导航:首页 > 交易市场 > 量化交易如何找工作

量化交易如何找工作

发布时间:2023-02-18 13:11:05

① 一文弄懂量化交易 怎样躺着挣钱

或许当你开始回过头研究近来A股调整的规律时,会发现一个有趣的现象:A股下跌以午后居多,特别是下午2点半左右,有投资者称:"神奇的2点半"!当你还在为此惊叹时,也许早已有人将这个规律编进程序化的交易系统,通过交易大赚一笔了。

现在你是不是对程序化交易很好奇呢?不急,慢慢往下看。要懂程序化交易,就得先理解什么是量化交易。

那么,什么才是量化交易呢?

就拿司机开车来打个比方。从机场到城市中心有10条路可以走。有一家出租车公司规定,1小时必须到达,早到加钱,晚到罚钱。

一开始,有些老练的司机总能在前几个到达城市中心,但大部分司机总是晚于他们,这些老的司机就是“主动选股机构”。

后来这些晚到的司机中,有几个很厉害的司机学会了量化统计,他们每天让很多辆车用一样的速度从机场开到市中心,而且连续研究了10年的数据。最终他们发现,10年来,有那么一条路在绝大多数情况下,总比别的路快。从此以后,但凡是从机场回市中心的活儿,这几个很厉害的司机就只选择这条路。这群人就是“量化选股机构”。

当“量化”遇见“程序”

理解了“量化”,程序化交易就很好理解了,就是量化的交易策略通过计算机编程执行,运行自动或半自动下单交易。

根据NYSE网站统计,近年来纽交所程序化系统交易量所占比例基本维持在30%左右。它的系统类型很多,大致分这些类型,即价值发现型、趋势追逐型、高频交易型、低延迟套利型等。在期货市场的应用多于股票市场。

量化交易要怎么做?

国内做量化交易的人一般自称“宽客(quant trader)”。假如你是职业股民,别人问起的时候回答我是“宽客”,一定逼格满满。

也许有人认为做量化交易的人的生活是应该这样的:周一8点50开启自动交易系统,然后逛淘宝、聊QQ,到周五15:30 总结一下一周盈利,分成,下班走人,关自动交易系统。

但实际上却是这样的:真正的量化交易的一般得靠一个团队,有的人分析新闻、做预测,而学数学、学物理、学电脑的博士们则写程序化的交易策略。有的人负责在历史数据上复盘测试,复盘后再根据反馈的数据再运行修改。通过审核后放入策略池,由专人确定各个策略资金的分配。最后由交易员运行交易。另有专人负责风控。

当真躺着挣钱?量化交易的3大难题

不停闪烁的超级电脑自动运行着高速交易,荧幕上滚动着通过高速网络提前获取的最新市场消息,账户的盈利不断上跳...很多人把量化交易视为 “可以躺着挣钱的”形式。但现实真有这么美好么?

(1)股票、基本面、新闻消息之间的关系不停变化

记得2009年美股到达低点的时候,很多“低质”公司的回报大大高于“优质”公司的回报。很多3块钱的“垃圾股”可以在很短时间内涨到10块钱,而高价的优质公司的股票想要翻一倍都要花上很久很久。而在另一段时间跨度或者另一个市场里,可能又是另一番情景。所以跨市场、长期有效的量化交易系统极少甚至可以说没有。

(2)有些关键信息并不容易量化

微博是市场突发消息和传闻的最大出处,所有投资者都不会无视这里传出的讯息。但是这里的消息格式往往不规范,语法也千奇百怪,你无法让计算机程序挑选出有效信息并运用于自动交易中。

(3)过去并不代表未来

多数时候,通过历史数据测试可以证明的你的设计交易策略在过去的表现,这是量化交易世界中非常重要的一块内容。不过并不是所有人都能意识到,过去不代表未来。这意味着一些交易策略在过去表现的很好,但是在未来可能会带来巨大的亏损

只是看过去“很美”

