导航:首页 > 信息技术 > 如何学好光学技术

如何学好光学技术

发布时间:2022-05-12 06:30:32

㈠ 光学技术,什么是光学技术

指与光学有关的技术。如光学仪器、光学设计、光学测量、光学材料、薄膜光学、非线性光学、激光技术与激光器、导波光学、光纤与集成光学等。

㈡ 如果我是光学行业的技师我该怎么做

不断学习,提升能力。
光学方面的技术人才的门槛相对较高,学好了肯定还是吃香的,尤其是几个传统的光学强校。这个行业的小公司一般不会找这种人才,学好了出来基本都是去大公司和研究所工作。
光学的涵盖面太广,不太好作具体建议。大多数行业都是二八分化,尽量靠着前20%的话很有优势,读个研排名就提高不少。很多大公司招人都是研究生起。

㈢ 哪里可以学习视光技术

眼视光学(Optometry 又称为验光置镜业,是现代光学技术和现代眼科学想结合.运用现代光学的原理和技术解决视觉障碍的新兴交叉学科.它是一门既具有经典传统色彩、又具有现代高科技特征的医学专业,也是一类饶有趣味、充满挑战、富有回报的医疗职业,该专业以光学、药物、手术和心理等手段,以改善和促进清晰舒适视觉为目标,以保护眼睛健康为己任,这是一项给人类带来光明的崇高事业。但是最主要的是以光学技术解决视觉障碍.眼视光学的学科特征是进行与人眼视觉有关的生理、病理和光学方面的临床、科研和教学等。科研重点主要针对视觉方面的研究,有近视、远视、散光、弱视、低视力、光学眼镜、角膜接触镜、屈光手术及其他视觉方面矫正的基础、临床研究等。终归一点是解决双眼共同视觉问题. 视光学是眼科学的起点,也是眼科学的终点.他们之间的关系一直是眼科医学研究的主要对象.因为眼睛要比一部高档的照相机精密得多.因此这就需要对眼睛的解剖结构和眼睛的屈光系统作一个专业的学习后才能胜任的专业.之后才能在这个的基础上了解眼睛的医用物理原理.之后才能去学习眼睛为什么能看清楚东西及如何更舒适的看清楚东西.后者比前者重要. 眼睛的解剖学很是重要,特别是对于角膜接触镜的验配及之后的复查,其中重要的是角膜.原因是角膜的生理性决定了其光学的重要性.要保证角膜的透明和角膜的本身的屈光度,那么角膜的组织学结构就要保证其符合生理要求. 在我们的生活中,经常性的能见到很多的人戴着眼镜.这个眼镜学问是很大的. 涉及到的问题是: 1;验光之前的检查.这是学问+经验+理论+技术的综合体现.主要是在四个方面的病史采集.屈光的病史采集,针对之前的屈光要进行了解.感觉的病史采集,主要是视力和初级双眼视觉功能询问.眼球运动检查的病史采集,主要是双眼视觉功能的详细了解.第四是要了解双眼的眼睛健康,主要是双眼的眼压,裂隙灯显微镜检查双眼健康,眼底镜判断眼睛内部情况是否正常. 2:验光:这是一个程序.初步的主要检查的方法是四个.角膜曲率计检查和眼科A超检查,视网膜检影镜检查,自动验光仪检查,主觉检查.高级的检查还应该包括双眼的视觉功能的整体检查.这不仅仅是视力的检查,还有眼睛的调节和辐辏检查,双眼眼球追踪扫射试验,隐斜视和融合功能检查及在这个基础上进行的双眼立体视觉检查. 3:下处方.原则是根据不同的年龄不同的需要进行,但是现在很多的地方的验光都是以国家标准1.0为标准,这个是要根据需要来决定的,最好的方法是要根据检查工具判断外界物体经过眼睛的屈光系统后是否在视网膜上成像. 4:戴镜建议.我们现在很多的人都会说眼睛的度数又增加了,其实这应该是验光之后验光师的工作.怎么样来防止度数的增加是一个视光学专业人士所必须尽到的责任

