‘壹’ 外汇EA自动交易的流程
首先,可以知道的是自动交易软件是基于MQL4语言的编程而得到的,同时以指标为基础。其次智者胜EA只需要投资者按照一定的程序将自己的需求输入,就可以实现全自动交易。他家微信平台是yideng023,可以详细咨询一下。 网络望采纳
‘贰’ 想编写一个股票自动交易软件,可以读取通达信实时数据,操作券商交易软件自动下单,要学哪些知识、语言
迅动股票的股票自动化交易工具还不错。应用商店搜:迅动股票
‘叁’ 期货量化交易编程怎么弄
方法:1、前提是你必须有自己的期货交易账户,每个期货公司都可以开,现在不用出门就可以用手机在线开户。
2、其次,要选择合适的交易软件。其中交易开拓者的软件是最好编程的,很多交易团队基本都在用这个软件。确定账户和交易软件。
3、剩下的就是如何用编程语言编写策略,并将其输入交易软件。编程其实并不难。在程序化交易中,程序化只占程序化交易的30%。好的编程可以简化代码,提高运行速度,增加交易策略的多样性和完整性,实现一些复杂的策略。
4、如果没有这方面的编程能力,可以参加期货交易的相关培训课程。另外70%主要是策略、仓位设置、交易品种选择、程序化交易心态控制、网络设置等的组合管理。
拓展资料:
1、 战略的确定。一个成功的量化交易系统的开发过程必须是恰当的。如何找到一个成功的量化交易策略,是构建量化交易体系的基础。无论是基本面还是技术面,都可以用量化的方法进行分析,进而得出量化的交易策略。比如,从根本上说,GDP的增长和货币流通量的增加可以用定量的方法来分析和描述。技术上,移动平均线和指数smma是物理和化学策略思想的来源。
2、 经典理论。很多量化投资策略思路来源于传统经典投资理论,比如经典商品期货技术分析主要包括技术分析的理论基础、道指理论、图表介绍、趋势基本概念、主要反转形态、持续形态、交易量和仓位兴趣、长期图表和商品指数、移动平均线、摆动指数和相反意见、盘中点图、三点转向和优化点图、艾略特波浪理论、时间周期等等。这些经典理论有的有具体的指标和具体的应用理论,有的只有理论,需要根据理论生成具体的应用指标来完成策略的测试。因此,经典投资理论可以通过量化思维将理论中的具体逻辑量化为指标或事件形成交易信号,通过信号优化检验实现经典理论的投资思路。这种方式可以有效实现经典理论,同时也可以从原有的经典理论中衍生出周边的投资方法,是量化策略发展初期的主流模式。
3、 逻辑推理。逻辑学的战略思维大多来源于宏观基础信息,其量化战略思维是通过对宏观信息的量化处理,梳理出符合宏观基础信息的量化模型。典型的量化策略包括行业轮动量化策略、市场情绪轮动量化策略、上下游供需量化策略等。这种策略思路来源非常广泛,数据一般不规范,很难形成标准。目前,许多对冲基金都有类似的想法来生成量化策略产品。
4、 总结经验。经验总结是量化战略思想的另一个主要来源。在使用量化策略交易之前,市场上有大量经验丰富的投资者,其中许多人在长期稳定回报方面表现突出。因此,他们对市场的看法和交易思路成为了量化策略开发者的模仿对象,有经验的交易者也愿意量化一些他们觉得相对固化、能够获得稳定回报的交易策略,最终可以用机器自动交易,只监控交易。这可以大大减少交易中消耗的能量。在这个前提下,出现了一个与经验丰富的交易者合作的量化策略团队。
操作环境:iPad第九代15.1 交易开拓者4.5.2
‘肆’ 智者胜的外汇EA自动交易的流程
智者胜的自动交易软件是基于MQL4语言的编程而得到的,同时以指标基础,综合考量一下软件运行的理论和点差及手续费什么的,根据自身的特点进行精算,最后选择可以购买账户合作或者直接买断合作,实现全自动交易,他家微信平台是yideng003可以详细咨询一下 望网络采纳
‘伍’ 怎样用 Python 写一个股票自动交易的程序
股票自动交易助手提供了一个 Python 自动下单接口,参考代码
#股票自动交易助手Python自动下单使用例子
#把此脚本和StockOrderApi.pyOrder.dll放到你自己编写的脚本同一目录
fromStockOrderApiimport*
#买入测试
#Buy(u"600000",100,0,1,0)
#卖出测试,是持仓股才会有动作
#Sell(u"000100",100,0,1,0)
#账户信息
print("股票自动交易接口测试")
print("账户信息")
print("--------------------------------")
arrAccountInfo=["总资产","可用资金","持仓总市值","总盈利金额","持仓数量"];
