㈠ 量化投资,如何量化呢
量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
1·量化选股
量化选股就是采用数量的方法判断某个公司是否值得买入的行为。根据某个方法,如果该公司满足了该方法的条件,则放入股票池,如果不满足,则从股票池中剔除。量化选股的方法有很多种,总的来说,可以分为公司估值法、趋势法和资金法三大类
2·量化择时
股市的可预测性问题与有效市场假说密切相关。如果有效市场理论或有效市场假说成立,股票价格充分反映了所有相关的信息,价格变化服从随机游走,股票价格的预测则毫无意义。众多的研究发现我国股市的指数收益中,存在经典线性相关之外的非线性相关,从而拒绝了随机游走的假设,指出股价的波动不是完全随机的,它貌似随机、杂乱,但在其复杂表面的背后,却隐藏着确定性的机制,因此存在可预测成分。
3·股指期货
股指期货套利是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限,不同(但相近)类别股票指数合约交易,以赚取差价的行为,股指期货套利主要分为期现套利和跨期套利两种。股指期货套利的研究主要包括现货构建、套利定价、保证金管理、冲击成本、成分股调整等内容。
4·商品期货
商品期货套利盈利的逻辑原理是基于以下几个方面 :
(1)相关商品在不同地点、不同时间对应都有一个合理的价格差价。
(2)由于价格的波动性,价格差价经常出现不合理。
(3)不合理必然要回到合理。
(4)不合理回到合理的这部分价格区间就是盈利区间。
5·统计套利
有别于无风险套利,统计套利是利用证券价格的历史统计规律进行套利,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。统计套利在方法上可以分为两类,一类是利用股票的收益率序列建模,目标是在组合的β值等于零的前提下实现alpha 收益,我们称之为β中性策略;另一类是利用股票的价格序列的协整关系建模,我们称之为协整策略。
6·期权套利
期权套利交易是指同时买进卖出同一相关期货但不同敲定价格或不同到期月份的看涨或看跌期权合约,希望在日后对冲交易部位或履约时获利的交易。期权套利的交易策略和方式多种多样,是多种相关期权交易的组合,具体包括:水平套利、垂直套利、转换套利、反向转换套利、跨式套利、蝶式套利、飞鹰式套利等。
7·算法交易
算法交易又被称为自动交易、黑盒交易或者机器交易,它指的是通过使用计算机程序来发出交易指令。在交易中,程序可以决定的范围包括交易时间的选择、交易的价格、甚至可以包括最后需要成交的证券数量。根据各个算法交易中算法的主动程度不同,可以把不同算法交易分为被动型算法交易、主动型算法交易、综合型算法交易三大类。
8·资产配置
资产配置是指资产类别选择,投资组合中各类资产的适当配置以及对这些混合资产进行实时管理。量化投资管理将传统投资组合理论与量化分析技术的结合,极大地丰富了资产配置的内涵,形成了现代资产配置理论的基本框架。
它突破了传统积极型投资和指数型投资的局限,将投资方法建立在对各种资产类股票公开数据的统计分析上,通过比较不同资产类的统计特征,建立数学模型,进而确定组合资产的配置目标和分配比例。
㈡ 技术分析和量化分析,具体的区别有什么
近些日子,一则“技术分析和量化分析,具体的区别有什么? ”的问题,成为了一个热门的话题,我来说下我的看法。首先,我们先来看看技术分析。技术分析呢,就是人们对于K线,指标之类的这样图形上面的分析,称之为技术分析。而量化分析是什么意思呢?量化分析一般是指通过电脑去进行判断某种形态的成功率,用电脑进行数据回测,数据分析,一般就叫做量化分析。那么这两者的区别是什么呢?其实都是对技术形态进行分析,不过一般讲技术分析是人在分析,而量化分析一般是指电脑在进行数据上的分析。那么具体的情况是什么呢?我来给大家分享一下我的看法。
一.技术分析我们先来看看技术分析。技术分析呢,就是人们对于K线,指标之类的这样图形上面的分析,称之为技术分析。对于图形这方面的分析呢,我认为还是用电脑进行量化分析会更好一些,效率快,统计数量大。投资的大佬们呢,基本上是不用什么技术分析的。如果是做价值投资的,他们就分析公司的基本面。如果是做投机的,例如游资,他们主要就是分析题材对于公司的短期影响,然后从中牟利,技术面的分析占比是很小,且较为基础的东西。
大家看完,记得点赞+加关注+收藏哦。
㈢ 如何入门量化投资
首先,你对一个金融衍生品,非常的熟悉,有你的交易计划,包括,进场逻辑、出场逻辑、风险规则、在相对时间里可以赚钱。相对稳定的收益。把你的模式,逻辑让写程序的,开发出来。当然你要自己写程序也行。
几个月前刚刚做量化交易的尝试,运用了10多年自认为有效的技术指标来做统计分析,得出的结论就是完全靠技术指标来指导交易就是扯蛋,在大量样本面前,一切都是假象。由此也彻底放弃了技术指标的研究,真的没有太大用处。
所以我个人认为学习量化交易,应当从基础理论的学习,仓位管理,止盈止损的控制,策略的周期,校验策略,小额实盘交易,小中额度实盘交易,最后大额实盘交易。最最重要的是,要有很好的情绪管理,超强抗压能力,敏锐的洞察力是交易成功并盈利的重要法则!