㈣ 光学问题

增透膜对不同波长光线的增透效果不同,例如对绿光增透效果好,相对来说对红光和蓝光增透效果就较差,即被反射出来的红光和蓝光相对就多,这样,透镜反射出来的光就呈现紧色。如果增透膜对蓝光和绿光增透效果好,对红光光和蓝光增透效果就较差,即被反射出来的红光和蓝光相对就多,这样,透镜反射出来的光不呈现紫色。如果增透膜对蓝光和绿光增透效果好,对红光和黄光增透效果差,透镜就反射橙光。在拍摄彩色照片时,因镜片材料不同,增透膜的增透光色光不同,会使照片产生不同的增透性能,只要在各透镜上镀上不同特性的增透膜并互相搭起来,就可以消除或减弱由于镜片材料及增透膜所造成的偏色。因此,各种不同的镜片会反射出王颜色。镜头反射 的光线越强,说明光线透过镜头的量就越少,镀膜质量就越差。把镜头对着自己,如果在镜头里看到自己的影像越淡,说明镜头镀膜的增透效果越好,如果镜头能映了较明亮的影像,说明镜头的反光率大,透光率就小,镀膜的增透效果就差。所以“黑洞洞 ”的的镜头,从镀膜角度来评价,应该是好的镜头。
镜片上的增透膜一般采用电子束真空镀膜工艺,即在直空条件下,用强力电子束射在镀膜材料上使其汽化蒸发,粘附在在镜片上成为增透膜。电子束多层镀膜用EBC表示,多层镀膜用MC表示,而SMC则表示超级多层镀膜。
增透膜容易受潮发霉,因此,镀膜镜头要特别注意防潮。平时应把镜头放在防潮箱内,箱内放叭潮剂。礁潮剂可用变色硅胶,它使用方便、吸潮效果好。干燥的变色硅胶呈蓝色,潮湿时呈粉红色,经曝晒或烘烤把水份蒸了后又变回蓝色,可反复使用多年。镜头脏了不要轻易用镜头纸试擦,更不能用普通的纸和布来试擦,更不能用普通的纸和布来试擦,以免擦伤镜片的增透膜及划伤镜片。清洁镜头的正确方法应该是一吹二扫三洗。一吹:当镜头有灰尘等脏物时,用清洁镜头的专用吹气球 或医疗用的洗耳球向镜头吹气,把灰尘等脏物吹掉。二扫:由于灰尘等脏物粘附在镜片上吹不掉,可用清洁镜头的专用镜头毛刷把脏物扫掉,吹和扫可结合使用。三洗:如镜头上有手指印、油污等脏物,经吹、扫仍不奏效时,可用镜头清洁剂(俗称镜头水)洗镜头。洗镜头的方法是用干净优质的医用脱脂棉签或用镜头纸卷成棒状,滴不二、三滴镜头水,从镜头中央往边缘螺旋形地试擦镜头,有明显污垢的地方多擦一、二下,然后用干棉签从镜头中央往外螺旋形地把镜头擦干,使可使镜片光洁如新,镜头刚刚发霉时,也可以用镜头水拭擦除去。洗镜头时不要滴太多的镜头水,以免镜头水渗入镜头内部,在镜片之间形成露状水滴,并且很难挥发出来,如果用带水珠的镜头拍摄,影像是模糊的。清洁镜头,一般只能清洁镜头外边的两个镜片表面,如果镜头中间的镜片有脏物或发霉,最好交由专业人士处理,因为各镜片的安装位置十分精密,没有丰富的拆装经验及仪器,很难按照原尺寸安装好。
明白了增膜的作用,我就将我不成熟的几点意见
科学射电望远镜利用反射电磁波的原理来发现天体,但增膜只对有色光起减少反射的作用.当然类似于真透膜的物质也有可能反射电磁波,但他只是起到减少的作用,并不是消灭.人类的机器也许还是能接受的.
在来,增膜的作用也只是有选择性的较低某些光的反射并不是全部,类似于真透膜的物质也应该是如此,那情况就很复杂了.
以上就是本人的意见,不知道你还满意否,有意见的欢迎一起讨论
光在进入镜片的时候会同时发生折射和反射,而入射光的总量等于折射光加反射光。利用光波在反射时的半波损失,在镜片前镀上一层膜减少反射光的量,这样折射出去的光就多了。这样更便于观察。这层膜就是增透膜;
2、因为可见光的波长两端是红色和紫色,所以选择增透膜一般都采用更便于波长居中的光折射。因此反射出来的光就是红色或紫色。所以光学仪器上的镜片一般都呈现红色或紫色。
回答者:冯昊楠 - 助理 二级 5-22 20:24
好好学习~天天向上~
等你长大就明白了~
光学
光学(optics)是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。
光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。
光学的起源在西方很早就有光学知识的记载,欧几里得(Euclid,公元前约330~260)的<反射光学>(Catoptrica)研究了光的反射;阿拉伯学者阿勒·哈增(AI-Hazen,965~1038)写过一部<光学全书>,讨论了许多光学的现象。
光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。17世纪,望远镜和显微镜的应用大大促进了几何光学的发展。
光的本性也是光学研究的重要课题。微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。19世纪以前,微粒说比较盛行。但是,随着光学研究的深入,人们发现了许多不能用直进性解释的现象,例如乾涉、绕射等,用光的波动性就很容易解释。于是光学的波动说又占了上风。两种学说的争论构成了光学发展史上的一根红线。
狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到 X射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。
光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。
人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。
自《墨经)开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。
1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。
牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。
牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。
惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。
19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝乾涉现象。菲涅耳于1818年以杨氏乾涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的乾涉和衍射现象,也能解释光的直线传播。
在进一步的研究中,观察到了光的偏振和偏振光的乾涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。
1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。
1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。
对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用乾涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。
1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。
量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。
1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。
1905年9月,德国《物理学年鉴》发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。
这样,在20世纪初,一方面从光的乾涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。
1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。光学的发展历史表明,现代物理学中的两个最重要的基础理论——量子力学和狭义相对论都是在关于光的研究中诞生和发展的。
此后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。
爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自1958年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。
光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。
自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“博里叶光学”。再加上由于激光所提供的相乾光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。
在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。
光学的研究内容
我们通常把光学分成几何光学、物理光学和量子光学。
几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。
物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。
波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。
量子光学 1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。
1905年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的吸力即作逸出功,余下的就变成电子离开金属表面后的动能。
这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。它的基础主要是量子力学和量子电动力学。
光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。
应用光学 光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。例如,有关电磁辐射的物理量的测量的光度学、辐射度学;以正常平均人眼为接收器,来研究电磁辐射所引起的彩色视觉,及其心理物理量的测量的色度学;以及众多的技术光学:光学系统设计及光学仪器理论,光学制造和光学测试,干涉量度学、薄膜光学、纤维光学和集成光学等;还有与其他学科交叉的分支,如天文光学、海洋光学、遥感光学、大气光学、生理光学及兵器光学等。
哎呀 , 增透膜是波长的1/4,
增透膜 会把干涉的光给滤掉,这样就是淡紫色了 ,

㈤ 光学工程哪个方向有前途

我是学光学的,在哈工大读研,方向为光通信,对你的问题比较了解,可以给你参考下:光学分支很多,你提到的只是光学的几种应用技术而已,而光学的研究和发展方向却很多:信息光学;非线性光学;全息光学;激光技术;全光通信;光纤通信;等是光学技术和发展的方向,就我了解,光通信比较有发展前途:既符合信息社会发展趋势,又具有前瞻性,在未来大容量、高效、远距离、高安全性方面具有巨大的潜在优势。而且光学技术在当今尖端科技领域应用很多且比较看好。如果你想学光学方面的东西,我建议你报考光通信方向,可以学到较多的东西,而且就业前景不错,但要报考较好的学校的相关专业,这样才可以学到东西,这很重要。工大是不错的选择,中国电子科大在无线电领域较强;南京光学技术研究所很强;工大发展的较早,技术较全面,尤其在深空探测强激光发面特别强。而全光通信目前还是研究阶段,离实际实现还有距离,所以发展潜力很大,且学的较少。只要你有毅力很兴趣,这个方向是不错的选择;
、另外因为你是学物理的,要是学光学的话会很占优势,因为光学是类理的工学专业,相对工科学生来说,你学起来会比较轻松。
这是我给你的建议,希望对你有帮助!

