‘壹’ 中国何时彻底取缔煤炭燃料发电站
根据我在电力设计院工作的体会,未来欲取代燃煤发电站的可替代能源有光伏、风电、水电、核电等,但这4种都存在巨大的制约因素或问题,例如,光伏发电存在不确定性,太阳被乌云遮挡时就不发电了,而用户的用电却是连续不能停止的,所以光伏存在不可靠不安全的问题,还会造成电网震荡甚至崩溃。风电也是同样问题,没风就停止发电,同样会造成电网震荡甚至崩溃。水电则是受地理条件所限,大部分地区不存在建设条件。核电则是因为我国的核原料U235等非常稀少,目前仅仅30多台核电机组,就已经被迫在全世界采购核燃料了,若发展到全国装机容量一半的8亿千瓦,就需要有800台核电机组,那时所需要的核燃料就是天文数据,将使全球的核燃料严重供不应求,价格就会疯涨到天价,转移到核电价上,每度电就不是几毛钱而是几块钱了,谁用得起?更何况大部分出口核燃料的国家都听美国的,那万一和美国搞僵了更别说打起来,他是不是要命令核燃料输出国卡我们的脖子?
而我们目前的火电机组,年可稳定发电6000-7000小时,成本低廉,但光伏、风力的年发电仅仅2000多小时,水力也不过3000-4000小时,所以,要想完全取缔燃煤电站,那至少是50年甚至更长以后了。很无奈,尽管燃煤有诸多弊病,但人类对于电力的依赖却注定了燃煤机组在不可替代的情况下长久运转。好在国家强制的脱硫脱硝已经见了成效,还需要进一步提高排放洁净度。
‘贰’ 未来中国火电厂发展
根据社会发展的趋势,用电量还会继续增长,作为基荷的火电当然也要发展了,(核电的安全性及人们的心理作用,不会像火电那样以很快的速度发展,你想想,把核电场放在你家旁边,你会担心吗?这对当地的各方面影响也是很大的,虽然说核电还是很安全和环保的。)
火电的污染虽然很大(在我国火电主要是烧煤的,国外则很多采用烧油。)在西方社会,法国核电比重高,是全球最高的国家,占总发电量85%,每年少进口石油8800万吨。
作为调峰的水电,也会根据社会发展继续建设,虽然水电也会带来巨大的污染(相对于火电短期内可能看不出来),比如改变当地的生态结构、人口迁移、诱发地震、阻断生殖洄游、诱发地区性寄生虫病……发达国家正大力拆除大型水电,转而开发小水电。
以上信息,希望对你有所帮助!
‘叁’ 超超临界燃煤发电技术的简介
超超临界发电技术从热力学的角度上讲其本质还是超临界技术,只是日本人将蒸汽压力在26MPa以上的机组均划分为超超临界机组,由此得名。
1 我国发展超超临界机组的必要性
按照国家制订的2020年电力发展规划,我国发电装机容量将从目前的4亿千瓦增加到2020年9亿千瓦,其中燃煤机组将达到5.8亿千瓦。
2003年,全国二氧化硫排放总量达到2100多万吨,其中燃煤电厂二氧化硫排放约占全国排放总量的46%。我国酸雨pH值小于5.6的城市面积占全国的70.6%。随着燃煤装机总量的增加,我国将面临严峻的经济与资源、环境与发展的挑战。提高燃煤机组的效率、减少总用煤量、降低污染物排放是当前我国火电结构调整,实现可持续发展的重要任务。
目前我国电力工业装机中高效、清洁的火电机组比例偏低,结构性矛盾突出。2002年,火电机组中30万千瓦及以上机组占41.7%,20万千瓦以下机组占42.5%,超临界机组只占2.38%。洁净煤发电、核电、大型超(超)临界机组、大型燃气轮机技术开发、设备生产刚刚起步。全国火电平均供电煤耗383g/kWh,比世界先进水平高出60g/kWh。因此迫切需要在近期研制出新一代燃煤发电设备来装备电力工业。
新一代发电设备应具备可靠、大型、高效、清洁、投资低等性能;能够替代现有的300MW和600MW亚临界机组,成为装备电力工业的主流机型;同时国内设备制造企业经过努力后能够具备生产能力,能够形成规模生产和市场竞争局面。
分析国际上燃煤发电技术的发展趋势,将采用两种技术路线来提高效率和降低排放。其一是利用煤化工中已经成熟的煤气化技术,集成蒸汽燃气联合循环技术实现高效清洁发电,其代表技术为IGCC。此技术提高能效的前景很好,但因系统相对复杂而造成投资偏高的问题需要解决。目前正在烟台电厂建设一台300或400MW等级的IGCC示范机组,为今后的发展作好技术储备。另一个发展方向是通过提高常规发电机组的蒸汽参数来提高效率,即超临界机组和超超临界机组。超超临界机组在发达国家已经实现了大容量、大批量生产。通过努力我国可以较快实现国产化能力,降低设备成本。
