❶ 当前车底扫描系统有哪些主要技术,主要区别是什么
车底盘智能扫描检测系统是集自动检测车辆并对车辆底盘进行图像采集、显示、拼接、抓拍汇总、比对报警、自动环控技术为一体的车辆安检系统。
❷ 扫描仪采用哪些先进技术
扫描仪是一种光、机、电一体化的高科技产品。
扫描仪的工作原理如下: 自然界的每一种物体都会吸收特定的光波,而没被吸收的光波就会反射出去。扫描仪就是利用上述原理来完成对稿件的读取的。扫描仪工作时发出的强光照射在稿件上,没有被吸收的光线将被反射到光学感应器上。光感应器接收到这些信号后,将这些信号传送到模数(A/D)转换器,模数转换器再将其转换成计算机能读取的信号,然后通过驱动程序转换成显示器上能看到的正确图像。待扫描的稿件通常可分为:反射稿和透射稿。前者泛指一般的不透明文件,如报刊、杂志等,后者包括幻灯片(正片)或底片(负片)。如果经常需要扫描透射稿,就必须选择具有光罩(光板)功能的扫描仪。
❸ 扫描技术有哪些
依靠步进电机来拖动。传统的步进电机是依靠齿轮传动实现运动的
❹ 什么是扫描技术,区分端口扫描和漏洞扫描的不同之处
扫描端口是指扫描的系统开放的各种端口和各种协议的路径。扫描漏洞是扫描系统的安全漏洞。 YES黑客论坛 是个不错的 地方,建议你 多去那看看。呵呵~有很多 免费的 视频教程和软件供下载 学习。
❺ 三维扫描技术采用的原理是什么,可以应用在什么领域
运用三维取像设备,测量并获取实物的三维空间数据,通过专业的三维重建软件对三维模型数据进行逆向设计形成CAD模型,再通过相关应用软件输出三维应用数据,实现实物的三维数字化输出的一种高新技术。三维
扫描的实质是测量实物表面的三维坐标点集,得到的大量坐标点的集合。
现在主要应用在建模以及虚
拟数字
博
物馆方面
❻ 什么是边界扫描技术
边扫描测试是在20世纪80年代中期做为解决PCB物理访问问题的JTAG接口发展起来的,这样的问题是新的封装技术导致电路板装配日益拥挤所产生的。边界扫描在芯片级层次上嵌入测试电路,以形成全面的电路板级测试协议。利用边界扫描--自1990年以来的行业标准IEEE 1149.1--您甚至能够对最复杂的装配进行测试、调试和在系统设备编程,并且诊断出硬件问题。
边界扫描的优先:
通过提供对扫描链的IO的访问,可以消除或极大地减少对电路板上物理测试点的需要,这就会显着节约成本,因为电路板布局更简单、测试夹具更廉价、电路中的测试系统耗时更少、标准接口的使用增加、上市时间更快。除了可以进行电路板测试之外,边界扫描允许在PCB贴片之后,在电路板上对几乎所有类型的CPLD和闪存进行编程,无论尺寸或封装类型如何。在系统编程可通过降低设备处理、简化库存管理和在电路板生产线上集成编程步骤来节约成本并提高产量。
边界扫描原理:
IEEE 1149.1 标准规定了一个四线串行接口(第五条线是可选的),该接口称作测试访问端口(TAP),用于访问复杂的集成电路(IC),例如微处理器、DSP、ASIC和CPLD。除了TAP之外,混合IC也包含移位寄存器和状态机,以执行边界扫描功能。在TDI(测试数据输入)引线上输入到芯片中的数据存储在指令寄存器中或一个数据寄存器中。串行数据从TDO(测试数据输出)引线上离开芯片。边界扫描逻辑由TCK(测试时钟)上的信号计时,而且TMS(测试模式选择)信号驱动TAP控制器的状态。TRST(测试重置)是可选项。在PCB上可串行互连多个可兼容扫描功能的IC,形成一个或多个扫描链,每一个链都由其自己的TAP。每一个扫描链提供电气访问,从串行TAP接口到作为链的一部分的每一个IC上的每一个引线。在正常的操作过程中,IC执行其预定功能,就好像边界扫描电路不存在。但是,当为了进行测试或在系统编程而激活设备的扫描逻辑时,数据可以传送到IC中,并且使用串行接口从IC中读取出来。这样数据可以用来激活设备核心,将信号从设备引线发送到PCB上,读出PCB的输入引线并读出设备输出。
❼ 三维激光扫描仪的应用领域
三维激光扫描仪已经成功的在文物保护、城市建筑测量、地形测绘、采矿业、变形监测、工厂、大型结构、管道设计、飞机船舶制造、公路铁路建设、隧道工程、桥梁改建等领域里应用。
三维激光扫描仪,其扫描结果直接显示为点云(pointcloud 意思为无数的点以测量的规则在计算机里呈现物体的结果),利用三维激光扫描技术获取的空间点云数据,可快速建立结构复杂、不规则的场景的三维可视化模型,既省时又省力,这种能力是现行的三维建模软件所不可比拟的 。