㈥ 工程光学的清华大学出版社

书名:普通高等教育十五国家级规划教材--工程光学
出版社:清华大学出版社
定价:48
条形码:9787302127222
ISBN:ISBN 7-302-12722-0
作者:田芊 廖延彪 孙利群
印刷日期:2006-5-1
出版日期:2006-5-1
精装平装_开本_页数:平装16开,537页
中图法:
中图法一级分类:
中图法二级分类:
书号:
简介:本书以工程光学为体系,从光学技术的角度,介绍了光学的一些基本概念、原理、方法及其应用。
本书共分10章,介绍了光波的基本性质和几何光学、物理光学、现代光学的有关内容。其中,几何光学的内容有光的成像技术、光学像的记录和显示技术、光学测量技术;物理光学的内容有光的干涉技术、光的衍射技术、光的偏振技术、光的调制技术;现代光学的内容有激光技术、光波导技术。
本书可作为机械类非光学专业的本科生教材或教学参考书,亦可供有关工程技术人员参考。
前 言
我国的光学专业,有的设置在机械工程院系,有的设置在电子工程院系,有的设置在物理学院系,因此,有关光学的教材版本很多。本《工程光学》主要是为了机械类非光学专业的学生进一步学习光学的有关知识而编写的。
大部分为本科生编写的光学教材,包括了几何光学和物理光学两部分内容。本《工程光学》同样也主要以这两部分内容为主,但考虑到机械类非光学专业学生的课程体制设置中有关光学的课程较少,为了使这些学生对光学有更全面的了解,本教材中也包括了现代光学的许多内容。这本《工程光学》是为了给这部分学生在学习这门课程时提供一本教材或教学参考书,同时也希望能够成为其他有关工程技术人员的学习参考书。
考虑到本教材主要是面向机械类非光学专业的学生,因此除介绍光学的有关最基本的理论之外,更多的是侧重于光学理论的应用,即从光学技术的角度来进行讲述,而这也是本教材之所以称为《工程光学》的原因。这样的考虑,也许会导致对光学理论的介绍较为肤浅,影响学生对光学科学的深入理解,但却能够避免学生在学习物理基础课后再学习光学的重复与枯燥,让学生们能够感到光学的实用性,认识到学习光学大有益处。
对于机械类非光学专业的学生,应该学习和掌握一些光学技术、电子技术,这样可以使这些学生的知识更为全面,以便更好地面对今后实际工作的要求和挑战。我们从20世纪90年代开始,在清华大学精密仪器与机械学系给机械制造专业的学生开设了工程光学课程,基于以上这些考虑,我们对该课程的内容和讲授安排进行了探索。授课10多年以来,从一些学生学习时的反应和毕业生的反馈情况来看,我们的考虑和探索基本是正确的,但还需要完善。
由于本教材的目的是对光学这一学科所包含内容的全貌有一个介绍,因此所选编的内容及篇幅较多一些。在利用本教材讲授工程光学课程时,可以根据教学计划和课时安排选择其中的部分内容,有些内容可以不讲而作为扩大知识面自学。
本教材由清华大学田芊、廖延彪、孙利群共同编写。廖延彪编写第1,5,6章和第7章部分内容以及第10章,孙利群编写第2,3,8章,田芊编写绪论、第4,9章和第7章部分内容以及附录,最后由田芊对本教材的完成进行定稿。在本教材编写时,我们参考了许多同类教材,学习和借鉴了这些教材的内容和方法,获益匪浅,在此深表谢意。在编写过程中,许多人提出了宝贵意见,为本教材的绘图和校对出版工作付出了辛劳,在此一并致谢。本教材一定有不足之处,恳请给予批评指正。
编者
2006年2月
目录:绪论1
0.1光学是一门重要而有用的科学与技术1
0.2光学一直在发展中并会有更大的发展2
0.3工程光学是着重于应用的科学与技术5
0.4工程光学的学习与课程安排6
第1章光波的基本特性8
1.1光的波动理论8
1.1.1光波与电磁波8
1.1.2平面波,球面波,柱面波10
1.1.3谐波12
1.1.4高斯光束15
1.2平面光波在各向同性介质分界面上的反射和折射17
1.2.1反射定律和折射定律17
1.2.2菲涅耳公式19
1.2.3反射率和透射率21
1.2.4反射和折射时的偏振25
1.2.5反射和折射时的相位26
1.2.6全反射27
1.3光波在金属表面上的反射和折射30
习题33
第2章光的成像技术35
2.1几何光学原理35
2.1.1实验三定律35
2.1.2全反射37
2.1.3费马原理38
2.2光学成像41
2.2.1基本概念与符号规则41
2.2.2单一球面成像42
2.2.3薄透镜成像45
2.2.4组合透镜成像51
2.2.5光阑55
2.3光学设计基础59
2.3.1光线的光路计算59
2.3.2像差理论66
2.4光学材料71
2.4.1光学玻璃71
2.4.2光学晶体78
2.4.3光学塑料81
2.5光度学基础84
2.5.1光度学量及其单位84
2.5.2光传播过程中光学量的变化规律88
2.5.3成像系统像面的照度92
习 题96
第3章光学像的记录和显示技术100
3.1眼睛和助视仪器100
3.1.1眼睛及其光学系统100
3.1.2放大镜和显微镜107
3.1.3望远镜的工作原理110
3.2光学成像器件114
3.2.1感光底片114
3.2.2电荷耦合器件116
3.2.3互补金属氧化物半导体123
3.3光学摄像系统127
3.3.1摄影物镜的光学特性128
3.3.2摄影物镜的基本类型131
3.3.3取景系统和调焦系统132
3.3.4电视摄像系统136
3.4光学显示系统139
3.4.1光学投影系统139
3.4.2光电显示系统145
习 题153
第4章光的干涉技术156
4.1产生光波干涉的条件156
4.1.1光波产生干涉现象的分析157
4.1.2产生光波干涉的必要条件158
4.1.3产生光波干涉的补充条件159
4.2分波面双光束干涉160
4.2.1双缝分波面双光束干涉160
4.2.2分波面双光束干涉的其他实验装置163
4.2.3干涉条纹清晰程度的影响因素165
4.3分振幅双光束干涉170
4.3.1平板分振幅干涉170
4.3.2等倾干涉171
4.3.3等厚干涉175
4.4双光束干涉仪181
4.4.1迈克尔逊干涉仪182
4.4.2斐索干涉仪186
4.4.3马赫?曾德尔干涉仪188
4.4.4赛格纳克干涉仪188
4.5多光束干涉192
4.5.1多束光干涉的光强分布192
4.5.2多光束干涉仪198
4.5.3多光束干涉的应用202
4.6薄膜光学简介204
4.6.1单层光学膜205
4.6.2多层光学膜208
4.6.3光学薄膜的制备及其应用213
习 题216
第5章光的衍射技术220
5.1衍射的基本理论220
5.1.1惠更斯?菲涅耳原理220
5.1.2夫琅禾费衍射和菲涅耳衍射224
5.2夫琅禾费单缝衍射226
