❶ 同花顺量化交易怎么用
制定交易策略;
2.
将交易策略代入到自动量化交易系统中;
3.
将选择的投资标的的代码输入到证券代码的选项中;
4.
将相关指标条件的设置输入到条件选框里
❷ 个人做量化交易需要注意的几点问题
近期,量化交易非常火爆,不少投资者开始尝试利用量化交易为自己赚钱。现在甚至有一个结论,那就是量化交易是万能的,认为只要使用量化交易,你就可以一直赚钱。这种想法太理想化了。事实上,在量化交易的过程中,需要解决三大问题。
问题 1:过度拟合
量化交易最大的特点之一就是可以优化之前的数据。即使你什么都不懂,选取相应数据,设置几个参数,就可以跑出完美的曲线。但关键是,完美的曲线并不意味着你就能赚钱。许多人没有意识到过拟合的风险,这导致许多系统看似完美实操却出现许多问题。盈收AI核心团队由一大批人工智能开发专业人士和证券行业自动交易资深研发专业人士组成。产品内置的每一个交易策略都经过长时间的推演和验证,可以回测出超高的历史年化收益率。
问题2:品种单一
很多投资者都知道量化交易的好处,但问题的关键在于使用的时候,太多的交易策略需要验证太麻烦了。因此,许多投资者都在使用单一交易品种进行交易。单一的交易品种有很大的弊端。最大的问题是回撤非常大。盈首AI产品包含180个半成品人工智能模型,分为牛市、熊市和震荡市场三大板块,用户可根据市场行情自定义添加交易参数,组合出符合自己操作思路和盈利模式的交易策略,同时平台独有的去风险因素,可以实时监测主力资金流向,大大提高策略的年化收益率,降低回测风险。
问题 3:执行
量化交易实际上是自动化交易,由机器本身严格的按照指令执行策略。但人不是机器,交易的时候一定会带有自己的主观思维,人工干预程序化交易,自动交易变成半自动交易。造成交易结果差异的很大一部分原因出在执行这方面。
❸ 量化交易是什么
什么是量化交易,未来前景如何?知道的讲讲。
量化就是就是具体化,使用模型来进行程序化交易。
打个通俗的比方:一般的人炒股或者期货就像看病中医一样,通过望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,定性程度上大一些,很大程度上通过依靠经验和感觉判断来进行操作;量化交易就像西医,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药,定量交易更像是西医,依靠模伐判断,模型对于定量投资基金经理的作用就像CT机对于医生的作用。模型对整个市场进行检查和扫描,满足你所编写的程序模型,就会进行处理(下单之类,都是可以自己设置的,看你的模型怎么编写)。
程序化交易越来越被人熟知,使用的人也越来越多,总体来市场会越来越扩大化。
具体的程序化交易程序软件:文化、TB、金字塔等,总的来说金字塔使用起来简单上手,编写的语言不难,而且功能比前两者多。
高频交易和量化交易到底有什么区别
从历史上看,很多高频交易公司的创始人都是交易员出身,原来就从事衍生品的做市、套利等业务。一开始这些工作并不需要多高深的知识。随着计算机技术的发展,交易的自动化程度和频率也逐渐提高,这些公司逐渐聘请一些数学、统计、计算机背景较强的人员加入以适应形势的发展。当然,这个过程也出现了一些分化,有的公司还是保留了交易员在公司的主导地位,并且始终未放弃人工交易,最终形成了人机结合的半自动交易;而另外一些公司对新鲜技术的接受程度更高一些,往往采取全自动的交易模式。事实上,也没有证据表明全自动交易的公司就比半自动交易的公司更为优越,到目前为止,也只能说是各有利弊。
人工交易的最大弊端在于手动下单的地方离交易所较远,在行情剧变的时候往往抢不到单。在这一点上,全自动交易的公司可以通过托管机房来最大程度减少信号传输的时间,不过自动化交易往往因为程序过于复杂,加上很多公司人员流动较大,在程序的维护上会出现一些失误,最终程序出错酿成大祸,比如着名的骑士资本。
