‘壹’ 如何设计量化交易策略
量化交易策略包括数量选股,选行业。但是交易时候没准还是手动交易。换句话说就是,用量化的方式去准备交易,量化的标准去准备交易,但是并不确定是手动还是自动交易。 程序化交易策略主要侧重于交易的自动化,为机构准备的
‘贰’ 散户如何做量化交易
在量化交易过程中,散户可以这样做:
1、根据个股的历史数据,进行多因子选股,比如,把市盈率、市净率、市销率等作为选股标准,选出一些价值被低估,或者处于合理区域的个股。
2、顺势交易,即在上涨的趋势中买入,在下跌的趋势中卖出。
3、进行合理的仓位管理,即采取漏斗型仓位管理法、矩形仓位管理法、金字塔形仓位管理法等,好应对个股后期的风险。
4、再根据个股的历史走势,寻找个股的支撑位和压力位,把它们作为止损、止盈点,即在压力位置,且获得收益的时候及时卖出;在跌破支撑位时,且股票亏损的时候及时卖出股票,避免更大的损失。
股票量化交易中的模型建立是非常复杂的,拥有非常多的参数,数据量也非常大,数据分析的过程也十分复杂。
值得提出的是,大众投资者在接触量化投资基金时有所顾虑,一方面,是在A股市场欠成熟的环境下大众对新兴投资方法和模型可靠性的犹豫。另一方面,当前国内市场有效量化模型有限,为防复制,机构对其投资策略和构建理论依据往往遮遮掩掩不能透明化,这就增加了投资人对量化模型的担忧。
量化交易策略几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
‘叁’ 量化交易策略研发的三个层次
最近调研了一些投资公司,发现一些人说自己做的是量化交易,却搞不清楚到底什么是量化交易。
我是个很爱学习的人,为了弄清楚什么事量化交易,特意查网络逛知乎,我是从这个问题开始的:
程序化交易是量化交易吗?
这里我先把几个概念总结一下:
程序化交易
或者自动化交易,是将策略交由计算机执行的交易模式。量化交易中,不少交易是通过计算机自动执行的,但两者不能划等号。
对冲交易
更多说的是一种交易理念,而非具体的策略。
量化交易
更多是基于数据和历史统计基础,制定的一些交易策略。哪怕不用计算机执行,但基于交易因素的数量变化引发的交易,都可以叫做量化交易。
而后,我在知乎上扒到一段文字,介绍了量化交易的策略研发方法,可以比较好的解答不同概念之间的关系,以及量化策略的进阶。作者将量化策略研发分成三个层次:
第一类:传统策略量化
很久以前,交易员们就开始做趋势策略、反转策略、剥头皮策略、做市策略等各种不同风格的策略,只不过那时是手工操作,或者半自动化。随着市场发展技术成熟,量化交易把这些策略的研发和执行自动化了,从而提高了研发效率和水平、降低了交易成本,较大程度的排除了人的不稳定因素。
这类交易,可以说是利用技术来提高原有策略的研发和执行,并且交易频率和规模也有了变化,但本质上并不算崭新的策略类别,以前赚钱的策略也许能赚的多一些,亏钱的策略,量化也不能把他变成赚钱,这就是 【思路错了量化也救不了你】 。
目前国内多数量化交易都属于此类。
第二类:科学技术驱动策略
纯粹或很大程度上基于技术(technologies)差别的策略。这个类别也有一定历史,但真正变成一个庞大且引人注目的策略类别,则是在近10年计算机技术的飞速发展过程中产生的。常见的情形是,某机构因为采用的算法效率更高,计算机硬件更强大(超级计算机),产生了细微的速度和计算优势,从而在交易上抢得先机,并运用自动化交易频繁交易大量产品,用巨大的交易量产生稳定的收益。这类策略中IT技术和科学模型起了很关键的作用。这就是【 技术就是你的思路】 。
举个例子:
较早开始高频交易的Tradebot就是这类策略的典型运用者,在2002年就达到了每天一亿个订单,差不多在那个时候很多传统做市商被Tradebot和Getco这样的新型电子做市商挤出市场,后来Tradebot和Getco同样一路用技术碾压其它电子做市商竞争对手。
在2005年, Tradebot 剥离了BATS Global Markets,也就是现在美国第三大股票市场BATS。而1999年Tradebot刚成立时,工作室地点是美国农村Kansas City的一间小地下室,里面阴暗潮湿,只有5个交易员坐在电脑屏幕前监控交易,那时每台电脑上都配备了一套叫着“Tradebot”的软件。而Getco 对策略的运用更广,野心更大。2012年,也是老牌做市商的 Knight 因技术故障,向纽交所发送大量错误order,导致公司巨亏4.4亿美元,股价两个交易日暴跌七成,被Getco以18亿美元价格收购。
人们常对西蒙斯文艺复兴的大奖章基金长期持续的高回报印象深刻,而实际上不太为媒体所知的是 Tradebot 常年保持每天(而不是每月或每年)盈利,not even one single losing day,原因是文艺复兴有很多新基金要向外部投资者融资(赚钱的大奖章很早停止了外部融资,而实际新基金表现比大奖章差很多),需要做一定程度的IR,而Tradebot不对外部投资者开放,自己低调赚钱,这也是HFT很普遍的特点。如果不是市场几次出现大动荡,HFT被揪出来当替罪羊,媒体口诛笔伐,基本是没有多少人知道这个低调类别的存在。
这一类,国内已经有一小批类似的交易者进入,他们深入研究交易规则和市场结构,制定相应的高频策略,配合高效软件硬件,争取积少成多的盈利。
第三类:新型量化策略
这类策略则是得益于计算机技术的发展,而慢慢发展起来的策略类别。它不完全是基于执行的技术优势,更多是利用技术研发出新策略。例如统计套利,需要较多计算机计算资源进行数据挖掘、模式识别,这在以前仅仅靠人力是难以胜任的。IT技术的发展和成本的降低使得这些策略的研发得以可行。这就是 【技术产生新策略】 。
这一类目前国内还处于萌芽期。
【感谢知乎作者 Leon 】
拓展: 如何设计量化交易策略?
‘肆’ 关于量化交易,这些入门知识你需要了解
这篇文章将向你介绍量化交易系统的一些基本概念。本文主要面向两类读者,第一类是正在努力寻找一份量化交易员工作的求职者,第二类是期望尝试开启自己量化交易事业的个人投资者。关于量化交易,这些入门知识你需要了解。
量化交易是数量金融学一个极其艰深复杂的领域。若要通过面试或构造你自己的交易策略,就需要你投入时间学习一些必备知识。
量化交易系统包括四个主要部分:
策略识别:搜索策略、挖掘优势、确定交易频率。
回溯测试:获取数据、分析策略性能、剔除偏差。
交割系统:连接经纪商、使交易自动化、使交易成本最小化。
风险管理:最优资本配置、最优赌注或凯利准则、交易心理学。
我们首先来谈谈如何识别一个交易策略。
策略识别
所有量化交易流程都肇始于一个初期研究。这个研究流程包括搜索一个策略、检验它是否适合你可能正在运作的策略组合、获取任何测试策略时所需数据、努力优化策略使其预期年化预期收益更高且(或)风险更低。如果你是一个“散户”交易员,一定要清楚自己的资金是否充足,以及交易成本对策略的影响。
通过各种公开数据搜索可盈利的策略实际上十分简单,并没有大家想的那么难。研究学者会定期发表理论交易结果(虽然大多为交易成本总额)。一些数量金融学主题博文也会详细讨论策略。交易期刊还会简报一下基金管理公司使用的一些策略。