5.2.1衍射光强的计算226
5.2.2对衍射光强分布公式的分析228
5.3夫琅禾费圆孔衍射229
5.4巴比涅原理233
5.5夫琅禾费多缝衍射234
5.5.1双缝的干涉和衍射234
5.5.2多缝的干涉和衍射237
5.6菲涅耳衍射241
5.6.1圆孔衍射和圆屏衍射241
5.6.2直边衍射244
5.6.3波带片 245
5.7衍射光栅248
5.7.1平面衍射光栅248
5.7.2闪耀光栅252
5.7.3光谱仪255
5.8全息技术257
5.8.1全息原理和全息图种类257
5.8.2全息技术应用举例261
5.9傅里叶光学263
5.9.1概述263
5.9.2薄透镜的傅里叶变换性质264
5.9.3光学傅里叶变换266
5.9.4光信息处理及其应用268
5.10二元光学269
5.10.1概述269
5.10.2二元光学的特点271
5.10.3二元光学器件的制作271
5.10.4二元光学的应用272
5.11近场光学275
5.11.1概述275
5.11.2近场光学原理275
5.11.3近场光学应用举例276
习 题278
第6章光的偏振技术281
6.1光的偏振特性281
6.1.1光的横波性281
6.1.2光波的偏振态283
6.1.3偏振光的表示方法286
6.2平面光波在晶体中的传播特性290
6.2.1晶体的介电张量290
6.2.2各向异性晶体中的单色平面光波292
6.2.3平面光波在晶体中的传播--解析法293
6.2.4平面光波在晶体中的传播--图解法296
6.3平面光波在晶体表面上的反射和折射301
6.3.1光波在晶体表面上的反射定律和折射定律301
6.3.2单轴晶体中的光路303
6.4偏振器件304
6.4.1概述304
6.4.2反射型偏振器304
6.4.3双折射型偏振器305
6.4.4二向色型偏振器307
6.4.5波片和补偿器308
6.4.6退偏器312
6.5通过光学元件后光强的计算313
6.5.1概述313
6.5.2用琼斯矢量计算313
6.5.3用斯托克斯矢量计算313
6.5.4用邦加球表示314
6.6偏振光的干涉315
6.6.1概述315
6.6.2平行光的偏振光干涉316
6.6.3会聚光的偏振光干涉318
6.7晶体的旋光性321
6.8偏振光仪器322
6.8.1旋光仪322
6.8.2椭偏仪323
习 题325
第7章光调制技术327
7.1非线性光学简介327
7.1.1概述327
7.1.2介质的非线性特性328
7.1.3非线性效应产生和频329
7.1.4非线性效应产生二次谐波332
7.1.5非线性效应产生差频332
7.1.6光纤中的非线性特性333
7.1.7受激非弹性散射334
7.2光的调制335
7.2.1幅度调制和光强调制335
7.2.2频率调制和相位调制337
7.2.3脉冲调制338
7.3电光调制339
7.3.1线性电光效应339
7.3.2晶体的线性电光系数341
7.3.3KDP晶体的线性电光效应343
7.3.4电光调制器件347
7.4磁光调制349
7.4.1磁致旋光效应349
7.4.2晶体的法拉第效应350
7.5声光调制352
7.5.1弹光效应352
7.5.2声光衍射353
习 题356
第8章光学测量技术357
8.1光学测量的基本装置357
8.1.1光具座及其基本部件357
8.1.2精密测角仪364
8.2光学玻璃的测量367
8.2.1光学玻璃折射率与色散的测量367
8.2.2光学玻璃的双折射测量371
8.2.3有色光学玻璃光谱特性的测量375
8.3光学零件的测量377
8.3.1光学零件面形偏差的测量377
8.3.2球面曲率半径的测量381
8.3.3平面光学零件光学不平行度的测量384
8.3.4焦距和顶焦距的测量389
8.4典型光学系统特性参数测量392
8.4.1显微系统特性参数检测392
8.4.2望远系统光学特性参数检测395
8.4.3照相物镜光学特性参数检测402
习 题410
第9章激光技术413
9.1激光的产生与特性413
9.1.1激光的产生413
9.1.2激光的特性414
9.2光的量子性与波粒二象性415
9.2.1光电效应与光量子(光子学)415
9.2.2光的波粒二象性417
9.2.3原子的能级分布417
9.3激光原理419
9.3.1原子的跃迁419
9.3.2激光器的构成423
9.3.3光学谐振腔426
9.3.4激光的模式430
9.4激光器433
9.4.1气体激光器433
9.4.2固体激光器440
9.4.3半导体激光器443
9.5激光技术451
9.5.1激光准直技术451
9.5.2激光测距技术453
9.5.3激光调制技术458
9.5.4激光稳频技术460
9.5.5激光脉冲技术466
9.5.6激光存储技术471
习 题475
第10章光波导技术 476
10.1概述476
10.1.1光波导476
10.1.2光导纤维477
10.2平面光波导的传输特性480
10.2.1平板光波导的结构480
10.2.2平板波导的模式480
10.2.3光波导损耗481
10.3光波导器件482
10.3.1光波导调制器482
10.3.2电光调制器483
10.3.3声光调制器484
10.3.4周期波导和反射滤波器485
10.3.5光波导偏振器486
10.3.6波导激光器486
10.4光波导耦合487
10.4.1光波导透镜488
10.4.2光波导反射镜和棱镜489
10.5集成光学系统举例489
10.5.1射频频谱分析仪490
10.5.2微型光波导陀螺仪491
10.6光纤的特性492
10.6.1均匀折射率光纤的光线理论492
10.6.2光纤的损耗493
10.6.3光纤的色散494
10.6.4光纤的偏振494
10.7特种光纤495
10.7.1变折射率光纤495
10.7.2红外光纤500
10.7.3塑料光纤501
10.8光纤器件501
10.8.1光纤连接器和耦合器502
10.8.2光纤波分/波合器502
10.8.3光纤偏振控制器503
10.8.4光纤滤波器503
10.8.5光纤光栅505
10.8.6光纤放大器和激光器505
10.9光纤传感器506
10.9.1概述506
10.9.2振幅调制传感型光纤传感器507
10.9.3相位调制传感型光纤传感器508
10.9.4偏振调制型光纤传感器512
10.9.5波长调制型光纤检测系统512
10.9.6传光型光纤检测系统513
附录A张量的基本知识515
附录B矢量分析与场论520
附录C电磁场理论的基本方程525
参考文献535