假如你认为开发出一个挣钱的策略就可以高枕无忧,坐等挣钱了,那就错了。一般来说,所有quant trader的日常工作分2块,一是对现有策略的管理和维护,二是开发新策略。

因为某个具体量化交易系统并不是一直有效的,长的有效期可能有1~2年,短的也可能就一周,所以需要不断对之前的交易策略运行调整。更糟糕的是,量化交易者面临的知道自己的模型终有一天会失效,但是永远不知道是哪一天。

也许有的人不断的用调节参数的方法拟合行情可以使系统一直看过去“很美”,但是调整一般也就只能使这个系统的多存活一段时间,所以就需要“宽客”不断的相出新的交易策略。

“宽客”说白了也是个苦逼活,别问我是怎么知道的T。T躺着挣钱是别想了!

② 量化交易的第一对口专业是什么

1金融工程学2保险专业3财会。我实际感觉任何工科+数学财会都可以做量化交易:举个例子:小麦 玉米 猪肉之间如何量化转换?首先你要找一个农学家算出亩产量的概率,其次你要找一个生物学家算出营养成分 消化率 产肉率,最后你要找一个财务算出最佳投入产出比。这样一个量化交易就完成了。个人认为,跟量价相关的衍生出来的指标严格上来说都是技术指标。很多人简单的把KDJ,MACD,moving average,威廉指标等指标狭义的等同于技术分析。但是如果我在这问这么几个问题,大家也许想法就不一样了:VAR算不算技术指标?BS算不算技术指标?GARCH,ARMA,SV这类又算不算技术指标?物理里面的各类滤波转化的模型又算不算技术指标?高频里面经典的Lee-Ready算法又算不算技术指标?其实上面这些都能是技术指标,无非是有的简单些,有的复杂些罢了。即便你引入各种随机过程和非线性模型,只要是基于量价,难不成它们就不是技术指标了么?全球最大的CTA Winton和第二大的AHL发展到现在,至今他们的模型里面技术指标仍是一块非常重要的alpha来源。技术指标有没有用, 这个对于不同的量化领域确实确实会有截然不同的看法。首先,对于统计套利,有一类专门的alpha来自于量价分析,根据本人在world quant工作过的一个朋友的实战经验来看,这种alpha至今仍能在高度成熟的美国市场有一席之地;其次,对于各种套利策略,协整回归不是技术指标么?最经典的价差SD不是技术指标么?最后,回到CTA,可以说这类策略大部分都是技术指标,当然,发展至今的CTA fund,数据源已经越来越多样化了,包括现货数据,宏观数据等。但即便如此,量价策略依然占很大的比重。

③ 从银行跳槽去做量化,这时候该如何规划

从银行跳槽去做量化这个时候一定要对自己的性格和能力做好定位和规划,银行相对而言的工作更加简简单一些,而且也不是压力那么大。但是量化交易就不一样了,量化交易通常情况下要跟日常的交易时间相配合,而且在交易完之后还要及时的通过各种各样的数学概率模型来进行相关的分析。这样的话才能够更好的做出一些理性的投资决策,所以说自己的数学分析能力以及计算机技术能力一定要强,这样的话才能够更好的跳槽。

总结

其实在银行里面工作相对而言是比较安稳的,但是有一些人想让自己有更多的经济收入,所以说如果真的想要跳槽的话,一定要提前准备好。等自己已经找好工作之后再去跳槽,不要裸辞,要不然的话就很难再回到银行这个体系工作了。

④ 在中国,量化交易员每天要做什么样的工作

随着量化投资的概念在国内逐渐流行,量化交易员这个听起来神秘又高大上的职业也逐渐走入人们的视野。量化交易员平常的工作其实没有固定的模式,但总结下来大都包括: 现有策略的管理维护,看盘(通常开N个窗口,大都是定制化的各种彩色表格、图、列表和滚动新闻的组合)以及查看策略有没有乱发单,开发新的策略,每日进行盘后处理,统计委托、持仓、波动率、滑点等等,这些工作听起来琐碎且机械,但真正开发出所谓的印钞机达到躺赢的境界可谓少之又少,大部分人仍然需要不断学习并且经历各种市场的考验:
 