(7)扫描是哪个领域技术扩展阅读
三维激光扫描仪的分类:
三维激光扫描仪按照扫描平台的不同可以分为:机载(或星载) 激光扫描系统、地面型激光扫描系统、便携式激光扫描系统。
三维激光扫描仪作为现今时效性最强的三维数据获取工具可以划分为不同的类型。通常情况下按照三维激光扫描仪的有效扫描距离进行分类,可分为:
(1)短距离激光扫描仪:其最长扫描距离不超过3m,一般最佳扫描距离为 0.6~1.2m,通常这类扫描仪适合用于小型模具的量测,不仅扫描速度快且精度较高,可以多达三十万个点精度至± 0.018mm。
例如美能达公司出品的 VIVID 910 高精度三维激光扫描仪,手持式三维数据扫描仪 FastScan等等,都属于这类扫描仪。
(2)中距离激光扫描仪:最长扫描距离小于 120 m的三维激光扫描仪属于中距离三维激光扫描仪,其多用于大型模具或室内空间的测量。例如:瑞士Leica 公司出品的 ScanStation P30/P40 三维激光扫描仪就属于这类扫描仪。
(3)长距离激光扫描仪 : 扫描距离大于 270m的三维激光扫描仪属于长距离三维激光扫描仪,其主要应用于建筑物、矿山、大坝、大型土木工程等的测量。例如:瑞士Leica 公司出品的 ScanStation P30/P40 三维激光扫描仪就属于这类扫描仪。
(4)超长测程激光扫描仪:最长扫描距离通常大于 1 公里,并且需要配备精确的导航定位系统,其可用于大范围地形的扫描测量。例如:瑞士Leica 公司出品的 ScanStation P50 三维激光扫描仪就属于这类扫描仪。
之所以这样进行分类, 是因为激光测量的有效距离是三维激光扫描仪应用范围的重要条件,特别是针对大型地物或场景的观测,或是无法接近的地物等等,这些都必须考虑到扫描仪的实际测量距离。
此外,被测物距离越远, 地物观测的精度就相对较差。 因此,要保证扫描数据的精度, 就必须在相应类型扫描仪所规定的标准范围内使用。
❽ 扫描仪的扫描方式有什么区别
当然是CCD的扫描仪好啦。
目前市场上的普及型扫描仪按光电转换元件的不同,可分为CCD(ChargeCoupledDevice,光电偶合感应器)扫描仪和CIS(ContactImageSensor,接触式图像扫描)扫描仪。
前者通过镜头聚焦到CCD上,将光信号转换成电信号成像,后者紧贴扫描稿件表面进行接触式的扫描。
比较两种扫描方式,可以看到作为接触式扫描器件CIS景深较小,对实物及凹凸不平的原稿扫描效果较差。CCD扫描仪通过镜头聚焦到CCD上直接感光,因此它的景深较CIS扫描仪要大的多,可以十分方便的进行实物扫描。虽然以前很多人认为CIS扫描仪可以做得非常小巧,CCD扫描仪一般显得比较厚重,但是现在一些厂商推出的超薄型CCD扫描仪改变了这一状况,使得原先CIS扫描仪仅有的优势又减弱了许多。
CCD扫描仪占据了绝对优势的市场地位,而CIS扫描仪技术突破难度较大,除了在移动应用市场上还有少许空间外,已无其他立足之地,并且会面临来自CCD扫描仪更大的压力。
完成光电转换的部件是感光器件,它是扫描仪的核心,其光电转换特性,如光谱响应、光的稳定性、灵敏度、噪声等,对图像信息的传送是很重要的。
目前扫描仪所使用的感光器件主要有电荷耦合器件(CCD)、接触式图像传感器(CIS)、光电倍增管(PMT)。
电荷耦合器件CCD
1969年美国贝尔实验室发明CCD(ChargeCoupledDevice,电荷藕合器件),与电脑晶片CMOS技术相似,也可作电脑记忆体及逻辑运作晶片。CCD最突出的特点是以电荷作为信号,其基本功能是电荷存储和电荷转移。因此,CCD的工作过程主要是电荷的产生、存储、传输和检测。CCD的体积小、造价低,所以广泛应用于扫描仪。
电荷耦合器件CCD有两种,即半导体隔离CCD和硅氧化物隔离CCD,它们是通过在一片硅单晶上集成了数千到上万个三极管构成的,这些三极管分为三列.分别用红绿蓝三色滤色镜罩住。三极管受到光照后会产生电流,把这些电流排序处理再经放大输出,就实现了光信号和电信号的相互转换。两种类型的CCD比较,硅氧化物隔离CCD比半导体隔离CCD好.因为半导体隔离CCD在三极管间用PN结的电阻来绝缘,临近三极管间会因为隔离电阻较小出现漏电现象,使感光单元所产生的信号相互干扰,导致光电转换时精确度降低。用硅氧化物隔离会大大减小漏电现象,因为硅氧化物(主要是二氧化硅)是绝缘体,能更准确地实现光电转换而减少损失。