㈦ 二元光学的原理,要详细

二元光学是基于光波衍射理论发展起来的一个新兴光学分支,是光学与微电子技术相互渗透、交*而形成
的前沿学科。基于计算机辅助设计和微米级加工技术制成的平面浮雕型二元光学器件具有重量轻、易复制、造
价低等特点,并能实现传统光学难以完成的微小、阵列、集成及任意波面变换等新功能,从而使光学工程与技
术在诸如空间技术、激光加工、计算技术与信息处理、光纤通信及生物医学等现代国防科技与工业的众多领域
中显示出前所未有的重要作用及广阔的应用前景。二元光学于20世纪90年代初在国际上兴起研究热潮,并同时
引起学术界与工业界的极大兴趣及青睐。
随着近代光学和光电子技术的迅速发展,光电子仪器及其元件都发生了深刻而巨大的变化。光学零件已经不仅
仅是折射透镜、棱镜和反射镜。诸如微透镜阵列、全息透镜、衍射光学元件和梯度折射率透镜等新型光学元件
也越来越多地应用在各种光电子仪器中,使光电子仪器及其零部件更加小型化、阵列化和集成化。微光学元件
是制造小型光电子系统的关键元件,它具有体积小、质量轻、造价低等优点,并且能够实现普通光学元件难以
实现的微小、阵列、集成、成像和波面转换等新功能。
光学是一门古老的科学。自伽利略发明望远镜以来,光学已走过下几百年的漫长道路。60年代激光的出现,促
进了光学技术的迅速发展,但基于折反射原理的传统光学元(器)件,如透镜、棱镜等人都是以机械的铣、磨、抛
光等来制作的,不仅制造工艺复杂,而且元件尺寸大、重量大。在当前仪器走向光、机、电集成的趋势中,它
们已显得臃肿粗大极不匹配。研制小型、高效、阵列化光学元件已是光学界刻不容缓的任务。 80年代中期,美
国MIT林肯实验室威尔得坎普(Veldkamp)领导的研究组在设计新型传感系统中,率先提出了“二元光学”的概
念,他当时描述道:“现在光学有一个分支,它几乎完全不同于传统的制作方式,这就是衍射光学,其光学元
件的表面带有浮雕结构;由于使用了本来是制作集成电路的生产方法,所用的掩模是二元的,且掩模用二元编
码形式进行分层,故引出了二元光学的概念。”随后二元光学不仅作为一门技术,而且作为一门学科迅速地受
到学术界和工业界的青睐,在国际上掀起了一股二元光学的研究热潮。二元光学元(器)件因其在实现光波变换上
所具有的许多卓越的、传统光学难以具备的功能,而有利于促进光学系统实现微型化、阵列化和集成化,开辟
了光学领域的新视野。关于二元光学概念的准确定义,至今光学界还没有统一的看法,但普遍认为,二元光学
是指基于光波的衍射理论,利用计算机辅助设计,并用超大规模集成(VLSI)电路制作工艺,在片基上(或传统光
学器件表面)刻蚀产生两个或多个台阶深度的浮雕结构,形成纯相位、同轴再现、具有极高衍射效率的一类衍射
光学元件。它是光学与微电子学相互渗透与交*的前沿学科。二元光学不仅在变革常规光学元件,变革传统光学
技术上具有创新意义,而且能够实现传统光学许多难以达到的目的和功能,因而被誉为“90年代的光学”。它
的出现将给传统光学设计理论及加工工艺带来一次革命。二元光学元件源于全息光学元件(HOE)特别是计算全
息元件(CGH)。可以认为相息图(Kinoform)就是早期的二元光学元件。但是全息元件效率低,且离轴再现;相
息图虽同轴再现。但工艺长期未能解决,因此进展缓慢、实用受限。二元光学技术则同时解决了衍射元件的效
率和加工问题。它以多阶相位结构近似相息图的连续浮雕结构。二元光学是微光学中的一个重要分支。微光学
是研究微米、纳米级尺寸的光学元器件的设计、制作工艺及利用这类元器件实现光波的发射、传输、变换及接
收的理论和技术的新学科。微光学发展的两个主要分支是:(1)基于折射原理的梯度折射率光学,(2)基于衍射原
理的二元光学。二者在器件性能、工艺制作等方面各具特色。二元光学是微光学领域中最具活力、最有发展潜
力的前沿学科分支。光学和电子学的发展都基于微细加工的两个关键技术:亚微米光刻和各向异性刻蚀技术。
微电子学推动了二元光学学科的发展,而微电子工业的进步则得益于光刻水平的提高。此外,二元光学技术的