1、灵感,在市场上策略逐渐趋同、逐渐失效的过程中是很重要的,自己绞尽脑汁更新了好几个版本的新策略回测时各种指标竟然远不如行业内正火热的几个“经典策略”,市场总是公平而又残酷的。
2、心理,投资讲求的是心理战,对于量化交易员来说,程序化交易的方式可以避免一部分人性的因素,但是否干预、何时干预模型(尤其是模型并不完备)一直是一个长期困扰交易员的问题
3、不确定性,个人认为,量化交易者同时也需要结合一些基本面,尤其是在国内金融市场信息不对称、噪声大以及监管因素变化下能够从市场调研中获得有效信息以减少不确定性是相当重要的。

⑤ 关于量化交易,这些入门知识你需要了解

这篇文章将向你介绍量化交易系统的一些基本概念。本文主要面向两类读者,第一类是正在努力寻找一份量化交易员工作的求职者,第二类是期望尝试开启自己量化交易事业的个人投资者。关于量化交易,这些入门知识你需要了解。
量化交易是数量金融学一个极其艰深复杂的领域。若要通过面试或构造你自己的交易策略,就需要你投入时间学习一些必备知识。
量化交易系统包括四个主要部分:
策略识别:搜索策略、挖掘优势、确定交易频率。
回溯测试:获取数据、分析策略性能、剔除偏差。
交割系统:连接经纪商、使交易自动化、使交易成本最小化。
风险管理:最优资本配置、最优赌注或凯利准则、交易心理学。
我们首先来谈谈如何识别一个交易策略。
策略识别
所有量化交易流程都肇始于一个初期研究。这个研究流程包括搜索一个策略、检验它是否适合你可能正在运作的策略组合、获取任何测试策略时所需数据、努力优化策略使其预期年化预期收益更高且(或)风险更低。如果你是一个“散户”交易员,一定要清楚自己的资金是否充足,以及交易成本对策略的影响。
通过各种公开数据搜索可盈利的策略实际上十分简单,并没有大家想的那么难。研究学者会定期发表理论交易结果(虽然大多为交易成本总额)。一些数量金融学主题博文也会详细讨论策略。交易期刊还会简报一下基金管理公司使用的一些策略。
你可能会问,个人与公司怎么可能愿谈他们的可盈利策略,特别是当他们知道,如果其他人“复制相同的策略”,长期而言它终将失效。
原因就在于,他们通常不会透露具体的参数以及他们所使用的调参方法,而这些优化技能才是把一个表现平庸的策略调成一个回报丰厚的策略所需的关键技术。实际上,若要创建你自己的、独一无二的策略,一个最好的法子就是寻找相似的方法,尔后执行你自己的优化程序。
你所看到的很多策略都可归入均值回归交易策略、趋势跟随或动量交易策略两类。
均值回归策略试图利用这么一个事实:“价格序列”(如两个关联资产的价差)存在一个长期均值,价格对均值的短期偏离终将回归。
动量交易策略则试图“搭上市场趋势的顺风车”,利用投资心理和大基金结构信息在一个方向积聚动量,跟随趋势直至回归。
定量交易还有一个重要方面,即交易策略的频率。低频交易(Low Frequency Trading, LFT)通常指持有资产超过一个交易日的策略。相应地,高频交易(High Frequency Trading, HFT)通常指持有资产一个交易日的策略。
超高频交易(Ultra-High Frequency Trading, UHFT)指持有资产的时常达秒级与毫秒级的策略。虽然散户可以进行HFT与UHFT交易,但也只是在你掌握了交易“技术栈”与订单簿动力学的详细知识后才有可能。本篇入门文章,我们不会对这些问题做任何深入探讨。
策略或策略集合一旦确定,现在就需要在历史数据上测试其盈利能力,这就进入了回溯测试的工作范围。
回溯测试
回溯测试的目标是提供证据,佐以证明通过以上流程所确定的策略,无论是应用于历史(训练)数据还是测试数据均可盈利。它可以反映该策略未来在“真实世界”中的预期表现。
由于种种原因,回溯测试不能保证一定成功。这或许就是量化交易最为微妙之处,由于它包含了大量的偏差,我们必须尽尽力仔细审查并剔除它们。
我们将讨论几种常见类型的偏差,包括先窥偏差、幸存者偏差与优化偏差(亦称“数据窥视偏差”)。回溯测试中其他几个重要方面,包括历史数据的可用性与清洁度、真实交易成本及可靠回测平台上的决定。我们会在后续“交割系统”一节深入讨论交易成本。