至于过度拟合无法抵御黑天鹅事件,那是人工交易和自动交易都无法避免的问题。一般来说,Getco、Jane Street、SIG、Virtu Financial等是半自动交易,Tower Research、Hudson River Trading、Jump Trading等是全自动交易。
量化投资公司跟高频交易公司则有很大的不同。首先,美国的量化投资公司基本上都是量化背景极强的人创办的,比如说文艺复兴的创始人西蒙斯是数学家出身,DE Shaw的创始人David Shaw是计算机教授出身,AQR的创始人Cliff Asness是金融学家出身,而高频交易公司则更多是传统交易员创办的;其次,量化投资一般依赖于复杂的模型,而高频交易一般依赖于运行高效的代码。
量化投资公司的持仓时间往往达到1—2个星期,要预测这么长时间的价格趋势需要处理的信息自然非常庞大,模型也因此更为复杂,对程序的运行速度反而没那么敏感;高频交易处理信息的时间极短(微秒或毫秒级),不可能分析很多的信息,因此模型也趋于简单,竞争优势更多依靠代码运行的效率,很多人甚至直接在硬件上写程序;而最后,量化投资的资金容量可达几百亿美元,而高频交易公司往往只有几千万至几亿美元,但由于高频交易的策略表现远比量化投资稳定,如Virtu Financial交易1238天只亏1天,因此一般都是自营交易,而量化投资基金一般来说都是帮客户投资。
期货量化交易和程序化交易有什么区别?
建议: XP 对话框中有很多选项设置,通常都是先选中某个选项,然后再单击“确定”按钮开始执行。利用鼠标双击可罚简化这一操作步骤,双击某个选项可以做到既选中又执行。
什么是量化投资?
数量化投资、程序化交易、算法交易、自动化交易以及高频交易都是数量化交易的特定方式, 其描述内容的侧重点各有不同。数量化交易应用IT技术和金融工程模型偶那个帮助投资者指定投资策略、减少执行成本、进行套利和风险对冲。数据、速度、风险管理是数量化交易系统建设中的关键问题。期货市场的数量化自动交易模型正逐步由投资者编制自用,演变为有一定规模的投资咨询顾问组成的专业团队参与。
程序化交易,也可称之为系统交易或算法交易,设计人员将市场常用之技术指标,利用电脑软件将其写入系统中,结合市场历史数据,分析和组合各种指标建立数学模型,将交易策略系统化。当交易策略的条件满足时,程序化系统自动发出多空讯号,并且有效掌握价格变化的趋势,让投资人不论在上涨或下跌的市场行情中,都能抓住交易策略,进而赚取波段获利。程序化交易的操作方式不求赚取夸张利润,只求长期稳健的获利,于市场中成长并达到财富累积的复利效果。经过长时期操作,年获利率可保持在一定水准之上。
程序化交易又是一种个性化交易,每个投资者(或机构)都可以根据自己的投资经验和智慧,编写自己的交易模型,进行电脑自动交易。交易模型是交易思想的凝练和实际化,正确的交易思想在严格的操作纪律实行下将获得良好、稳定的投资收益,而通过交易模型正是将正确的交易思想与严格的操作纪律很好地结合在一起,帮助人们获取良好、稳定的投资收益。程序化交易在投资实战中不仅可以提高下单速度,更可以帮助投资者避免受到情绪波动的影响,消除交易时人性的恐惧、贪婪、迟疑及赌性等情绪,实现理性投资。
设计出色的程序化系统可以确保广为流传的交易成功三项基本原则的顺利实施:顺应市场趋势、控制亏损交易、做足盈利交易。
总而言之,模型策略的出色设计、资金的有效风险控制、行情交易软件的稳定可靠、数据的及时流畅以及下单速度的快捷,组成了优秀的程序化交易系统,它是量化投资的一种具体实现途径。
量化系统是什么?