标量衍射理论和傅里叶光学进行分析的,关于二元光学元件衍射效率与相位阶数之间的数学表达式也是标量衍
射理论的结果。在此范围内,可将二元光学元件的设计看作是一个逆衍射问题,即由给定的入射光场和所要求
的出射光场求衍射屏的透过率函数。基于这一思想的优化设计方法大致有五种:盖师贝格-撒克斯通
(Gerchberg-Saxton)算法(GS)或误差减法(ER)及其修正算法、直接二元搜索法(DBS也称爬山法(HC))、模拟退
火算法(SA)和遗传算法(GA)。其中模拟退火算法是一种适合解决大规模组合优化问题的方法,它具有描述简单
、使用灵活、应用广泛、运行效率高和较少受初始条件限制等优点;遗传算法是一种借鉴生物界自然选择和自
然遗传机制的高度并行、随机、自适应搜索算法,它将适者生存原理同基因交换机制结合起来,形成一种具有
独特优化机制的搜索技术,而且特别适用于并行运算,已被应用到诸多领域。在国内,中国科学院物理研究所
杨国桢和顾本源提出任意线性变换系统中振幅-相位恢复的一般理论和杨-顾(Y-G)算法,并且成功地应用于解
决多种实际问题和变换系统中。在许多应用场合中,二元光学元件的特征尺寸为波长量级或亚波长量级,刻蚀
深度也较大(达到几个波长量级),标量衍射理论中的假设和近似便不再成立,此时,光波的偏振性质和不同偏振
光之间的相互作用对光的衍射结果起着重大作用,必须发展严格的矢量衍射理论及其设计方法。矢量衍射理论
基于电磁场理论,须在适当的边界条件上严格地求解麦克斯韦方程组,已经发展几种有关的设计理论,如积分
法、微分法、模态法和耦合波法。前两种方法虽然可以得到精确的结果,但是很难理解和实现,并需要复杂的
数值计算;比较起来,模态法和耦合波法的数学过程相对简单些,实现也较容易。这两种方法都是在相位调制
区将电磁场展开,所不同的是它们的展开形式,模态法将电磁场按模式展开,而耦合波法则将电磁场按衍射级
次展开。因而,耦合波方法涉及到的数学理论较为简单,给出的是可观察的衍射各级次的系数,而不是电磁场
模式系数。但总的来说,用这些理论方法设计二元光学元件都要进行复杂和费时的计算机运算,而且仅适合于
周期性的衍射元件结构。因此,当衍射结构的横向特征尺寸大于光波波长时,光波的偏振属性变得不那么重要
了,仍可采用传统的标量衍射理论得到一些合理的结果。对于更复杂的衍射结构,还有待发展实用而有效的设
计理论。 二、制作工艺方面的进展二元光学元件的基本制作工艺是超大规模集成电路中的微电子加工技术。但
是,微电子加工属薄膜图形加工,主要需控制的是二维的薄膜图形;而二元光学元件则是一种表面三维浮雕结
构,需要同时控制平面图形的精细尺寸和纵向深度,其加工难度更大。近几年来,在VLSI加工技术、电子、离
子刻蚀技术发展的推动下,二元光学制作工艺方面取得的进展集中表现在:从二值化相位元件向多阶相位元件
、甚至连续分布相位元件发展;从掩模套刻技术向无掩模直写技术发展。最早的二元光学制作工艺是用图形发
生器和VLSI技术制作二阶相位型衍射光学元件。到80年代后期,随着高分辨率掩模版制作技术的发展(如电子束
制版分辨率可达到0.1μm),掩模套刻、多次沉积薄膜的对中精度的提高,可以制作多阶相位二元光学元件,大
大提高了衍射效率。但是离散化的相位以及掩模的对准误差,仍影响二元光学元件的制作精度和衍射效率的提
高。为此,90年代初开始研究直写技术,省去掩模制作工序,直接利用激光和电子束在基底材料上写入所需的
二维或三维浮雕图案。利用这种直写技术,通过控制电子束在不同位置处的曝光量,或调制激光束强度,可以
刻蚀多阶相位乃至连续分布的表面浮雕结构。无掩模直写技术较适于制作单件的二元或多阶相位元件,或简单
的连续轮廓,而利用激光掩模和套刻制作更适合于复杂轮廓和成批生产。在掩模图案的刻蚀技术中,目前主要
采用高分辨率的反应离子刻蚀、薄膜沉积技术。其中离子束刻蚀的分辨率高达0.1μm,且图案边缘陡直准确
,是一种较为理想的加工手段。二元光学元件的一个很大的优点是便于复制,常用的复制技术有:铸造法
(casting)、模压法(embossing)和注入模压法(injection molding)。其中电铸成型模压复制将是未来大规模生
产的主要技术。根据二元光学元件的特点,其他一些新工艺,例如LIGA、溶胶-凝胶(sol-gel)、热溶及离子
扩散等技术也被应用于加工二元光学元件,还可利用灰阶掩模及PMMA紫外感光胶制作连续相位器件。 三、应
用方面的进展随着二元光学技术的发展,二元光学元件已广泛用于光学传感、光通信、光计算、数据存储、激
光医学、娱乐消费以及其他特殊的系统中。也许可以说,它的发展已经经历了三代。第一代,人们采用二元光
学技术来改进传统的折射光学元件,以提高它们的常规性能,并实现普通光学元件无法实现的特殊功能。这类
元件主要用于相差校正和消色差。通常是在球面折射透镜的一个面上刻蚀衍射图案,实现折/衍复合消像差和较
宽波段上的消色差。如美国柏金-爱尔马(Perkin-Elmer)公司成功地用于施密特(Schmidt)望远镜上消除球差
;美国豪奈威尔(Honey-well)公司在远红外系统中,实现了复消色差,它们还采用二元光学技术制作出小型光
盘读写头。此外,二元光学元件能产生任意波面以实现许多特殊功能,而具有重要的应用价值。如材料加工和
表面热处理中的光束整形元件、医疗仪器中的He-Ne激光聚焦校正器、光学并行处理系统中的光互连元件(等光
强分束Dammann光栅)以及辐射聚焦器等。二元光学元件的第一代应用技术已趋于成熟,国际上有50多家公司
