导航:首页 > 信息技术 > al人工智能技术是什么

al人工智能技术是什么

发布时间:2022-05-19 14:03:09

㈠ al是什么意思

al是人工智能的意思,人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

定义详解:

人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。

关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND))等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。

㈡ AI智能是什么呢

AI(Artificial Intelligence)就是人工智能,通俗理解就是模拟人的意识、思维的信息过程。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

目前关于AI的划分,大致可以分为三大类型。

1、AI芯片加持

代表:麒麟970

我们最熟悉的AI芯片应该是华为海思推出的首款集成NPU的麒麟970处理器,集成AI专用的运算单元NPU,不占用其他硬件资源。在某些AI应用处理中,让更多的CPU、GPU资源腾出来处理其它应用。而骁龙845的AI则是在终端异步运算数据,简单的说就是在现有架构中集成AI算法。

2、摄像头AI

代表:谷歌

谷歌主要是主打AI算法和云计算。在谷歌各种穿戴、家庭以及移动设备上可以得到充分的体现。没有专属的AI芯片,而是利用算法和AI图像处理单元完成了动态模糊摄影等摄影能力的补偿。

3、带AI算法的APP

代表:美颜相机

在APP里加入一些AI算法相对于前两者来说是既省钱又快捷。通过人脸和人体轮廓、场景识别、自动虚化背景,美颜相机、美图相机就是这样来实现拍照的。最近新发的vivo NEX也开始尝试将人工智能覆盖到第三方APP。

㈢ 电脑用语,Al的中文意思是人什么

Al是Artificial Intelligence,中文是人工智能。

人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。

人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。

(3)al人工智能技术是什么扩展阅读:

人工智能主要成果:

人机对弈

1996年2月10~17日, GARRY KASPAROV以4:2战胜“深蓝” (DEEP BLUE)。

1997年5月3~11日, GARRY KASPAROV以2.5:3.5输于改进后的“深蓝”。

2003年2月GARRY KASPAROV 3:3战平 “小深”(DEEP JUNIOR)。

2003年11月GARRY KASPAROV 2:2战平 “X3D德国人” (X3D-FRITZ)。

模式识别

采用 $模式识别引擎,分支有2D识别引擎 ,3D识别引擎,驻波识别引擎以及多维识别引擎

2D识别引擎已推出指纹识别,人像识别 ,文字识别,图像识别 ,车牌识别;驻波识别引擎已推出语音识别;3D识别引擎已推出指纹识别。

参考资料来源:网络-人工智能

㈣ ai人工智能是什么意思

人工智能就是利用机器代替人。

当下已经走进了一个由数据智能驱动产业变革的智能化时代,传统金融、教育、交通等都将发生颠覆性改变。现在中国要实现更高质量的增长,除了互联网产业的发展外,更要通过‘智能+’赋能基数庞大的传统行业。

AI是企业弯道超车的机会,大家都在同一个起跑线上,没有谁比谁强。而AI的核心是为用户提供服务,如果只是一种数学模型或者一个算法数据的比拼,没有意义。

目前玉林的一些行业已开始有人工智能的场景应用。比如,在火车站,旅客可以通过人脸识别认证乘车。此外,还有银行、医院、超市等机构将人工智能应用于相应场景,节省了人力成本,提高了工作效率,给市民带来了极大的便利。

㈤ 什么是Al它的优势和 缺点

铝是一种银白色轻金属。有延展性。商品常制成棒状、片状、箔状、粉状、带状和丝状。
优点:重量轻、易抛光、不易生锈、会导电、可塑性好、熔点低、价格适中、导热性不错、
缺点:密度小、不耐腐、不耐磨、怕受撞击、导电性一般、熔点低、韧性不好、容易变形、硬度差。

㈥ al技术是什么

AI一般指的是人工智能,英文的全拼是Artificial Intelligence。 它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

㈦ 对于当今最流行的大数据技术AL人工智能技术。物联网技术。你了解多少

带你了解大数据及人工智能时代的3项关键技术

01 云计算根据美国国家标准与技术研究院(National Instituteof Standards and Technology,NIST)的定义,云计算是指能够针对共享的可配置计算资源,按需提供方便的、泛在的网络接入的模型。上述计算资源包括网络、服务器、存储、应用和服务等,这些资源能够快速地提供和回收,而所涉及的管理开销要尽可能小。具体来说,云模型包含五个基本特征、三个服务模型和四个部署模型。五个基本特征:

按需自助服务(on-demand self-service)

广阔的互联网访问(broad network access)

资源池(resource pooling)

快速伸缩(rapid elasticity)

可度量的服务(measured service)

三个服务模型:

软件即服务(Software as a Service,SaaS)

平台即服务(Platform as a Service,PaaS)

基础设施即服务(Infrastructure as a Service,IaaS)

四个部署模型:

私有云(private cloud)

社区云(community cloud)

公有云(public cloud)