策略一旦确定,我们就需要获取历史数据,并借此展开测试,如有可能还可改进策略。现在卖数据的很多,所有资产类型的数据都有。通常,数据的质量、深度、时间间隔不同,其价格也不同。
刚入门的量化交易员(至少零售等级)最初使用雅虎金融板块(Yahoo Finance)的免费数据就行。对于数据供应商,这里不再赘言。我想重点谈一谈处理历史数据时,时常遇到的问题。
对于历史数据,人们主要关心的问题,包括数据精度或清洁度、幸存者偏差、应对如分发红利、拆分股票等公司行为的调整。
精度与数据整体质量有关,无论数据是否包含错误。有时错误容易识别,比如使用一个窄带滤波器,就可以找出时间序列数据中的“窄带”并更正它们。其他时候,错误又很难甄别,经常需要根据多个数据供应商提供的数据进行对比检查。
幸存者偏差通常是免费数据集或廉价数据集的一个”特征“。对于一个带有幸存者偏差的数据集,它不包含已经不再交易的资产数据。不再交易的证券,则表示已经退市或破产公司的股票。如果数据集中含有此类偏差,策略在此数据集上的测试表现可能比在”真实世界“里表现的更好,毕竟历史”赢家“已经被预先筛选出来,作为训练数据使用。
公司行为即公司开展的常引发原始价格阶梯形变化的”逻辑“活动,它不应该计入价格预期年化预期收益。公司分发红利和拆分股票行为是引发调整的两个常见行为,二者无论发生哪一种,都需要进行一个”回调“的流程。我们一定要留心,不要把股票拆分和真实预期年化预期收益调整混为一谈。许多交易员在处理公司行为时都碰过壁!
为了开展回溯测试,我们必须使用一个软件平台。你可以选择一个专门的回测软件如MultiCharts,一个数值平台如Excel或MATLAB,或者一个用Python或C++完全自主实现的平台。对于MultiCharts(或类似平台),个人是比较介绍,对于编程的要求比较低。
在做系统回测时,一定要量化表示系统性能。定量策略的“业界标准”度量为最大资金回挫与夏普比率。最大资金回挫表示一段时间(通常一年)内账户资金曲线从波峰至波谷的最大跌幅,常使用百分比表示。
由于大量的统计因素,LFT策略比HFT策略的资金回挫更高。历史回测会显示过去的最大资金回挫,它能够较为贴切地反映策略的未来资金回挫情况。第二个度量指标是夏普比率,它被启发式地定义为“超额预期年化预期收益均值与超额预期年化预期收益标准差的比值”。
这里,超额预期年化预期收益表示策略预期年化预期收益超出某个预定基准,如标普500或三月期短期国债(预期年化预期收益)的额度。注意人们通常不使用历史预期年化预期收益指标,因为它忽略了策略波动性的影响,而夏普比率却考虑到了这一点。
如果经过回测,策略的夏普比率很高且其最大资金回挫已经最小化,则可以认为它趋于无偏,下一步就是要搭建一个交割系统。
交割系统
交割系统是一个方法集合,由它来控制交易策略生成的交易列表的发送和经纪商的交割行为。事实上,交易可以半自动、甚至全自动生成,而执行机制可以手动、半自动(即“点击一次交割一项”)或者全自动。
尽管如此,对于LFT策略,手动和半自动技术却比较常见;对于HFT策略,则必须创建一个全自动交割机制,由于策略和技术彼此依赖,还要经常与交易指令生成器紧密相接。
在搭建交割系统时,我们需要考虑几个关键因素:连接经纪商的接口、交易成本(包括佣金、滑动价差与价差)最小化、实时系统与回测时系统性能的差异。
联系经纪人的方法有很多,你可以直接电话联系他,也可以通过一个全自动高性能的应用程序接口(API)实现。理想情况,就是希望交割交易的自动化程度尽可能高。这样一来,你不仅可以脱开身集中精力进行深入研究,还能运行多个策略、甚至HFT策略(实际上,如果没有自动化交割,HFT根本不可能)。
前面说过的几种常用回溯测试软件如MATLAB、Excel和MultiCharts,对于LFT策略或简单策略都是不错的选择。但是,如果要做真正的HFT,你就必须要构造一个用高性能语言(如C++)编写的内部交割系统。
说个我的亲身经历,以前受聘于一家基金管理公司,我们有一个十分钟的“交易周期”,每隔十分钟下载一次新的市场数据,然后根据这十分钟的信息进行交割。这里用的是一个优化的Python脚本。对于任何处理分钟级或秒级频率数据的工作,我相信C/C++更理想。