博尔证券量化交易系统是上海兆吉信息技术有限公司引进海外成熟量化投资模型,拥有完全自主知识产权的证券量化交易系统,是国内首款面向个人投资者的证券量化交易系统。
证券量化交易是指在证券市场中博尔证券量化交易系统,通过对交易资金及交易报价等数据进行批量比对后,分别找出资金数据及价格数据的运作规律,并根据这种规律进行投资交易,以获取最大的投资收益。博尔证券量化交易系统主要针对交易的两个要素交易价格和交易量做量化处理,并最终得出上涨概率的预测结果。
想从事量化交易的行业 具体如何学习量化交易还比较迷茫 所以想请教一些问题 不知道能不能稍微讲解一下 10分
不用这么复杂,现在文华赢智软件的麦语言很适合初学者,都是一些封包函数,很容易入门。
有什么问题可随时跟我们联系,使用文华软件有几年时间,还是有些经验。
量化云网站为您服务。
量化交易和程序化交易有什么联系和区别呢?
量化交易大多用在股票交易上,量化是指将某只股票或者摸个行业的数据进行量化,在更具各家机构自己的量化公式进行选择,量化交易只是选择,并不涉及交易,程序化交易也是一种量化交易,但是是更具已有的数据进行,比如各种行情指标,MACD KDJ等,无法像量化交易那样把能涉及到的所有数据进行量化,程序化交易更侧重交易的自动进行,没有认为干预,且模型编写简单,个人用户也可以进行
量化投资是什么?
量化投资是指通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式。在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。
量化投资区别于定性投资的鲜明特征就是模型,对于量化投资中模型与人的关系,大家也比较关心。量邦科技冯永昌打个比方来说明这种关系,我们先看一看医生治病,中医与西医的诊疗方法不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,定性程度上大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。
什么是量化交易 程序化交易应该怎么做
那是编程高手们玩得
股票量化交易转期货,区别是什么?
记得炎黄财经中提到过:期货量化交易-量化交易恰恰可以尽可能地规避投资者在投资活动时所受到的心理影响。以数量模型验证及固化这些规律和策略,严格执行已固化的策略来指导投资,从而使投资决策更科学、更理性,这就是量化交易的优势所在,也是量化交易在期货市场的意义所在。
期货由于是T+0杠杆交易,策略上的止盈止损设置很重要且被频繁触发。投资者需要做好仓位控制。期货的涨跌停幅度和股票不同,且有连续涨跌停时扩板(扩大涨跌停幅度)和提高保证金比例的问题。盘面数据的获取可以使用其他的行情软件。
期货由于是T+0杠杆交易,策略上的止盈止损设置很重要且被频繁触发。投资者需要做好仓位控制。期货的涨跌停幅度和股票不同,且有连续涨跌停时扩板(扩大涨跌停幅度)和提高保证金比例的问题。
❹ 散户如何做量化交易
定量投资是标准化投资环节的交易方式,主要包括选股、购买、销售三个环节.在量化交易过程中,散户可以这样做:1、根据个股的历史数据,进行多因子选股,比如,把市盈率、市净率、市销率等作为选股标准,选出一些价值被低估,或者处于合理区域的个股。 2、顺势交易,即在上涨的趋势中买入,在下跌的趋势中卖出。
一、散户是怎么量化交易的?
1、根据股票的历史数据,进行多因子股票选择.例如,将股价收益率、股价收益率、市场收益率等作为股票选择基准,选择价值被低估或处于合理地区的股票.
2、顺势交易,以上升趋势购买,以下降趋势销售.
3、进行合理的仓库管理,即采用漏斗型仓库管理法、矩形仓库管理法、金字塔形仓库管理法等,应对股票后期风险.
4、根据股票的历史趋势,寻找股票的支持位置和压力位置,以此为止损、止损点,在压力位置,获得收益时立即销售的支持位置,股票损失时立即销售股票,避免更大的损失.
二、散户如何做量化交易
确保管理公司所有的活动遵守法规规定,确保对付给基金管理公司的费用和付给投资者的收益计算符合法规和契约规定负责.同时,受托委员会负贵监督和核查托管人是否合法、合规、高效地进行基金资产净值核算、报酬的计提和支付、资金的划付,以及收益的分配等.委员会还应有权审查管理公司及托管机构高级人员个人账户及证券交易的详细内容.并定期对交易、资产净值、服务合同进行审查,定期向监管部门提交相关报告。
三、量化交易系统的出现能够解决什么问题?