扫描仪中感光器件CCD是一种比较成熟的技术,其成本较低,成像质量却越来越高,有些甚至可以与滚筒扫描仪中使用的光电倍增管相媲美,具有极高的性价比。这种扫描技术由于在物体表面成像,具有一定的景深,在扫描凹凸不平的物体时,能够实现一定程度的三维效果。并且采用硅单晶技术的CCD对周围环境温度的要求较低,适应的范围较广。
接触式图像传感器CIS
1998年一种基于CMOS技术的接触式图像传感器CIS(ContactImageSensor)也诞生了。CIS扫描仪将光源、聚焦镜片及感应器一同固定于一个外罩内,不须调节、预热,所以比CCD扫描仪起动快。CIS扫描仪体积比CCD扫描仪更小,而制造成本也更低。
实际上,接触式图像传感器CIS技术与CCD技术几乎是同时诞生的。早期它的光学分辨率最高只能达到200dpi,曾广泛用在低档手持式黑白扫描仪上。但是与CCD比较,它的噪声大,动态范围小,扫描精度低,因此很快就从扫描仪市场上销声匿迹了,之后只能在传真机上看到它的影子。1998年后,国际扫描仪市场的竞争非常激烈,持续不断的降价使得不少生产厂商严重亏损,于是有些厂家开始另辟捷径,重新搬出了CIS接触式感光器件,并经过改进,使其分辨率达到了600dpi,然后以新技术的名义推向市场,再加上其生产成本只有CCD的三分之一,所以采用CIS的平台式扫描仪开始涌现出来。
CIS感光器件一般使用制造光敏电阻的硫化镉作感光材料。硫化镉光敏电阻本身漏电大,各感光单元之间干扰大,严重影响清晰度,这是该类产品扫描精度不高的主要原因。它不能使用冷阴极灯管而只能使用LED发光二极管阵列作为光源,这种光源无论在光色还是在光线的均匀度上都比较差,导致扫描仪的色彩还原能力较低。LED阵列由数百个发光二极管组成,一旦有一个损坏就意味着整个阵列报废,因此这种类型产品的寿命比较短。CIS无法使用镜头成像,只能依靠贴近目标来识别,没有景深,不能扫描实物,只适用于扫描文稿。CIS对周围环境温度的变化比较敏感,因此对工作环境的温度有一定的要求,环境温度的变化对扫描结果有明显的影响。
虽然有以上种种不足,但是早期CIS型扫描仪也有一个CCD型扫描仪无法比拟的优点,那就是重量很轻,体积特别小,可以使产品做得很薄。市场上早期流行的超薄型扫描仪大多都是采用CIS感光器件。但是随着技术的发展,超薄型CCD扫描仪已经开始走向市场,使CIS扫描仪正在逐渐失去仅有的优势。
光电倍增管PMT(PhotoMultiplierTube)
在各种感光器件中,光电倍增管是性能最好的一种,无论在灵敏度、噪声系数还是动态范围上,都遥遥领先于其他感光器件,而且它的输出信号在相当大范围内保持着高度的线性输出,使输出信号几乎不用做任何修正就可以获得准确的色彩还原。有了良好的线性输出,那么良好的色彩还原能力就有了保证,这在专业领域是非常重要的一项能力。
光电倍增管实际是一种电子管,由光电阴极和一系列的二次电子发射体做成的倍增电极以及阳极组成的。其感光材料主要是由金属铯的氧化物及其他一些活泼金属(一般是镧系金属)的氧化物共同构成。这些感光材料在光线的照射下能够发射电子,经栅极加速后冲击阳电极,最后形成电流,再经过扫描仪的控制芯片进行转换,就生成了物体的图像。
由于它具有固定的高电流增益和低噪声的特性,因此是最灵敏的一种光检测器。在所有的扫描技术中,光电倍增管是性能最为优秀的一种,其灵敏度、噪声系数、动态密度范围等关键性指标远远超过了CCD及CIS等感光器件。同样,这种感光材料几乎不受温度的影响.可以在任何环境中工作。但是这种扫描仪的成本极高,一般只用在专业的滚筒式扫描仪上。
❾ 三维扫描技术目前在哪些领域有应用
三维扫描技术目前在现实生活中得到越来越多的应用,现在只要是我们能看到的虚拟场景,大部分和三维扫描技术有关,涉及的领域包括医学美容,建筑场地设计,房地产设计等,未来三维扫描技术会更多的运用到对古代文物保护方面,用三维扫描技术虚拟呈现博物馆场景,使之能实现数字化永久完整保存。山东 残.友.数字博物馆便是利用这个技术完成的虚拟展馆,为实体博物馆打开另一扇窗户。