在一家大型的基金管理公司,交割系统的优化通常不在量化交易员的工作范围。但是,在小点的公司或高频交易公司,交易员就是交割人,所以技术面越广越好。你要想进一家基金管理公司,一定要记住这一点。你的编程能力不说比你的统计学和计量经济学禀赋更重要,至少也同样重要!
另外一个属于交割系统的重要问题是交易成本最小化。一般地,交易成本由三部分构成:佣金(或税收)、损耗与价差。佣金是向经纪商、交易所和证券交易委员会(或类似政府监管机构)支付的费用;滑动价差是你的预期交割价位与真实交割价位的差值;价差则是待交易证券的卖出价与买入价之差。注意价差不是常数,它依赖于市场当前流动性(即买单和卖单数量)。
交易成本是决定一个策略是高夏普比率且盈利丰厚,还是低夏普比率且极不盈利的关键。根据回溯测试正确预测未来的交易成本很具有挑战性,你需要根据策略频率,及时获取带有卖出价与买入价信息的历史交易数据。
为此,大型基金管理公司量化交易的整个团队都专注于交割优化。当基金管理公司需要抛售大量交易时(原因五花八门),如果向市场“倾泻”大批股票,会迅速压低价格,可能都来不及以最优价格交割。
因此,纵使遭受损耗风险,基金管理公式也会选择使用算法交易,通过“打点滴”的方式向市场出单。此外,其他策略如若“捕到”这些必要性条件,也能利用市场失效(获利)。这是基金结构性套利的内容。
交割系统最后一个主要问题关系到策略的实时性能与回测性能的差异。这种差异由多种因素造成,比如我们在“回溯测试”一节已经深入讨论过的前窥偏差与最优化偏差。
然而,对于有些策略,在部署之前不易测得这些偏差。这种情况对于HFT最为常见。交割系统和交易策略本身均可能存在程序错误,回溯测试时没有显现却在实时交易时出来捣乱。市场可能受到继交易策略部署后的一场政变的影响,而新的监管环境、投资者情绪与宏观经济形势的变化也均可能导致现实市场表现与回溯测试表现的差异,从而造成策略盈利性上的分歧。
风险管理
量化交易迷宫的最后一块是风险管理程序。风险包含我们之前谈论的所有偏差。它包括技术风险,比如所有在交易所的服务器突然发生硬盘故障。它还包括经纪风险,如经纪商破产(此说并非危言耸听,引发恐慌的明富环球就是一个例子)。
总而言之,它覆盖了几乎所有可能干扰到交易实现的因素,而其来源各不相同。已经有成套的书籍介绍量化交易策略的风险管理,本人也就不再对所有可能的风险来源做详细说明。
风险管理还包括投资组合理论的一个分支,即所谓的“最优资本配置”,涉及到如何将资本分配给一组策略、如何将资本分配给策略内不同交易的方法。这是一个复杂的领域,依赖于一些高级数学知识。
最优资本配置与投资策略杠杆通过一个名为凯利准则的业界标准建立联系。本文是一篇入门文章,我在此不详谈其计算。凯利准则对策略预期年化预期收益的统计性质做过一些假设,但是它们在金融市场中并不一定成立,交易员因此在实现时通常会有所保留。
风险管理的另外一个关键成分涉及到交易员自身心理因素的处理。尽管大家都承认,算法交易若无人为干涉,不太容易出现问题。交易员在交易时,稍不留神仍然可能会掺入许多认知偏差。
一个常见的偏差是厌恶规避,当人发现损失已成定局,其所带来的痛苦,可能会麻痹人的行为,不能做到及时抛盘止损。类似地,由于太过忧心已经到手的预期年化预期收益可能赔掉,人们可能也会过早抛盘收利。
另外一个常见的偏差是所谓的偏好偏差:交易员太看重事件而非长远地看问题。此外,当然不能落下“恐惧与贪婪”这对经典的情绪偏差。这两种偏差常导致杠杆不足或杠杆过度,造成爆仓(账户资产净值近乎为零或更糟)或盈利缩水的局面。
总结
由此观之,量化交易是数量金融学中一个虽趣味十足但极其复杂的领域。我对这个话题的讨论浅尝辄止,文章就已经这么长了!我在文中三言两句带过的问题,已经有大量的相关书籍和论文出版。
因此,在你申请量化基金交易职位前,务必要进行大量的基础调研,至少应当具有统计学和计量经济学的广泛背景,以及使用MultiCharts、MATLAB、Python或者R程序语言实现的丰富经验。如果应对的是更加复杂的高频端策略,你的技能组合可能还要包含Linux内核修改、C/C++、汇编编程和网络延迟优化。