混合云(hybrid cloud)

一般来说,云计算可以被看作通过计算机通信网络(例如互联网)来提供计算服务的分布式系统,其主要目标是利用分布式资源来解决大规模的计算问题。云中的资源对用户是透明的,用户无须知晓资源所在的具体位置。这些资源能够同时被大量用户共享,用户能够在任何时间、任何地点访问应用程序和相关的数据。云计算的体系结构如图1-3所示,还对三个服务模型进行了阐述。

一般来说,物联网能够在云计算的虚拟形式的无限计算能力和资源上补偿自身的技术性限制(例如存储、计算能力和通信能力)。云计算能够为物联网中服务的管理和组合提供高效的解决方案,同时能够实现利用物联网中产生的数据的应用程序和服务。对于物联网来说,云计算能够以更加分布式的、动态的方式来扩展其能处理的真实世界中物/设备的范围,进而交付大量实际生活中的场景所需要的服务。


在多数情况下,云计算能够提供物与应用程序之间的中间层,同时将实现应用程序所必需的复杂性和功能都隐藏起来,这将影响未来的应用程序开发。在未来的多云环境下,应用程序的开发面临着来自信息的收集、处理和传输等方面的新挑战。物联网在工业领域的应用涵盖了众多方面,例如自动化、优化、可预测制造、运输等。制造(manufacturing)是物联网在工业领域最大的市场,涉及软件、硬件、连通性和服务等。


随着物联网的引入,由原料、工件、机器、工具、库存和物流等组成的工业系统构成了实施制造过程的生产单元,上述这些构件之间可以互相通信。物联网提供的连通性驱动了各项操作技术(Operational Technology,OT)的实际性能的收敛性,这里的操作技术包括机械手、传送带、仪表、发电机等。在整个制造过程中,传感器、分布式控制以及安全软件发挥着“胶水”的作用。


当前,工业领域有远见的企业都将生产线和生产过程构建在了物联网之上。运输(transportation)是物联网在工业领域的第二大市场。当前,在众多城市中涌现的智能运输网络能够优化传统运输网络中的路径,生成高效、安全的路线,降低基础设施的开销并缓解交通拥塞。航空、铁路、城际等货运公司能够集成海量的数据来对需求进行实时分析,实现统筹规划和优化操作。


03 大数据随着物联网和云计算技术的发展,海量的数据以前所未有的速度从异构数据源产生,这些数据源所在的领域有医疗健康、政府机构、社交网络、环境监测和金融市场等。在这些景象的背后,存在大量强大的系统和分布式应用程序来支持与数据相关的操作,例如智能电网(smart grid)系统、医疗健康(healthcare)系统、零售业(retailing)系统、政府(government)系统等。


在大数据的变革发生之前,绝大多数机构和公司都没有能力长期保存归档数据,也无法高效地管理和利用大规模的数据集。实际上,现有的传统技术能够应对的存储和管理规模都是有限的。在大数据环境下,传统技术缺乏可扩展性和灵活性,其性能也无法令人满意。当前,针对海量的数据集,需要设计涵盖清洗、处理、分析、加载等操作的可行性方案。业界的公司越来越意识到针对大数据的处理与分析是使企业具有竞争力的重要因素。

1. 三类定义当前大数据在各个领域的广泛普及使得学界与业界对大数据的定义很难达成一致。不过有一点共识是,大数据不仅是指大量的数据。通过对现有大数据的定义进行梳理,我们总结出三种对大数据进行描述和理解的定义。1)属性型定义(attributive definition)作为大数据研究与应用的先驱,国际数据公司(International Data Corporation,IDC)在戴尔易安信(DELLEMC)公司的资助下于2011年提出了如下大数据的定义:

大数据技术描述了技术与体系结构,其设计初衷是通过实施高速的捕获、发现以及分析,来经济性地提取大量具有广泛类型的数据的价值。

该定义侧面描述了大数据的四个显着特征:数量、速度、多样化和价值。由Gartner公司分析师Doug Laney总结的研究报告中给出了与上述定义类似的描述,该研究指出数据的增长所带来的挑战与机遇是三个维度的,即显着增长的数量(Volume)、速度(Velocity)和多样化(Variety)。尽管Doug Laney关于数据在三个维度的描述最初并不是要给大数据下定义,但包括IBM、微软在内的业界在其后的十年间都沿用上述“3V”模型来对大数据进行描述。2)比较型定义(comparative definition)Mckinsey公司2011年给出的研究报告将大数据定义为:

规模超出了典型数据库软件工具的捕获、存储、管理和分析能力的数据集。

尽管该报告没有在具体的度量标准方面对大数据给出定义,但其引入了一个革命性的方面,即怎样的数据集才能够被称为大数据。3)架构型定义(architectural definition)美国国家标准与技术研究院(NIST)对大数据的描述为:

大数据是指数据的数量、获取的速度以及数据的表示限制了使用传统关系数据库方法进行有效分析的能力,需要使用具有良好可扩展性的新型方法来对数据进行高效的处理。

2. 5V以下是一些文献中关于大数据特征的描述:

数据的规模成为问题的一部分,并且传统的技术已经没有能力处理这样的数据。

数据的规模迫使学界和业界不得不抛弃曾经流行的方法而去寻找新的方法。

大数据是一个囊括了在合理时间内对潜在的超大数据集实现捕获、处理、分析和可视化的范畴,并且传统的信息技术无法胜任上述要求。

大数据的核心必须包含三个关键的方面:数量多、速度快和多样化,即着名的“3V”。

1)数量数据的数量又称为数据的规模,在大数据中,其是指在进行数据处理时所面对的超大规模的数据量。目前,海量的数据持续不断地从千百万设备和应用中产生(例如信息通信技术、智能手机、软件代码、社交网络、传感器以及各类日志)。

McAfee公司在2012年估算:在2012年的每一天中,全球都产生着2.5EB的数据,并且该数值约每40个月实现翻倍。

2013年,国际数据公司(IDC)估算全球所产生、复制和消费的数据已经达到4.4ZB,并且该数值约每两年实现翻倍。

到2015年,全球产生的数据将达到8ZB。根据IDC的研究报告,全球产生的数据将在2020年达到40ZB。

2)速度在大数据中,数据的速度是指在进行数据处理时所面对的具有高频率和高实时性的数据流。高速生成的数据应当及时进行处理,以便提取有用的信息和洞察潜在的价值。全球知名的折扣连锁店沃尔玛基于消费者的交易每小时产生2.5PB的数据。视频分享类网站(例如优酷、爱奇艺等)则是大数据高频率和高实时性特征的另一个例证。


3)多样化在大数据中,数据的多样化是指在进行数据处理时所面对的具有不同语法格式的数据类型。随着物联网技术与云计算技术的普及,海量的多源异构数据从不同的数据源以不同的数据格式持续地产生,典型的数据源有传感器、音频、视频、文档等。海量的异构数据形成各种各样的数据集,这些数据集可能包含结构化数据、半结构化数据、非结构化数据,数据集的属性可能是公开或隐私的、共享或机密的、完整或不完整的,等等。随着大数据理论的发展,更多的特征逐步被纳入考虑的范围,以便对大数据做出更好的定义,例如:

想象(vision),这里的想象是指一种目的;

验证(verification),这里的验证是指经过处理后的数据符合特定的要求;

证实(validation),这里的证实是指前述的想象成为现实;

复杂性(complexity),这里的复杂性是指由于数据之间关系的进化,海量数据的组织和分析均很困难;

不变性(immutability),这里的不变性是指如果进行妥善管理,那么经过存储的海量数据可以永久保留。

描述大数据的五个关键特征(即“5V”):

数量(Volume)

速度(Velocity)

多样化(Variety)

准确性(Veracity)

价值(Value)

4)准确性在商界,决策者通常不会完全信任从大数据中提取出的信息,而会进一步对信息进行加工和处理,然后做出更好的决策。如果决策者不信任输入数据,那么输出数据也不会获得信任,这样的数据不会参与决策过程。随着大数据中数据规模的日新月异和数据种类的多样化,如何更好地度量和提升数据可信度成为一个研究热点。


5)价值一般来说,海量的数据具有价值密度低的缺点。如果无法从数据中有效地提取出潜在的价值,那么这些数据在某种程度上就是没用的。数据的价值是决策者最关注的方面,其需要仔细且认真的研究。目前,已经有大量的人力、物力和财力投入到大数据的研究和应用中,这些投资行为都期望从海量数据中获得有价值的内容。但是,对于不同的机构和不同的价值提取方法,同样的数据集所产生的价值差异可能很大,即投入与产出并不一定成正比。


因此,对大数据价值的研究需要建立更加完善的体系。

阅读全文

与al人工智能技术是什么相关的资料

热点内容
交易猫怎么设置不能还价 浏览:440
大笔交易卖方为机构是什么意思 浏览:722
程序员最低多少岁 浏览:493
没办安心保怎么会收到安心保信息 浏览:900
交易猫商品详情页在哪里 浏览:40
恒指期货交易员怎么样 浏览:561
挖斗技术含量多少 浏览:448
如何将一组数据前三位变红色字体 浏览:597
如何提升信息技术的运用 浏览:868
跑腿代理一般多少钱 浏览:697
网吧怎么推销产品 浏览:122
市场经济怎么规范 浏览:465
代理不好如何高效采集 浏览:838
葫芦岛连山市场门市多少钱一平 浏览:678
宝马n20爆震传感器数据流在多少 浏览:650
乡镇加盟代理费多少 浏览:171
图像信息用多少比特 浏览:405
程序保护是什么 浏览:349
技术是用什么练成的 浏览:396
哪里能看免费的数据 浏览:356