1.减少客观因素(情绪化交易)带来的影响,从而达到稳定持续盈利目的。
2.有严格风险控制机制,可杜绝过量交易、重仓交易、大幅亏损等问题。
3 解放操盘时间,降低重复工作带来的时间消耗,从而达到提高效率目的。
❺ 量化交易该如何操作才可以走的更远就得用自动化交易。
量化交易该如何操作才可以走的更远?答案就是: 顺势而为+分批次交易+智能补仓,认同的可以打CALL。顺势能保护你,分批交易可以锁住利润,智能补仓可以即使加大力度抢占开仓点。总而言之,稳健操作才能走的更远!要想稳健,就要摆脱人为因素, 就得用自动化交易。
❻ 什么是量化交易个人如何做量化交易
一、何谓量化交易
量化交易(Quantitative Trading),即使用现代统计学和数学工具,借助计算机建立数量模型,制定策略,严格按照既定策略交易。具体又可分为高频交易和非高频交易,其中非高频交易适合一般个人投资者和中小机构。
量化交易是以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额预期年化预期收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
二、量化交易的发展
对多数普通投资者而言,量化交易仍是一个较为陌生的概念,但该模式已在国内流行了数十年。2010年,国内股指期货上市,成交量在两年内增加了倍,为量化交易提供了极佳的交易标的,国内量化交易便快速发展。
据华联期货介绍,2012年上半年,量化交易量占国内证券市场总交易量8%左右,但占股指期货交易量的比例已达20%左右。绝大部分的券商和期货公司开始进行量化交易,部分私募公司和个人投资者也开始使用量化交易产品。
事实上,3年多来,在股市连续下跌的大环境中,传统投资策略纷纷失效,而一批以股指期货、商品期货、债券为投资标的,以量化投资、程序化交易为工具的新兴投资方式,却在国内投资市场崭露头角,并实现了较为稳定的预期年化预期收益。
“传统投资策略依靠人的主观感觉来投资;而量化投资是根据数学统计模型,由计算机来实现自动化交易。”国信证券东莞营业部财富管理中心负责人林玉伟指出,量化投资的应用涵盖几乎所有金融投资领域,是在计算机和网络的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。
据华联期货介绍,量化投资主要应用于期货交易、ETF套利、条件选股、权证套利交易等,主流平台包括文华财经、交易开拓者、金字塔,此外Multicharts、龙软、高手、金钱豹、Yesterday等平台在业内的使用也较为广泛。
三、量化交易的特点
“量化产品的特点就是任何行情阶段都能盈利。”国信证券东莞营业部投资顾问蔡恩侠告诉,量化产品一般都是多空对冲,因此无论牛熊市均能盈利,不过其也有弱点,即牛市跑不赢一般的股票类投资产品,“2007年大牛市,也就30%左右的预期年化预期收益,但2008年大熊市也有15%左右的预期年化预期收益。”
“资金不会一直朝一个方向直线形地前进,资金增值是一个艰难的曲折前进过程。”莞香资本CEO江国栋则提醒道,回撤即是资金增长行进中的停顿,也可看做是期货交易的机会成本。“因此,必须正确看待策略参数优化结果,不刻意追求最高预期年化预期收益,不过度拟合行情;同时,坚持正确的交易理念和交易方法,严格执行和坚持不懈是持续盈利的前提。”
量化投资的应用涵盖几乎所有金融投资领域,是在计算机和网络的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。
❼ 什么是量化投资如何做到程序化交易
所谓量化投资是将投资环节标准化的交易方式,主要包括选股、买入、卖出三个环节,而真正的量化投资是完全自动化交易,不需要人为参与,投资者只要监管程序是否正常运行,参数设置是否合理,指标选择是否在既定目标范围内。❽ 股票如何实现程序化交易和自动交易
股票想实现程序化交易和自动交易,需要两点:
1、券商有交易接口;
2、有合适的程序化交易软件(量化交易软件)。
满足以上两点,就可以通过程序化交易软件(量化交易软件),设置好交易触发条件,让软件自动交易。