⑥ 请问,我如果能够很熟练的使用交易开拓者软件把交易想法写成程序,那么我好不好找工作

你编写的程序 要通过实践 能稳定盈利 那你就可以找到一份非常好的工作

⑦ 在中国,做量化交易一天的工作是怎样的

做量化交易一天的工作:

8:00~9:00: 打开交易策略,设置一些运营参数

9:00~9:30: 观察策略运转,确保没有问题

9:30~15:30: 解决已有策略的问题并研究新策略,测试新想法

15:30~17:00: 分析交易记录, 确定第二天的交易计划

17:00~18:00: 运动

岗位职责:
分析金融市场(期货、股票等)数据,寻找可利用的机会;开发与维护量化交易策略;提供机器学习/数据挖掘相应的技术支持

岗位要求:
1.熟练计算机编程能力,熟练掌握至少一门编程语言,python优先;

理工科背景,具有良好的数理统计、数据挖掘等相关知识储备,熟悉机器学习方法(分析科学问题和相应数据,建立模型和方法,验证模型和方法,应用模型和方法并分析结果,改进模型和方法);

有处理分析大量数据的经验,并能熟练选择和应用数据挖掘和机器学习方法解决科研和工作中的实际问题;良好的自我学习和快速 学习能力,有工作激情,喜欢金融行业;两年及以上实验室研究经验或研发类工作经验优先;

(7)量化交易如何找工作扩展阅读

量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,

极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

⑧ 应聘量化投资工作需要哪些技术

  • 强烈的兴趣

  • 想做好一件事情没有兴趣也只是三天打鱼两天晒网,最后不得而终,因此需要培养对投资形成强烈的兴趣,每根K线的波动能够刺激你的心脏随之不断跳动。

  • 学习能力

  • 量化交易是一门跨学科知识,必须有快速地问题解决能力和自学能力,懂得锲而不舍不断专研的试错法。研究生已经具备了较好的学习能力。

  • 编程

  • 编程很重要,现在Python是标配,matlab、R拿来做量化的人真的不多。虽然不是做开发,但是基本的简单编程知识还是要会。想学Python和Pandas,推荐Python基础教程和《利用Python进行数据分析》,想学编程知识,推荐《 代码大全 》,这本书没有什么代码,不要为名字所迷惑,不过如果想成为编程高手的话,看了绝不后悔。

