书所说,从设计交易策略的角度上分,量化可以分为理论驱动型和数据驱动型,我用我小学的理解水平翻译一下,就是分为演绎法和归纳法。举个例子,假如我要预测明天10点我是否起床了。演绎法(理论驱动型)来看,理论上如果明天是工作日,我要上班,所以就应该起床了;而如果是周末,我需要充足的休息,所以就应该没起。根据这个理论,我们就可以通过明天是否是工作日,来预测10点我起没起床。
归纳法(数据驱动型)的方式,是先找到过去n天10点时的各种数据,然后进行数据分析。通过分析数据,可能会发现,工作日的10点,我已经起床的概率是100%,而休息日的10点,我没起床的概率是99%,那么由此来根据明天是否是工作日,来预测我10点是否起床。但是,归纳法得出的结果不一定能找到理论依据,可能得出一个看上去无厘头的结果,所以普通玩家可能更倾向于使用演绎法来做量化。
同样根据上边这本书的定义,从使用的数据的角度来看,量化也跟主观交易差不多,可以分为使用价格数据的技术面派,和使用基本面数据的基本面派。技术面更多使用量价数据,而基本面更多使用财务数据、宏观经济数据,这些大家都很熟悉了,就不再累述。更重要的是如何应用这些数据,比如同样是使用量价的技术面,可以是非常简单的均线来做量化,也可以用非常复杂的数学模型来刻画走势,同一套数据在不同人手里昌卜可能得出不同的结果,所以数据的应用至关重要。
在了解量化前,我觉得量化非常神秘,仿佛有化腐朽为神奇的力量。但通过这本书简单的了解过后,我感觉好像并没有我想得那么神奇。量化更多的好处在于,让我们交易前缕清思路,而不是盲目下单。程序化更大的好处是,运算快,严格执行(其实不一定是好处,也可能会把错误严格执行)。那如果利用这些优点呢?我觉得要么通过高频,把运算快的特点利用起来,抢在主观交易者做出反应前下单,取得速度优势。要么就对大量标的进行分析,通过广撒网来重点捞鱼,捕捉到主观交易者不容易察觉到的机会。至于对历销单一标的深入研究,我觉得量化不一定能比主观有巨大优势,拿股票举例,可能需要非常海量的数据和适当的方法,才能比得上跟企业高管或行业大佬吃几顿饭得来的“前沿”消息。当然,这些只是我初窥量化带来的一点小想法,可能比较幼稚,还希望自己能多多学习。
‘玖’ 量化分析是什么意思
量化分析就是将一些不具贺氏体,模糊的因素用具体的数据来表示,从而达到分析比较的目的。
量化分析可以帮助我们更加方便和直观地衡量风险和收益,但需要强调指出的是,美国华尔街顶级量化金融大师、哥伦比亚大学着名教授伊曼纽尔·德曼,在《数学建模如何诱骗了华尔街》一文中,毫无忌讳地承认:我们根本不可能(通过数理分析方法)发明出一个能够预测股敬卜票价格将会如何变化的模型;如果我们相信人类行为可完全遵守数学法则,从而把有着诸多限制的模型与理论相混淆的话,其结果肯定会是一场灾难。
(9)量化交易标的股是什么意思扩展阅读:
量禅稿散化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
量化分析法将对通过定性风险分析排出优先顺序的风险进行量化分析。尽管有经验的风险经理有时在风险识别之后直接进行定量分析,但定量风险分析一般在定性风险分析之后进行。定量风险分析一般应当在确定风险应对计划时再次进行,以确定项目总风险是否已经减少到满意。