㈣ 量化分析方法有几种
量化分析法是对通过定性风险分析排出优先顺序的风险进行量化分析。尽管有经验的风险经理有时在风险识别之后直接进行定量分析,但定量风险分析一般在定性风险分析之后进行。定量风险分析一般应当在确定风险应对计划时再次进行,以确定项目总风险是否已经减少到满意。重复进行定量风险分析反映出来的趋势可以指出需要增加还是减少风险管理措施,它是风险应对计划的一项依据,并作为风险监测和控制的组成部分。
(一)技术分析法
技术分析法的主要目标是通过对市场的历史数据的研究,特别是对价格和交易量的研究,来预测价格的变动方向。技术分析法通常分析市场价格图标,因此技术分析师被称为“图表分析专家”。目的在于识别价格模式和市场趋势,从而试图预测未来的变化趋势。技术分析法的原理包括市场行为包容一切信息(技术分析法旨在弄明白投资者对于此类信息的反应),价格以趋势方式演变,历史价格趋于重演,并且投资者具有重蹈先前投资者覆辙的特征。
(二)基本面分析法
基本面分析法重点分析经济状态、利率、通货膨胀、公司收益、公司资产负债表、以及中央银行和政府的相关政策。
当基本面分析法应用于选股时,通常会结合对经济整体方向自上而下的分析(宏观),从而形成对于市场、行业、利率水平以及汇率水平的观点,并加之运用自下而上的方法对于某只股票进行分析(微观)。自下而上的分析往往会忽略在国别以及产业方面的整体配置而关注于单只股票的选择。根据投资理念和投资过程,自上而下的分析决定了国别和行业的配置;同时,自下而上的分析则决定了某一国家和行业内部的投资配置。
(三)量化分析法
量化(定量)分析法,正如其名,包括运用量化方法、统计模型、数学公式以及算法来预测市场走向。在战术型资产配置中一个常见的方法便是使用多因子模型,通过分析估值、动量指标、风险水平、市场情绪、利率、收益率曲线等因素,从而推导出涵盖股票、债券和外汇市场等不同市场的买入和卖出信号。虽然有一部分战术型资产配置策略完全是量化模型驱动的,但将量化分析和基本面分析相结合将更具活力,因为这种结合可以将量化信号融合入基本面分析的过程中。
量化分析的不足在于该分析很大程度上是以观测到的市场价格的历史关联性和走势为基础。如果上述关联性和走势由于市场反转或市场承压而引起历史关联性发生变化而失效,那么量化模型可能会在预测拐点过程中失效。量化模型往往也会在出现政权更替或市场结构化改变时失效。
㈤ 如何使用 数据挖掘 技术 量化
个人建议如下:
第一阶段:掌握数据挖掘的基本概念和方法。先对数据挖掘有一个概念的认识,并掌握基本的算法,如分类算法、聚类算法、协同过滤算法等。
参考书:《数据挖掘概念和技术》(第三版)范明,孟小峰 译着。
第二阶段:掌握大数据时代下的数据挖掘和分布式处理算法。现在已经进入大数据时代,传统的数据挖掘算法已经不适用于
参考书:《大数据:互联网大规模数据挖掘和分布式处理》 王斌 译着。
第三阶段:使用Hadoop进行大数据挖掘。Hadoop里面有一个Mahout组件,几乎包括了所有的数据挖掘算法,包括分类、聚类、关联规则等。
参考书:Hadoop实战(第二版).陆嘉恒 着。
另外,数据挖掘是数据库技术、人工智能技术、机器学习技术、统计学习理论、数据可视化等一系列技术的综合,所以,要想学好数据挖掘,这些技术也得懂的呀。
推荐入门时先看浙江大学王灿老师的数据挖掘课程,网上搜下。
期待与你一起学习数据挖掘,共同揭开数据之美。望采纳。
㈥ 量化是什么
量化分析就是将一些不具体,模糊的因素用具体的数据来表示,从而达到分析比较的目的。
量化分析可以帮助我们更加方便和直观地衡量风险和收益,但需要强调指出的是,美国华尔街顶级量化金融大师、哥伦比亚大学着名教授伊曼纽尔·德曼,在《数学建模如何诱骗了华尔街》一文中,毫无忌讳地承认:我们根本不可能(通过数理分析方法)发明出一个能够预测股票价格将会如何变化的模型;如果我们相信人类行为可完全遵守数学法则,从而把有着诸多限制的模型与理论相混淆的话,其结果肯定会是一场灾难。