    看书一定要经典,不经典的书简直就是浪费生命,这三本书如果不想买,网上电子版肯定是很多的,话不多说。

  • 量化知识

  • 很多程序员开始转量化,但是金融知识和量化知识不够。经典的重要性在此显得更为重要,编程的书籍不看经典的我也能进步,可能会慢点,但是量化金融知识不看经典的书,那么可能就会南辕北辙,甚至影响到投资的整个生涯,不对,走偏了的话,就无生涯可谈。

    投资的基础知识,比如股票债券基础知识,先来看看滋维博迪的《投资学(原书第9版)》([美]滋维·博迪(Zvi Bodie)

    再来一本干货,很多国内外研究生教程,介绍的更多的是衍生品,约翰赫尔的《期权、期货及其他衍生产品(原书第9版)》([加]约翰·赫尔(John C.Hull))

    期权这么火,推荐 麦克米伦的《金融期货与期权丛书:期权投资策略(原书第5版)》([美]劳伦斯 G.麦克米伦(Lawrence G.McMillan))

    想知道公募基金大佬如何做股票?李腾翻译的大作奉上,主动投资组合管理 创造高收益并控制风险的量化投资方法(原书第2版)

    想知道私募基金怎么搞交易的?交易中有哪些技巧?以及如何在量化中走弯路?推荐 范撒普的通向财务自由之路,这可不是一本关于财务分析、会计理论的书籍,真正理解了里面的思想,资金管理、风险控制你就不会纠结。

    现在中产压力这么大,那么多人有中年职业危机,想知道怎么把交易当做全职?推荐 埃尔德以交易为生,他可是将自己如何转行交易,并以交易作为自己的终身职业的心历路程和盘托出。

  • 英语

  • 你可以不说英语、听不懂英语,但最好是要看的懂英语,编程的原生环境是英语,quora、stackoverflow、github也是要求英语阅读能力,要是想用机器学习、深度学习做量化,那么多paperarticle都是英语,读不懂怎么做的好?本来是谈量化入门,但好像谈到量化进阶了。

  • 交易

  • 没有途径,实战是最好的方法。确实不行,模拟交易也可以。

    量化交易以思想为本,工具为用,路子不能走偏。

  • 快速迭代

  • 类似于实验,都是需要成千上万反反复复的检查、测试。在此,讲到了实验的快速开发和迭代,那么就顺便给个传送门:BigQuant - 人工智能量化投资平台.,人生苦短,一定要快速迭代,缩短策略开发生命周期。因为你的想法上千个,可能只有几个有价值。

⑨ 量化相关的工作方向都包含哪些呢

从大方向来说,量化方向包括 Q-quant 和 P-quant,前者主要研究衍生品定价和风险计量,后者主要研究程序化交易和做市策略等。前者是由银行前台和中台招人,后者是由私募和基金招人。

与量化交易如何找工作相关的资料

热点内容
项目代理合同是什么 浏览:834
东莞贷款代理公司怎么这么多 浏览:353
硅烷产品的主要优点都有哪些 浏览:336
纽威机床如何调程序 浏览:173
小公司财务代理记账哪里找 浏览:36
现在加价购买的电子产品有哪些 浏览:302
什么产品亲测能变白 浏览:195
如何开一家白酒代理商 浏览:896
微信推广怎么代理 浏览:24
专业技术岗位如何转正 浏览:314
农产品加工怎么抢零食 浏览:921
智能小程序包怎么修改 浏览:372
品牌县级代理商是什么级别 浏览:120
新车没信息怎么办 浏览:100
体制内技术行业有哪些 浏览:828
qq小程序的游戏如何反馈 浏览:759
泡壳包装产品如何包装 浏览:384
菜市场卖菜的商户怎么好招商 浏览:36
喜欢消费的女人用什么产品 浏览:529
表格数据变日期了怎么办 浏览:473