正利用混合型特殊功能元件设计新型光学系统。第二代,主要应用于微光学元件和微光学阵列。 80年代末,二
元光学进入微光学领域,向微型化、阵列化发展,元件大小从十几个μm至1mm。用二元光学方法制作的高密
度微透镜阵列的衍射效率很高,且可实现衍射受限成像。另外,当刻蚀深度超过几个波长时,微透镜阵列表现
出普通的折射元件特性,并具有独特的优点:阵列结构比较灵活,可以是矩阵、圆形或密排六方形排列;能产
生各种轮廓形状的透镜表面,如抛物面、椭圆面及合成表面等;阵列透镜的“死区”可降到零(即填充因子达到
100%)。这类高质量的衍射或折射微透镜阵列,在光通信、光学信息处理、光存储和激光束扫描等许多领域中
有重要的应用。比如二元微光学元件在多通道微型传感系统中可作为望远混合光学系统、光束灵巧控制、多通
道处理、探测器阵列和自适应光互连。第三代,即目前正在发展的一代,二元光学瞄准了多层或三维集成微光
学,在成像和复杂的光互连中进行光束变换和控制。多层微光学能够将光的变换、探测和处理集成在一体,构
成一种多功能的集成化光电处理器,这一进展将使一种能按不同光强进行适应性调整、探测出目标的运动并自
动确定目标在背景中的位置的图像传感器成为可能。Veldkamp将这种新的二元光学技术与量子阱激光阵列或
SEED器件、CMOS模拟电子技术结合在一起,提出了“无长突神经细胞电子装置(Amacronic)”的设想,它把
焦平面结构和局域处理单元耦合在一起,以模仿视网膜上无长突神经细胞的近距离探测,系统具有边缘增强、
动态范围压缩和神经网络等功能。这一代微光学技术的典型应用是多层光电网络处理器。这是一种焦平面预处
理技术,它以二元光学元件提供灵活反馈和非线性预处理能力。探测器硅基片上的微透镜阵列将入射信号光聚
焦到阵列探测器的激活区,该基片的集成电路则利用会聚光激发砷化镓铟二极管发光,其发射光波第二层平面
石英基底两面的衍射元件引导到第三层面硅基底的阵列探测器上,经集成电路处理后激发二极管发光……依次类
推,得到处理后的信号。这种多层焦平面预处理器的每一层之间则利用微光学阵列实现互连耦合,它为传感器
的微型化、集成化和智能化开辟了新的途径。 发展趋势 二元光学是建立在衍射理论、计算机辅助设计和微细加
工技术基础上的光学领域的前沿科学之一,超精细结构衍射元件的设计与加工是发展二元光学的关键技术。二
元光学的发展不仅使光学系统的设计和加工工艺发生深刻的变革,而且其总体发展趋势是未来微光学、微电子
学和微机械的集成技术和高性能的集成系统。今后二元光学元件的研究将可能在以下方面发展。一、具有亚波
长结构的二元光学元件的研究(包括设计理论与制作技术) 这类元件的特征尺寸比波长还要小,其反射率、透射
率、偏振特性和光谱特性等都显示出与常规二元光学元件截然不同的特征,因而具有许多独特的应用潜力,如
可以作为抗反射元件、偏振元件、窄带滤波器和相位板。研究重点包括:建立正确和有效的理论模型设计超精
细结构衍射元件;特殊波面变换的算法研究;发展波前工程学,以制作逼近临界尺寸的微小元件及开拓亚波长
结构衍射元件的应用,推动微光学的发展。二、二元光学的CAD软件包的开发至今尚未找到适合于不同浮雕衍
射结构的简单而有效的理论模型,二元光学元件的设计仍缺乏像普通光学设计程序那样,可以求出任意面形、
传递函数及系统像差、具有友好界面的通用软件包。但随着通用设计工具的发展,二元光学元件有可能成为通
用的标准光学元件,而得到广泛的应用,并与常规光学结合,形成一代崭新的光学系统。
三、微型光机电集成系统是二元光学研究的总趋势微光电机械系统微光机械微电子机械微机械 1991年,美国
国家关键技术委员会向美国总统提交了《美国国家关键技术》报告,其中第8项为“微米级和纳米级制造”,即
微工程技术,它主要包括微电子学、微机械学和微光学这三个相互关联相互促进的学科,是发展新一代计算机
、先进机器人及智能化系统,促进机械、电子及仪器仪表工业实现集成化、微型化的核心技术。二元光学技术
则是发展微光学的重要支柱,二元光学元件有可能直接刻蚀在集成电路芯片上,并在一块芯片上布置微光学阵
列,甚至完全集成化的光电处理单元,这将导致包含各种全新的超密集传感系统的产生。
微光电子学微光学微电子学图示描述了微工程技术的三个学科相互交*相互影响形成的交*学科。在微光学取得
令人注目的进展的同时,另一门前沿科学——微电子机械(MEM)学取得了飞速的发展,这种结合三维集成电路
处理技术的微机械方法已成功地用于改善传感器和执行器的性能,降低费用。基于这种新技术设计的微传感器
和微机械执行器,至少在一个维数上的尺寸已达到微米量级,其他维数也小于几个毫米,对军用、工业和消费
产品都有潜在的应用市场。 MEM和微光学技术的共同特征是它们都基于VLSI技术,两者的结合就能产生一个
新的、更宽广的微光电机械系统,它已经在激光扫描、光学开关、动态微透镜和集成光电-机电装置等方面显
示出诱人的前景和产品市场,并将进一步开拓到微分光仪、微干涉仪和小型在线机械检测系统等领域。在微机
械、微电子支撑下的微光学系统也更易商品化,从而形成二元光学产业。具有多层结构的Amacronic焦平面预
处理器是微光学、微电子学和微机械集成系统的典型应用,它以并行光学处理方式降低了对电子处理速度和带
宽的要求,增强了集成系统的处理能力和灵活性。多层微光电机械装置的进一步发展甚至可以模仿生物视觉原
理,这个方向的研究成果对于人类将有无法估量的意义。可以预见,光学工程师们能像今天的电子工程师们一
样,坐在计算机终端前,通过按动鼠标或敲击键盘来设计组合二元光学元件以及各种光机电组合系统,这一天
的到来为时不会太久。