如果我国600MW等级的燃煤机组采用超超临界技术,供电煤耗278g/kWh,比同容量亚临界机组的煤耗减少30克/kWh,按年运行5500小时计算,一台600MW超超临界机组可比同容量亚临界机组节约标煤6万吨/年,同时SO2、氮氧化物、粉尘等污染物以及CO2排放将大大减少。采用超超临界燃煤发电技术对于节约资源消耗、保护环境、实现可持续发展具有重要意义。
2 国外超超临界机组的技术指标
超超临界机组蒸汽参数愈高,热效率也随之提高。热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降1.4%~1.6%。
亚临界机组的典型参数为16.7MPa/538℃/538℃,其发电效率约为38%。超临界机组的主蒸汽压力通常为24MPa左右,主蒸汽和再热蒸汽温度为538~560℃;超临界机组的典型参数为24.1MPa/538℃/538℃,对应的发电效率约为41%。超超临界机组的主蒸汽压力为25~31MPa,主蒸汽和再热蒸汽温度为580~610℃。
超临界机组的热效率比亚临界机组的高2%~3%左右,而超超临界机组的热效率比超临界机组的高4%左右。
目前,美国投运的超临界机组大约为170台,其中燃煤机组占70%以上。前苏联300MW及以上容量机组全部采用超临界参数。至1988年已有近200台超临界机组投入运行,全国35%电力由超临界机组供给。
日本的超临界机组共有100多台,总容量为超过5760万千瓦,占火电机组容量的61%,45万千瓦及以上的机组全部采用超临界参数,而且在提高参数方面做了很多工作,最高压力为31MPa,最高温度已达到600/600°C。
丹麦史密斯公司研究开发的前2台超超临界机组,容量为400MW,过热蒸汽出口压力为29MPa,二次中间再热、过热蒸汽和再热汽温为582/580/580℃,机组效率为47%,机组净效率达45%(采用海水冷却,汽轮机的背压为26kPa);后开发了参数为30.5MPa,582/600℃、容量为400MW的超超临界机组,该机组采用一次中间再热,机组设计效率为49%。
德国西门子公司20世纪末设计的超超临界机组,容量在400~1000MW范围内,蒸汽参数为27.5MPa, 589/600℃,机组净效率在45%以上。
欧洲正在执行“先进煤粉电厂(700℃)”的计划,即在未来的15年内开发出蒸汽温度高达700℃的超超临界机组,主要目标有两个: 使煤粉电厂净效率由47%提高到55%(采用低温海水冷却)或52%(对内陆地区和冷却塔);降低燃煤电厂的投资价格。美国和日本也将蒸汽温度为700℃的超超临界机组作为进一步的发展目标。
可见,国际上超超临界机组的参数已经达到27~32Mpa左右,蒸汽温度为566~600℃,热效率可以达到42~45%。国外机组的可靠性数据,表明了超超临界机组可以同样实现高的可靠性。我国石洞口二厂两台60万千瓦超临界机组的可用率就高达90%以上,高于其它一些同容量亚临界机组。从环保措施看,国外的超超临界机组都加装了锅炉尾部烟气脱硫、脱硝和高效除尘装置,可以实现较低的排放,满足严格的排放标准。例如日本的超超临界机组的排放指标可以达到SO2 70 mg/Nm3;NOx 30 mg/Nm3;粉尘5 mg/Nm3。可见,超超临界燃煤机组甚至可以与燃用天然气、石油等机组一样实现清洁的发电。 目前中国有玉环电厂、外高桥三厂、宁海国华二期、北仑电厂三期、嘉兴电厂三期,以及漕泾电厂等多个2*1000MW超超临界燃煤机组已建成或在建。600MW和1000MW超临界机组将成为我国今后10年内带电网基本负荷的主力发电机组。
蒸汽温度的提高使P91、S304H、P122、HR3C等许多高温合金钢被大量使用。
与其余几种洁净煤发电技术相比,超超临界机组技术具有继承性好,容易实现大型化的特点,在机组的可靠性、可用率、热机动性、机组寿命等方面已经可以和亚临界机组媲美,已经有了较多的商业运行经验。
‘肆’ 中国目前靠什么发电
火力发电。
1.
目前,中国主要采用的发电类型是水力发电和火力发电.地热能、核能、太阳能和风能属于新型能源,正在研究和开发之中.