你可能会问,个人与公司怎么可能愿谈他们的可盈利策略,特别是当他们知道,如果其他人“复制相同的策略”,长期而言它终将失效。
原因就在于,他们通常不会透露具体的参数以及他们所使用的调参方法,而这些优化技能才是把一个表现平庸的策略调成一个回报丰厚的策略所需的关键技术。实际上,若要创建你自己的、独一无二的策略,一个最好的法子就是寻找相似的方法,尔后执行你自己的优化程序。
你所看到的很多策略都可归入均值回归交易策略、趋势跟随或动量交易策略两类。
均值回归策略试图利用这么一个事实:“价格序列”(如两个关联资产的价差)存在一个长期均值,价格对均值的短期偏离终将回归。
动量交易策略则试图“搭上市场趋势的顺风车”,利用投资心理和大基金结构信息在一个方向积聚动量,跟随趋势直至回归。
定量交易还有一个重要方面,即交易策略的频率。低频交易(Low Frequency Trading, LFT)通常指持有资产超过一个交易日的策略。相应地,高频交易(High Frequency Trading, HFT)通常指持有资产一个交易日的策略。
超高频交易(Ultra-High Frequency Trading, UHFT)指持有资产的时常达秒级与毫秒级的策略。虽然散户可以进行HFT与UHFT交易,但也只是在你掌握了交易“技术栈”与订单簿动力学的详细知识后才有可能。本篇入门文章,我们不会对这些问题做任何深入探讨。
策略或策略集合一旦确定,现在就需要在历史数据上测试其盈利能力,这就进入了回溯测试的工作范围。
回溯测试
回溯测试的目标是提供证据,佐以证明通过以上流程所确定的策略,无论是应用于历史(训练)数据还是测试数据均可盈利。它可以反映该策略未来在“真实世界”中的预期表现。
由于种种原因,回溯测试不能保证一定成功。这或许就是量化交易最为微妙之处,由于它包含了大量的偏差,我们必须尽尽力仔细审查并剔除它们。
我们将讨论几种常见类型的偏差,包括先窥偏差、幸存者偏差与优化偏差(亦称“数据窥视偏差”)。回溯测试中其他几个重要方面,包括历史数据的可用性与清洁度、真实交易成本及可靠回测平台上的决定。我们会在后续“交割系统”一节深入讨论交易成本。
策略一旦确定,我们就需要获取历史数据,并借此展开测试,如有可能还可改进策略。现在卖数据的很多,所有资产类型的数据都有。通常,数据的质量、深度、时间间隔不同,其价格也不同。
刚入门的量化交易员(至少零售等级)最初使用雅虎金融板块(Yahoo Finance)的免费数据就行。对于数据供应商,这里不再赘言。我想重点谈一谈处理历史数据时,时常遇到的问题。
对于历史数据,人们主要关心的问题,包括数据精度或清洁度、幸存者偏差、应对如分发红利、拆分股票等公司行为的调整。
精度与数据整体质量有关,无论数据是否包含错误。有时错误容易识别,比如使用一个窄带滤波器,就可以找出时间序列数据中的“窄带”并更正它们。其他时候,错误又很难甄别,经常需要根据多个数据供应商提供的数据进行对比检查。
幸存者偏差通常是免费数据集或廉价数据集的一个”特征“。对于一个带有幸存者偏差的数据集,它不包含已经不再交易的资产数据。不再交易的证券,则表示已经退市或破产公司的股票。如果数据集中含有此类偏差,策略在此数据集上的测试表现可能比在”真实世界“里表现的更好,毕竟历史”赢家“已经被预先筛选出来,作为训练数据使用。
公司行为即公司开展的常引发原始价格阶梯形变化的”逻辑“活动,它不应该计入价格预期年化预期收益。公司分发红利和拆分股票行为是引发调整的两个常见行为,二者无论发生哪一种,都需要进行一个”回调“的流程。我们一定要留心,不要把股票拆分和真实预期年化预期收益调整混为一谈。许多交易员在处理公司行为时都碰过壁!