❾ 期货量化交易编程怎么弄
方法:1、前提是你必须有自己的期货交易账户,每个期货公司都可以开,现在不用出门就可以用手机在线开户。
2、其次,要选择合适的交易软件。其中交易开拓者的软件是最好编程的,很多交易团队基本都在用这个软件。确定账户和交易软件。
3、剩下的就是如何用编程语言编写策略,并将其输入交易软件。编程其实并不难。在程序化交易中,程序化只占程序化交易的30%。好的编程可以简化代码,提高运行速度,增加交易策略的多样性和完整性,实现一些复杂的策略。
4、如果没有这方面的编程能力,可以参加期货交易的相关培训课程。另外70%主要是策略、仓位设置、交易品种选择、程序化交易心态控制、网络设置等的组合管理。
拓展资料:
1、 战略的确定。一个成功的量化交易系统的开发过程必须是恰当的。如何找到一个成功的量化交易策略,是构建量化交易体系的基础。无论是基本面还是技术面,都可以用量化的方法进行分析,进而得出量化的交易策略。比如,从根本上说,GDP的增长和货币流通量的增加可以用定量的方法来分析和描述。技术上,移动平均线和指数smma是物理和化学策略思想的来源。
2、 经典理论。很多量化投资策略思路来源于传统经典投资理论,比如经典商品期货技术分析主要包括技术分析的理论基础、道指理论、图表介绍、趋势基本概念、主要反转形态、持续形态、交易量和仓位兴趣、长期图表和商品指数、移动平均线、摆动指数和相反意见、盘中点图、三点转向和优化点图、艾略特波浪理论、时间周期等等。这些经典理论有的有具体的指标和具体的应用理论,有的只有理论,需要根据理论生成具体的应用指标来完成策略的测试。因此,经典投资理论可以通过量化思维将理论中的具体逻辑量化为指标或事件形成交易信号,通过信号优化检验实现经典理论的投资思路。这种方式可以有效实现经典理论,同时也可以从原有的经典理论中衍生出周边的投资方法,是量化策略发展初期的主流模式。
3、 逻辑推理。逻辑学的战略思维大多来源于宏观基础信息,其量化战略思维是通过对宏观信息的量化处理,梳理出符合宏观基础信息的量化模型。典型的量化策略包括行业轮动量化策略、市场情绪轮动量化策略、上下游供需量化策略等。这种策略思路来源非常广泛,数据一般不规范,很难形成标准。目前,许多对冲基金都有类似的想法来生成量化策略产品。
4、 总结经验。经验总结是量化战略思想的另一个主要来源。在使用量化策略交易之前,市场上有大量经验丰富的投资者,其中许多人在长期稳定回报方面表现突出。因此,他们对市场的看法和交易思路成为了量化策略开发者的模仿对象,有经验的交易者也愿意量化一些他们觉得相对固化、能够获得稳定回报的交易策略,最终可以用机器自动交易,只监控交易。这可以大大减少交易中消耗的能量。在这个前提下,出现了一个与经验丰富的交易者合作的量化策略团队。
操作环境:iPad第九代15.1 交易开拓者4.5.2
❿ 散户如何做量化交易
在量化交易过程中,散户可以这样做:
1、根据个股的历史数据,进行多因子选股,比如,把市盈率、市净率、市销率等作为选股标准,选出一些价值被低估,或者处于合理区域的个股。
2、顺势交易,即在上涨的趋势中买入,在下跌的趋势中卖出。
3、进行合理的仓位管理,即采取漏斗型仓位管理法、矩形仓位管理法、金字塔形仓位管理法等,好应对个股后期的风险。
4、再根据个股的历史走势,寻找个股的支撑位和压力位,把它们作为止损、止盈点,即在压力位置,且获得收益的时候及时卖出;在跌破支撑位时,且股票亏损的时候及时卖出股票,避免更大的损失。
股票量化交易中的模型建立是非常复杂的,拥有非常多的参数,数据量也非常大,数据分析的过程也十分复杂。
值得提出的是,大众投资者在接触量化投资基金时有所顾虑,一方面,是在A股市场欠成熟的环境下大众对新兴投资方法和模型可靠性的犹豫。另一方面,当前国内市场有效量化模型有限,为防复制,机构对其投资策略和构建理论依据往往遮遮掩掩不能透明化,这就增加了投资人对量化模型的担忧。
量化交易策略几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。