2.
以火力发电为主,其发电量在总发电中所占比重为70%以上。
3.
中国的水力资源虽然丰富,但受经济、技术等因素所限,水电只占总发电的20%左右。
4.
随着石化燃料的短缺,核能发电越来越受到重视。但由于受日本福岛事件影响,从技术和安全考虑,我国并未继续建设核能发电项目。
5.
2013年底全国发电装机12.3亿千瓦左右,发电装机规模有望跃居世界第一,其中水电2.8亿千瓦、火电8.6亿千瓦、核电1478万千瓦、并网风电7500万千瓦、并网太阳能600万千瓦左右。
‘伍’ 火电厂一吨煤发几度电
有科学研究说l克碳原子在空气中燃烧,放出的热量只能发电0.013度。咱们来推算一下,每个发电机它们的容量都不是不同的。很大的高效发电机组每次供一度电可以花费煤290克~340克。特高的发电机组它供电煤耗约440克/千瓦时,它比大机组要多耗煤百分之四十。也就是说,一吨煤燃烧的话可以得到每个小时3600千瓦的电。
‘陆’ 绿色煤电的瓶颈
“绿色煤电”技术作为基于燃烧前捕集的C C S技术,适合于新建的燃煤电站,其与国际同类项目同时起步,具有高起点、自主创新等特点。就目前而言,以“绿色煤电”为代表的清洁煤发电技术在我国的发展已走到了一个转折点,在政策、资金、行业壁垒、运营成本等方面面临着一定的瓶颈和困难,亟须政府扶持。
首先是政策方面。由于IG CC和C C S在我国都属于新兴技术,其本身的复杂程度高于现有的常规燃煤发电技术,“绿色煤电”技术将两者进行整合,实施的难度显然更高。这就意味着,发电企业在推进未来有很大发展潜力的新兴技术的初期,需要承担相当大的风险,因而国家对相关产业的扶持政策也就显得至关重要。例如,美国在其2005年颁布的能源法案中,规定以财政补贴、提供贷款和税收减免等方式来推动IG CC的商业化运行。中国IG C C虽处在示范阶段,C C S也还处在研究试验阶段,但“绿色煤电”计划的整体推进也需要类似法律法规的保障。由于目前我国对IG C C和C C S技术尚缺乏明确的产业政策支持,使得“绿色煤电”计划的实施进程整体落后于预期目标,并且在未来仍有一定的不确定性。
其次是资金问题。由于IG CC和C C S技术目前还处于示范阶段,尚未开始商业化推广,相关的新技术、新工艺在研发阶段的累积成本导致“绿色煤电”示范电站在初期需要较高的资金投入。同时,能源类技术储备所需的时间相当漫长,一般在20年-30年之间。加之项目的工艺本来就复杂,使企业面临的投资风险非常大,对于后续的“绿色煤电”近零排放示范电站来说更是如此。因此,对于“绿色煤电”这种国家能源战略储备性技术,单纯由企业主导的确存在诸多困难。从目前国外已有的IG C C项目看,这些项目基本都是由各国政府主导并部分投资。例如,美国政府对其第一个IG CC项目提供了1.2亿美元资助,日本的IG C C项目中政府投资占30%。然而,我国的天津IG C C项目仅从科技部863计划中获得了数千万元的科研经费资助,绝大部分投资由华能牵头的国内企业承担。
再次是跨行业、跨区域合作问题。以二氧化碳的捕集和封存技术实施来说,这已经超出了发电企业的传统业务范畴,需要在有关政府部门的统一协调下,通过电力企业与石油、地质等企业之间跨行业、跨区域的广泛合作方能实现。目前国际上普遍认为,应首选通过强化石油开采的方式实现二氧化碳的封存,这相比单纯的直接封存,可以为石油企业带来更大收益,因而更加具有经济驱动力。但目前在我国,一方面,石油属于国家战略性资源,石油企业的开采等经营活动需严格按照国家有关规定来执行;另一方面,相关的产业链尚未形成,不同行业之间的技术与经营目标也存在一定差异,因此,单纯依靠发电和石油企业之间进行二氧化碳封存的合作存在一定难度。
此外,我国目前燃煤电站上网电价主要基于国家发改委公布的各省市标杆电价水平核定。但如前所述,IG C C电站在示范阶段的供电成本必然要高于常规燃煤电站,对于这种尚处于示范阶段的发电技术,如果不综合考虑其环境效益和社会效益,同样执行标杆电价,必然会导致发电企业的亏损,影响企业研发示范新技术的积极性。