为了开展回溯测试,我们必须使用一个软件平台。你可以选择一个专门的回测软件如MultiCharts,一个数值平台如Excel或MATLAB,或者一个用Python或C++完全自主实现的平台。对于MultiCharts(或类似平台),个人是比较介绍,对于编程的要求比较低。
在做系统回测时,一定要量化表示系统性能。定量策略的“业界标准”度量为最大资金回挫与夏普比率。最大资金回挫表示一段时间(通常一年)内账户资金曲线从波峰至波谷的最大跌幅,常使用百分比表示。
由于大量的统计因素,LFT策略比HFT策略的资金回挫更高。历史回测会显示过去的最大资金回挫,它能够较为贴切地反映策略的未来资金回挫情况。第二个度量指标是夏普比率,它被启发式地定义为“超额预期年化预期收益均值与超额预期年化预期收益标准差的比值”。
这里,超额预期年化预期收益表示策略预期年化预期收益超出某个预定基准,如标普500或三月期短期国债(预期年化预期收益)的额度。注意人们通常不使用历史预期年化预期收益指标,因为它忽略了策略波动性的影响,而夏普比率却考虑到了这一点。
如果经过回测,策略的夏普比率很高且其最大资金回挫已经最小化,则可以认为它趋于无偏,下一步就是要搭建一个交割系统。
交割系统
交割系统是一个方法集合,由它来控制交易策略生成的交易列表的发送和经纪商的交割行为。事实上,交易可以半自动、甚至全自动生成,而执行机制可以手动、半自动(即“点击一次交割一项”)或者全自动。
尽管如此,对于LFT策略,手动和半自动技术却比较常见;对于HFT策略,则必须创建一个全自动交割机制,由于策略和技术彼此依赖,还要经常与交易指令生成器紧密相接。
在搭建交割系统时,我们需要考虑几个关键因素:连接经纪商的接口、交易成本(包括佣金、滑动价差与价差)最小化、实时系统与回测时系统性能的差异。
联系经纪人的方法有很多,你可以直接电话联系他,也可以通过一个全自动高性能的应用程序接口(API)实现。理想情况,就是希望交割交易的自动化程度尽可能高。这样一来,你不仅可以脱开身集中精力进行深入研究,还能运行多个策略、甚至HFT策略(实际上,如果没有自动化交割,HFT根本不可能)。
前面说过的几种常用回溯测试软件如MATLAB、Excel和MultiCharts,对于LFT策略或简单策略都是不错的选择。但是,如果要做真正的HFT,你就必须要构造一个用高性能语言(如C++)编写的内部交割系统。
说个我的亲身经历,以前受聘于一家基金管理公司,我们有一个十分钟的“交易周期”,每隔十分钟下载一次新的市场数据,然后根据这十分钟的信息进行交割。这里用的是一个优化的Python脚本。对于任何处理分钟级或秒级频率数据的工作,我相信C/C++更理想。
在一家大型的基金管理公司,交割系统的优化通常不在量化交易员的工作范围。但是,在小点的公司或高频交易公司,交易员就是交割人,所以技术面越广越好。你要想进一家基金管理公司,一定要记住这一点。你的编程能力不说比你的统计学和计量经济学禀赋更重要,至少也同样重要!
另外一个属于交割系统的重要问题是交易成本最小化。一般地,交易成本由三部分构成:佣金(或税收)、损耗与价差。佣金是向经纪商、交易所和证券交易委员会(或类似政府监管机构)支付的费用;滑动价差是你的预期交割价位与真实交割价位的差值;价差则是待交易证券的卖出价与买入价之差。注意价差不是常数,它依赖于市场当前流动性(即买单和卖单数量)。
交易成本是决定一个策略是高夏普比率且盈利丰厚,还是低夏普比率且极不盈利的关键。根据回溯测试正确预测未来的交易成本很具有挑战性,你需要根据策略频率,及时获取带有卖出价与买入价信息的历史交易数据。
为此,大型基金管理公司量化交易的整个团队都专注于交割优化。当基金管理公司需要抛售大量交易时(原因五花八门),如果向市场“倾泻”大批股票,会迅速压低价格,可能都来不及以最优价格交割。
因此,纵使遭受损耗风险,基金管理公式也会选择使用算法交易,通过“打点滴”的方式向市场出单。此外,其他策略如若“捕到”这些必要性条件,也能利用市场失效(获利)。这是基金结构性套利的内容。
交割系统最后一个主要问题关系到策略的实时性能与回测性能的差异。这种差异由多种因素造成,比如我们在“回溯测试”一节已经深入讨论过的前窥偏差与最优化偏差。