foriinrange(0,len(arrAccountInfo)):
value=GetAccountInfo(u"",i,0)
print("%s%f"%(arrAccountInfo[i],value))
print("--------------------------------")
print("")
print("股票持仓")
print("--------------------------------")
#取出所有的持仓股票代码,结果以','隔开的
allStockCode=GetAllPositionCode(0)
allStockCodeArray=allStockCode.split(',')
foriinrange(0,len(allStockCodeArray)):
vol=GetPosInfo(allStockCodeArray[i],0,0)
changeP=GetPosInfo(allStockCodeArray[i],4,0)
print("%s%d%.2f%%"%(allStockCodeArray[i],vol,changeP))
print("--------------------------------")
‘陆’ python开发EA外汇交易怎么开发
1.首先,你要有一个EA,必须要有以ex4为扩展名的,如果只有mq4文件的话,就要用MetaTrader自带的编辑器MetaEditor打开,将mq4通过编译(compile)并且要不出现错误,才能在原存放mq4的文件夹下面得到一个同名的ex4文件。
2.将这个ex4文件复制到MetaTrader 4所在的文件夹下面的experts文件夹下,比如:D:Program FilesACTC MetaTrader 4experts,关闭并重新打开MetaTrader 4。
3.在“导航”下面的“智能交易系统”下面右键点击你想要使用的EA。
拓展资料:
1、 对于想要在 mt5+python 发展 ea 的交易者,最大会立即遇到的困难是,mt5 现在还没有提供 python 可以调用 mt5 backtest 的接口,也就是在 python 上开发 ea 是无法在 mt5 上作复盘测试的,只能另外再找 python 的第三方 backtest 库再多写接口来达成。 复盘不是只有验证策略的有效性,也扮演调试策略参数的重要工作,所以复盘对于开发 ea 是相当重要的环节。
2、另外在执行速度上,mt5+python ea 的速度自然是无法和纯在 mt5 开发的 ea 相比,这个是实际执行压力测试后得到的结论。因为 mt5+python ea 在调用当前价格和 K 线数据作为信号计算,和调用交易记录,需要透过 mt5 python 官方库与 mt5 建立在本地的一个加密的 socket 连接来作,读写速度自然是比不过 mt5 ea 直接从 mt5 内存读取行情数据和订单信息。虽然 python 是脚本编程语言,与其他编译型的编程语言程序比自然是不快,但是对于 ea 的应用,这样的慢是不太感受的到,可以直接感受到与相同 mt5 ea 的慢,主要是慢在与 mt5 间的大量数据传送和 io 读写差异上,尤其是连续调用行情数据比较多时,这样的速度差异就相当明显了。
3、这还是有优化方式的,可以仿 mql5 指标对于初始和后续的行情读取,采取精简量的读取方式。 既然有这些缺点,在 mt5 开发 python ea 还是在有些领域有不可替代的优点,所以 metaquotes 才会在 2020 年最终还是把 python 接口和函数库提供出来。因为现在许多衍生性交易平台都已经具备了 python api,而经过这些年,python 已经成为量化交易程序最有人气的编程语言,这也让许多交易团队在建构量化交易的环境,会优先考虑 python。 另外在人工智能的量化交易,python 的机器学习和统计数组处理的第三方库大概是最丰富的编程语言。对于交易策略里有用到 tensorflow 这类机器学习库,使用 python 来开发自动交易程序是最佳的选择。 mt5 或是 mt4 ea 受限于当时 metaquotes 自定的限制,只能作单线程运行,当同时触发事件函数如 OnTimer OnTick OnChartEvent,mt5 底层会作互斥锁限制一个线程运行。
操作环境: 浏览器 电脑端:macbookpro mos14打开goole版本 92.0.4515.131