(6)技术怎么量化扩展阅读:
量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
量化分析法将对通过定性风险分析排出优先顺序的风险进行量化分析。尽管有经验的风险经理有时在风险识别之后直接进行定量分析,但定量风险分析一般在定性风险分析之后进行。定量风险分析一般应当在确定风险应对计划时再次进行,以确定项目总风险是否已经减少到满意。
㈦ 量化的形式
在数字信号处理领域,量化指将信号的连续取值(或者大量可能的离散取值)近似为有限多个(或较少的)离散值的过程。量化主要应用于从连续信号到数字信号的转换中。连续信号经过采样成为离散信号,离散信号经过量化即成为数字信号。注意离散信号并不需要经过量化的过程。信号的采样和量化通常都是由ADC实现的。 例如CD音频信号就是按照44100Hz的频率采样,按16比特量化为有着65536(=)个可能取值的数字信号。 量化就是将模拟声音的波形转换为数字,表示采样值的二进制位数决定了量化的精度。量化的过程是先将整个幅度划分成有限个小幅度(量化阶距)的集合,把落入某个阶距内的样值归为一类,并赋予相同的量化值。
在上面的陈述中,若令等于 0,从而忽略掉比特率约束,或等价地假设要用定长码(FLC)而非用变长码(或其他熵编码法,如算术编码在率失真上就比定长码好)来表示量化数据,这个最优化问题就简化为了只需最小化失真的问题了。
级量化器产生的索引可以用比特/符号的定长码。例如当256 阶时,定长码的比特率为 8 比特/符号。由于这个原因,这样的量化器有时称作8比特量化器。不过使用定长码消除了压缩改进,但可以通过更好的熵编码来改善。
假设阶定长码,率失真最小化问题可以简化为失真最小化问题。简化的问题可以陈述为:给定一个概率密度函数为的信源,并约束量化器必须仅使用个分类区域,求得决策边界与重建层级来最小化得到的失真
.
对上述问题求最优解得到的量化器有时叫做MMSQE(最小均方量化误差)解,而得到的概率密度函数最优化的(非均匀)量化器叫做Lloyd–Max量化器,是用独立发现迭代方法从和求解两组联立方程的两个人来命名的,如下:
,
会将阈值置于每对重建值的中点,而
会让重建值位于其相关分类区间的质心(条件期望值)。
Lloyd方法I算法,最初于1957提出,并可以直接推广到用于向量数据。这个推广会得到Linde–Buzo–Gray(LBG)或K-平均分类器最优化方法。此外,此方法还可以进一步推广到对向量数据包含一个熵约束。
量化与数据压缩
量化在有损数据压缩中起着相当重要的作用。很多情况下,量化可以被当作将有损数据压缩同无损数据压缩相区别的标志之一。量化的目的通常是为了减少数据量。一些压缩算法,例如MP3和Vorbis,以有选择地丢弃部分数据作为压缩的一种方法,这种手段可以被认为是量化的过程也可以被看作是一种有损压缩的形式。
JPEG是一种利用了量化的图像有损压缩。JPEG的编码过程对原始的图像数据作离散余弦变换,然后对变换结果进行量化并作熵编码。通过量化可以降低变换值的精度,从而减少图像的数据量。当然,精度的损失意味着图像质量的下降。然而图像的质量可以通过量化位数的选择加以控制。例如,JPEG在每像素3比特的精度下得到的图像质量还让人可以接受的,相对于PCM抽样得到的每个像素24比特的原始图像来说,数据量大大下降了。
现代压缩技术通常以量化输出的信息熵,而不是输出值集合的大小度量信息量的多少。
㈧ 想问一下绩效管理的技术中绩效指标如何量化