然而,对于有些策略,在部署之前不易测得这些偏差。这种情况对于HFT最为常见。交割系统和交易策略本身均可能存在程序错误,回溯测试时没有显现却在实时交易时出来捣乱。市场可能受到继交易策略部署后的一场政变的影响,而新的监管环境、投资者情绪与宏观经济形势的变化也均可能导致现实市场表现与回溯测试表现的差异,从而造成策略盈利性上的分歧。
风险管理
量化交易迷宫的最后一块是风险管理程序。风险包含我们之前谈论的所有偏差。它包括技术风险,比如所有在交易所的服务器突然发生硬盘故障。它还包括经纪风险,如经纪商破产(此说并非危言耸听,引发恐慌的明富环球就是一个例子)。
总而言之,它覆盖了几乎所有可能干扰到交易实现的因素,而其来源各不相同。已经有成套的书籍介绍量化交易策略的风险管理,本人也就不再对所有可能的风险来源做详细说明。
风险管理还包括投资组合理论的一个分支,即所谓的“最优资本配置”,涉及到如何将资本分配给一组策略、如何将资本分配给策略内不同交易的方法。这是一个复杂的领域,依赖于一些高级数学知识。
最优资本配置与投资策略杠杆通过一个名为凯利准则的业界标准建立联系。本文是一篇入门文章,我在此不详谈其计算。凯利准则对策略预期年化预期收益的统计性质做过一些假设,但是它们在金融市场中并不一定成立,交易员因此在实现时通常会有所保留。
风险管理的另外一个关键成分涉及到交易员自身心理因素的处理。尽管大家都承认,算法交易若无人为干涉,不太容易出现问题。交易员在交易时,稍不留神仍然可能会掺入许多认知偏差。
一个常见的偏差是厌恶规避,当人发现损失已成定局,其所带来的痛苦,可能会麻痹人的行为,不能做到及时抛盘止损。类似地,由于太过忧心已经到手的预期年化预期收益可能赔掉,人们可能也会过早抛盘收利。
另外一个常见的偏差是所谓的偏好偏差:交易员太看重事件而非长远地看问题。此外,当然不能落下“恐惧与贪婪”这对经典的情绪偏差。这两种偏差常导致杠杆不足或杠杆过度,造成爆仓(账户资产净值近乎为零或更糟)或盈利缩水的局面。
总结
由此观之,量化交易是数量金融学中一个虽趣味十足但极其复杂的领域。我对这个话题的讨论浅尝辄止,文章就已经这么长了!我在文中三言两句带过的问题,已经有大量的相关书籍和论文出版。
因此,在你申请量化基金交易职位前,务必要进行大量的基础调研,至少应当具有统计学和计量经济学的广泛背景,以及使用MultiCharts、MATLAB、Python或者R程序语言实现的丰富经验。如果应对的是更加复杂的高频端策略,你的技能组合可能还要包含Linux内核修改、C/C++、汇编编程和网络延迟优化。
‘伍’ 什么是量化交易个人如何做量化交易
一、何谓量化交易
量化交易(Quantitative Trading),即使用现代统计学和数学工具,借助计算机建立数量模型,制定策略,严格按照既定策略交易。具体又可分为高频交易和非高频交易,其中非高频交易适合一般个人投资者和中小机构。
量化交易是以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额预期年化预期收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
二、量化交易的发展
对多数普通投资者而言,量化交易仍是一个较为陌生的概念,但该模式已在国内流行了数十年。2010年,国内股指期货上市,成交量在两年内增加了倍,为量化交易提供了极佳的交易标的,国内量化交易便快速发展。
据华联期货介绍,2012年上半年,量化交易量占国内证券市场总交易量8%左右,但占股指期货交易量的比例已达20%左右。绝大部分的券商和期货公司开始进行量化交易,部分私募公司和个人投资者也开始使用量化交易产品。
事实上,3年多来,在股市连续下跌的大环境中,传统投资策略纷纷失效,而一批以股指期货、商品期货、债券为投资标的,以量化投资、程序化交易为工具的新兴投资方式,却在国内投资市场崭露头角,并实现了较为稳定的预期年化预期收益。