留下邮箱,我发资料给你

已发你QQ邮箱

㈧ 关于光学工程的专业

一、光学工程 工科 涉及与光学有关的工程类问题都会有研究方向或者叫专业,以下为上海光机所2010年光学工程专业的研究方向。
a. 光电子学(半导体激光与光纤)
b. 光通讯技术
c. 高功率激光技术与工程光学
d. 光信息处理
e. 薄膜光学与技术
f. 激光技术及应用
g. 光学设计与光学工艺
h. 激光加工技术
i. 光盘存储技术
j. 激光电子学
k. 光学精密机械与结构
l. 原子时频技术及其应用、、
m.空间激光和光学技术
n.精密光电测控
二、光电信息工程就我理解应该是既与光学工程有交叉研究方向,也涉及电子方面,也属于工科方向。
三、不等于

㈨ 请问学光学技术加工学徒主要干什么 学会了前景怎么样 谢谢

现在这个专业不错,好好努力

㈩ 光学是什么

光学
光学是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。

光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。

光学的起源在西方很早就有光学知识的记载,欧几里得(Euclid,公元前约330~260)的<反射光学>(Catoptrica)研究了光的反射;阿拉伯学者阿勒·哈增(AI-Hazen,965~1038)写过一部<光学全书>,讨论了许多光学的现象。

光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。17世纪,望辽镜和显微镜的应用大大促进了几何光学的发展。

光的本性也是光学研究的重要课题。微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。19世纪以前,微粒说比较盛行。但是,随着光学研究的深入,人们发现了许多不能用直进性解释的现象,例如乾涉、绕射等,用光的波动性就很容易解释。于是光学的波动说又占了上风。两种学说的争论构成了光学发展史上的一根红线。

狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到 X射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。

光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。

人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。

自《墨经)开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。

1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。

牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。

牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。

惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。

19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝乾涉现象。菲涅耳于1818年以杨氏乾涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的乾涉和衍射现象,也能解释光的直线传播。

在进一步的研究中,观察到了光的偏振和偏振光的乾涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。

1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。

1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。

对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用乾涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。

1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。

量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。

1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。

1905年9月,德国《物理学年鉴》发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。

这样,在20世纪初,一方面从光的乾涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。

1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。光学的发展历史表明,现代物理学中的两个最重要的基础理论——量子力学和狭义相对论都是在关于光的研究中诞生和发展的。

此后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。

爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自1958年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。

光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。

自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“博里叶光学”。再加上由于激光所提供的相乾光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。

在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。

光学的研究内容

我们通常把光学分成几何光学、物理光学和量子光学。

几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。

物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。

波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。

量子光学 1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。

1905年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的吸力即作逸出功,余下的就变成电子离开金属表面后的动能。

这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。它的基础主要是量子力学和量子电动力学。

光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。

应用光学 光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。例如,有关电磁辐射的物理量的测量的光度学、辐射度学;以正常平均人眼为接收器,来研究电磁辐射所引起的彩色视觉,及其心理物理量的测量的色度学;以及众多的技术光学:光学系统设计及光学仪器理论,光学制造和光学测试,干涉量度学、薄膜光学、纤维光学和集成光学等;还有与其他学科交叉的分支,如天文光学、海洋光学、遥感光学、大气光学、生理光学及兵器光学等。

阅读全文

与如何学好光学技术相关的资料

热点内容
全易通如何设置数据 浏览:874
交易点差佣金发票是什么品类 浏览:35
交易申请方是什么意思 浏览:91
如何删掉程序进程 浏览:881
代理摆地摊卖什么最好赚钱8月份 浏览:854
如何对付a股量化交易 浏览:932
腾讯理财产品怎么提前取 浏览:431
bios有哪些产品 浏览:43
印鸽如何在小程序放视频 浏览:810
为什么没有打卡信息 浏览:606
如何打开窗口小程序 浏览:793
怎么做采暖产品代理 浏览:716
哪里可以找得到兼职的技术 浏览:878
扫描需要注册什么应用程序 浏览:502
小程序电子票夹如何开单位发票 浏览:296
筹码交易密码忘记怎么办 浏览:796
天源迪科技术怎么样 浏览:454
重庆哪些地方有小龙虾市场 浏览:680
制药技术对口高考考什么操作 浏览:706
什么是二选一挂单交易 浏览:747