量化管理的出发点是企业战略目标,利用科学的分解方法推导出确保目标实施的主要工作内容,进而通过对这些主要工作进行分类,直接解决企业组织架构及部门主要职责与目标的直接关联问题。量化的方法主要包括时间量化、质量量化、成本量化、结果量化、数字量化及行动量化。
1、时间量化,对于研发型、知识型、统筹型的工作,有以部门工作内容是可以通过时间进行量化的,如型产品研发周期、完成期限、生产周期、订单交期等。用时间作为衡量尺度来量化考核员工的绩效,有助于企业对其阶段性的工作进行有效的控制、提高企业自身竞争优势。
2、质量量化,质量量化是只除了完成企业所规定的目标量化,还须要对工作的质量进行指标量化。反映工作的指标指标一般有:准确性、合格率、通过率、满意率等。
3、成本量化,成本量化是只从成本的角度细化工作的考核量化,落实成本管理责任。这不仅有助于加强组织的成本管理,而且能增强全员的成本管理意识。这类的指标有成本节约率(采购成本)、生产成本(单位生产成本、生产成本下降率等)、质量成本(预防成本、鉴定成本、内外部损失成本等)、物流成本(配送成本、运输成本、仓储成本等)、投资回报率及折旧率等。
4、结果量化、结果量化考核指标是指通过一些关键性数据指标对员工工作的“质量”进行全面的、客观的、公正的综合评价,从而得出考核结果,以此来衡量员工的工作绩效,并作为确定薪资奖金等收入、评优选先以及职位升降等的直接依据。用结果量化这一考核方式有助于激励员工,这个类别的量化指标有销售额、利润总额等。
5、数字量化、是指通过用数据或百分比来量化员工的业绩和技能。
一、
1)、工作量:销售额、产量、计划完成率;
2)、工作质量:合格率、优良率、完好率、通过率;
3)、工作效率:劳动生产率、及时率;
4)、业务管理:达成率、完成率;
5)、员工管理:投诉率、出勤率、持证上岗率。
二、
1)、数量或者数额:销售额、利润额、产量、产值;
2)、百分比:计划完成率、达成率、差错率;
3)、频率:次数及周转速度。
6、行动量化、对于像人力资源、行政以及后勤等这类职能部门来说、除了一部分可以量化的指标如计划完成率、招聘合格率、培训考核达标率、后勤支持满意率之外,还有一些如基础管理和业务支持等事务性工作很难具体化以及量化,对于这些不能量化的考核项目,可以将其流程化或行为化。
㈨ 如何对数据进行量化分析
对事物进行量化处理,最主要是建立一个合理的维度,达到这个度就怎样,没到这个度又怎样。每个公司的情况不一样,有些大公司的员工只做一件事情也有的制作半件的都有,而在一些刚创业起步,50人以内的公司,很多都是一人兼多职的。
因此如果没有一个好的合理的维度去定这个事物的数据,做的事情多的员工就会慢慢的没有积极性,对公司是不利的。比如说100万以下是正常要求,100-500万是一个一级维度,在这个维度里继续拿出多出的部分进行大比例分配给业务员,如100万的是2%提成,多出的按3%提成。
还有就是产品的单价是50元低价给到业务员,如果业务员卖出的产品比50高,就将高出的部分再进行50%或者更多的奖励,相信业务员都会尽最大努力去销售。再对每个单和每个月每个季度对每个业务员进行一次考核,符合管理规定的积一个维度,后面的都按维度来进行资金待遇分配。
相关信息
量化分析就是将一些不具体,模糊的因素用具体的数据来表示,从而达到分析比较的目的。人类对于股市波动规律的认知,是一个极具挑战性的世界级难题。量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
虽然量化分析可以帮助我们更加方便和直观地衡量风险和收益,但需要强调指出的是,美国华尔街顶级量化金融大师、哥伦比亚大学着名教授伊曼纽尔·德曼,在《数学建模如何诱骗了华尔街》一文中,毫无忌讳地承认根本不可能(通过数理分析方法)发明出一个能够预测股票价格将会如何变化的模型。