“传统投资策略依靠人的主观感觉来投资;而量化投资是根据数学统计模型,由计算机来实现自动化交易。”国信证券东莞营业部财富管理中心负责人林玉伟指出,量化投资的应用涵盖几乎所有金融投资领域,是在计算机和网络的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。
据华联期货介绍,量化投资主要应用于期货交易、ETF套利、条件选股、权证套利交易等,主流平台包括文华财经、交易开拓者、金字塔,此外Multicharts、龙软、高手、金钱豹、Yesterday等平台在业内的使用也较为广泛。
三、量化交易的特点
“量化产品的特点就是任何行情阶段都能盈利。”国信证券东莞营业部投资顾问蔡恩侠告诉,量化产品一般都是多空对冲,因此无论牛熊市均能盈利,不过其也有弱点,即牛市跑不赢一般的股票类投资产品,“2007年大牛市,也就30%左右的预期年化预期收益,但2008年大熊市也有15%左右的预期年化预期收益。”
“资金不会一直朝一个方向直线形地前进,资金增值是一个艰难的曲折前进过程。”莞香资本CEO江国栋则提醒道,回撤即是资金增长行进中的停顿,也可看做是期货交易的机会成本。“因此,必须正确看待策略参数优化结果,不刻意追求最高预期年化预期收益,不过度拟合行情;同时,坚持正确的交易理念和交易方法,严格执行和坚持不懈是持续盈利的前提。”
量化投资的应用涵盖几乎所有金融投资领域,是在计算机和网络的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。
‘陆’ 如何创建自己的量化交易策略组合
1、你首先要有策略,且要有一定数量的策略,思路不一样,不是指品种和时间周期不一样;
2、这些策略的组合有减少交易风险的功效,有组合在一起的对冲机制,这样才有组合的必要;
3、有极端行情风险的综合预判能力,减少自动运营下因黑天鹅而导致巨亏的情况。
具备以上三个条件,再考虑你问的问题。如果不具备,先让自己具备这个条件
‘柒’ 如何设计量化交易策略
对于新手来说开发一个策略最开始一定是模仿。
第一步,利用现成指标构建逻辑。TB内置了众多的技术指标,取出一个,写入买卖点,回测下历史行情,这样就可以得到一个简单的策略了。随着策略经验的积累,这里的逻辑选择会越来越多样化。
当然这样的策略一般是不赚钱的,所以我们第二步,进行参数优化。
选择参数遍历,观察不同参数对于策略会产生怎样的影响。一般情况下我们会得到几组看起来比较赚钱的参数,然后我们进行第三步,样本外检测。
比如说我们之前遍历的参数是2014年的数据得出的几个表现好的参数,那么我们就用2013/2015的数据对这些参数进行检测。一般来说,这一参数会在样本外惨淡无比,完全没有样本内优化出来的威武。
这时第四步,进行观察,判断策略失效的原因是什么。
假设发现策略失效原因是样本外某一两次特殊的行情导致大幅亏损,那么我们就可以设置一个硬止损来规避这种风险;如果发现策略失效是因为交易次数过少,那我们就将交易逻辑稍微放松,比如要求>x的地方改为>=x甚至是>=x-1。等等等等,这种修改就是策略的经验了。
设置好新的逻辑后我们回到第二步,重复以上步骤。
最终我们修改得到了一个样本内外都赚钱的策略,第五步,实盘追踪。
在未来一段完全未知的行情中随着时间检验策略,观察策略的真实表现究竟如何。如果表现与预期相符合,那么说明策略有效,第六步,进行交易。
随着交易进行,我们也要观察策略的有效性,当发现策略出现超出预期的亏损时,第七步,调整或终止策略。
‘捌’ 如何设计量化交易策略
1.自下而上好,所有的理论都是基于数据和案例推导而出,这些数据和模型所有人都知道,也不一定符合你的性格和目标。
2.小周期容易控制亏损,回撤大小决定一个模型的存亡。
3.因为别人不会告诉你他的策略。
4.流程是这样的,a.自己想一个策略或从别人那里获得一个自己可以理解的策略。b.写成代码。c.用历史数据做测试。d.实盘测试。e.小资金测试。f.大资金部署。g.维护
5.只有对操作品种的深刻理解才能保证模型在遭受挫折的时候坚持下来。
6.策略的独特性决定策略与策略之间的竞争力,抄别人的策略很可能赚不了钱,不是不能抄,要在抄的基础上再创新。量化交易我认为是一种创新工作,不是把已有的经验转交给软件执行就完事了。