‘柒’ 什么是燃煤电厂近零排放
燃煤电厂污水处理近零排放是指无限地减少污染物和能源排放直至到零的活动。从污水处理设备,污水处理产业周期看,未来国内城市再生水、工业废水处理、工业污水处理、高盐废水处理等细分市场将快速发展。
事实上,1973年美国佛罗里达州发电厂实现世界上首例电厂废水零排放。随后,在冶金、造纸、化工、电镀、食品等多个行业,都有废水零排放的成功案例。早在1994年,日本也把循环工业制定为未来工业的基础和方向。为了更加有力的促进零排放的发展,联合国大学于1999年创立了“联合国大学/零排放论坛”。
为了我国经济、社会的可持续发展,“欣格瑞”结合了十几年的水处理经验,经过数百次实验,研究出了“污水回用于循环水系统近零排污整体解决方案”。可以实现废水经简单处理后回用于循环水系统,在保证循环水系统设备长期运行不结垢、不腐蚀的前提下,不排污或少排污,利用循环水系统自身优势促使污水被降解、消耗。既减少了排污,也节省了大量的水资源;既降低了生产成本,也减少了对环境的破坏。
此外,在加药方式和加药频率这一方面,欣格瑞(山东)环境 使用“普罗名特计量泵”进行24小时连续、均匀的方式投加到循环水泵吸水口附近,在最大程度上保证了循环水中药剂含量的稳定。
‘捌’ 中国智慧电厂发展情况如何,哪些电力集团正在做有没有哪些标杆项目
一、现实倒逼,智慧电厂成必然趋势
中国多煤,贫油,少气。水电开发周期长,核电不稳定,新能源概念化。电能中火电依旧占比60%以上,承担国内电力供应的重担依旧落在传统电厂
发展步入新常态,两化要深度融合。电企迫切需要改变粗放型管理模式,推进制度、管理、科技创新,培育新成长优势,提升管控力度,降本增效,提高企业管理水平和核心竞争力
中国政府要求环境与经济两手都要抓,两手都要硬。双重压力下,聚焦现有电厂升级改造,智慧电厂的兴起既顺应时代发展,又是传统电力企业自我变革的必经之路
二、智慧电厂的定义、特点及技术路线
目前对智慧电厂的定义可以说是百家争鸣,尚无统一定论,很多学者提出了不同的见解
科远董事长刘国耀认为智慧电厂是数字化电厂结合智能系统后的进一步发展,将以新型传感、物联网、人工智能、虚拟现实为技术支撑,以创新的管理理念、专业化的管控体系、人性化的管理思想、一体化的管理平台为重点,具有数字化、信息化、可视化、智能化等特点,将最大限度地实现电厂的安全、经济、高效、环保运行
东南大学王培红先生认为智慧电厂由信息化、数字化、智能化等技术支撑,智能化就是知识化,具有感知能力(获取外部信息的能力)、记忆和思维能力(存储信息并有思维产生知识)、学习能力和自适应能力(学习并运用知识)三类特点
《智能电厂技术发展纲要》指出智能电厂是在广泛采用现代数字信息处理和通信技术基础上,集成智能传感与执行、智能控制和管理决策等技术,达到安全、高效、环保运行并与智能电网相互协调
华北电力大学李彦斌认为智慧型电厂是以执行力体系、信息化体系、节能环保体系、预警体系、学习型企业体系和企业文化体系六大管理体系作为支撑,是适应我国电力改革的必然产物
2、智慧电厂的标准特点
一个标准的智慧电厂要具有5大特点:始于感知、精于计算、巧于决策、勤于执行、善于学习。
‘玖’ 中国依赖煤发电的成因
煤炭储量大是一个因素,最先引进的是火电,主要是煤炭已经形成了相关产业链。比如石化、重工、钢厂 、供热等等,都离不开煤炭。以前别的发电技术以及设备落后,现在水电、核电、风电、太阳能等技术日渐成熟。
‘拾’ 燃煤发电机组的介绍
燃煤发电机组,是将煤等化石燃料的化学能转化为电能的机械设备。我国自主设计、制造的百万千瓦超超临界二次再热燃煤发电机组在江苏泰州建成。这是世界上首次将二次再热技术应用到百万千瓦超超临界燃煤发电机组,也是我国火电技术在高参数大容量机组方面彻底摆脱国外知识产权束缚的一次重大突破。该工程由中国国电集团公司、中国电力工程顾问集团、上海电气电站集团三方联合攻关,机组脱硫、脱硝装置同步投运,具有机组参数先进稳妥、机组效率世界领先、环保排放指标最优等特点,是推动我国能源科技革命的重要举措。