导航:首页 > 信息技术 > 语音技术如何诊断

语音技术如何诊断

发布时间:2022-04-27 20:14:27

‘壹’ 语音识别的技术原理是什么,请简单说下

语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),
其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码
或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人
而非其中所包含的词汇内容。

‘贰’ 想做款语音识别,全自动的。想监听麦克风判断一句话的开始和结束。应该怎么判断给点思路

语音的频率是有一定范围的,大约是2kHz以下,这也是普遍运用于电话的PCM压缩的采样率在0~2000Hz范围的原因
你可以对语音分段采样后做频谱分析,比如fft,求每段能量值在2000Hz以下的能量是否超过阈值,如果超过则算是有人声,当然还可以辅助增加一些其他的特征值来判断人声,这样可以在复杂音频背景下进行判断
如果要简化情况,可以用静音判断来分割语音,假设没有人声时,麦克风的输入是基本静音的(fft得到的平均能量值小于有声的阈值),也可以进行有效的分割

‘叁’ 语音识别系统是什么原理

我们可以设想,在不久的将来坐在办公司里的经理会对电脑说:“嗨!伙计,帮我通知一下公司所有员工,今天下午3:00准时开会。”这是科学家在几十年前的设想,语音识别长久以来一直是人们的美好愿望,让计算机领会人所说的话,实现人机对话是发展人机通信的主要目标。进入2l世纪,随着计算机的日益普及,怎样给不熟悉计算机的人提供一个友好而又简易的操作平台,是我们非常感兴趣的问题,而语音识别技术就是其中最直接的方法之一。

20世纪80年代中期以来,新技术的逐渐成熟和发展使语音识别技术有了实质性的进展,尤其是隐马尔可夫模型(HMM)的研究和广泛应用,推动了语音识别的迅速发展,同时,语音识别领域也正处在一个黄金开发的关键时期,各国的开发人员正在向特定人到非特定人,孤立词汇向连接词,小词汇量向大词汇量来扩展研究领域,可以毫不犹豫地说,语音识别会让计算机变得“善解人意”,许多事情将不再是“对牛弹琴”,最终用户的口述会取代鼠标,键盘这些传统输入设备,只需要用户的嘴和麦克风就能实现对计算机的绝对控制。

1、隐马尔可夫模型HMM的引入

现在假定HMM是一个输出符号序列的统计模型,具有N个状态S1,S2⋯Sn,在一个周期内从一个状态转到另一个状态,每次转移时输出一个符号,转移到了哪个状态以及输出什么符号,分别由状态转移概率和转移时的输出概率来决定,由于只能观测到输出符号序列,不能观测到状态转移序列,因此成为隐藏的马尔可夫模型。

2、语音识别的特点

语音识别的意思是将人说话的内容和意思转换为计算机可读的输入,例如按键、二进制编码或者字符序列等。与说话人的识别不同,后者主要是识别和确认发出语音的人而非其中所包含的内容。语音识别的目的就是让机器听懂人类口述的语言,包括了两方面的含义:第一是逐字逐句听懂而不是转化成书面的语言文字;第二是对作者简介:贾聪,中国地质大学机械与电子信息学院。口述语言中所包含的命令或请求加以领会,做出正确回应,而不仅仅只是拘泥于所有词汇的正确转换。

3、语音识别系统的工作流程

一般来说,一套完整的语音识别系统其工作过程分为7步:①对语音信号进行分析和处理,除去冗余信息。②提取影响语音识别的关键信息和表达语言含义的特征信息。③紧扣特征信息,用最小单元识别字词。④按照不同语言的各自语法,依照先后次序识别字词。⑤把前后意思当作辅助识别条件,有利于分析和识别。⑥按照语义分析,给关键信息划分段落,取出所识别出的字词并连接起来,同时根据语句意思调整句子构成。⑦结合语义,仔细分析上下文的相互联系,对当前正在处理的语句进行适当修正。

4、音识别系统基本原理框图及原理

语音识别系统基本原理结构如图1所示。语音识别原理有三点:①对语音信号中的语言信息编码是按照幅度谱的时间变化来进行;②由于语音是可以阅读的,也就是说声学信号可以在不考虑说话人说话传达的信息内容的前提下用多个具有区别性的、离散的符号来表示;③语音的交互是一个认知过程,所以绝对不能与语法、语义和用语规范等方面分裂开来。

预处理,其中就包括对语音信号进行采样、克服混叠滤波、去除部分由个体发音的差异和环境引起的噪声影响,此外还会考虑到语音识别基本单元的选取和端点检测问题。反复训练是在识别之前通过让说话人多次重复语音,从原始语音信号样本中去除冗余信息,保留关键信息,再按照一定规则对数据加以整理,构成模式库。再者是模式匹配,它是整个语音识别系统的核心部分,是根据一定规则以及计算输入特征与库存模式之间的相似度,进而判断出输入语音的意思。

前端处理,先对原始语音信号进行处理,再进行特征提取,消除噪声和不同说话人的发音差异带来的影响,使处理后的信号能够更完整地反映语音的本质特征提取,消除噪声和不同说话人的发音差异带来的影响,使处理后的信号能够更完整地反映语音的本质特征。

5、当前亟待解决的问题

语音识别系统的性能受到许多因素的影响,包括不同说话人的发音方式、说话方式、环境噪音、传输信道衰落等等。具体要解决的问题有四点:①增强系统的鲁棒性,也就是说如果条件状况变得与训练时很不相同,系统的性能下降不能是突变的。②增加系统的适应能力,系统要能稳定连续的适应条件的变化,因为说话人存在着年龄、性别、口音、语速、语音强度、发音习惯等方面的差异。所以,系统应该有能力排除掉这些差异。达到对语音的稳定识别。③寻求更好的语言模型,系统应该在语言模型中得到尽可能多的约束,从而解决由于词汇量增长所带来的影响。④进行动力学建模,语音识别系统提前假定片段和单词是相互独立的,但实际上词汇和音素的线索要求对反映了发声器官运动模型特点的整合。所以,应该进行动力学建模,从而将这些信息整合到语音识别系统中去。

6、统的组成和分类

根据识别的对象不同语音识别大致上可分为3类:对孤立词识别,对关键词识别和对连续语音识别。其中,孤立词识别的任务是识别事先已知的孤立的词;连续语音识别的任务则是识别任意的连续语音;连续语音流中的关键词检测针对的是连续语音,但它并不识别全③部文字,而只是检测已知的若干关键词在何处出现,根据针对的发音人,可以把语音识别技术分为特定人语音识别和非特定人语音识别,前者只能识别一个或几个人的语音,而后者则可以被任何人使用。

7、语音识别技术应用领域及前景展望

语音识别技术借助飞速发展的高速信息网,可实现计算机的全球联网和信息资源共享,因此被广泛应用的系统有:语音输入和控制系统,语音拨号系统、智能家电及玩具,智能电话查询系统,数据库检索等方面,在咨询服务、教育等行业,正潜移默化地改变和便利着我们的生活。此外,语音识别系统还在多媒体手机、个人掌上电脑、车载导航器GPS等方面有着巨大的应用和市场前景

8、结语

语音识别是非常有发展潜力的一门学科,你可以设想。我们平时生活中很多地方都可以用到它,可以大大便利我们的生活和工作,比如智能手机,智能空调及冰箱,电动门,汽车导航,机器人控制,医疗设施,军事设备等。可以毫不夸张的说,21世纪将会是语音识别广泛流行和普及的时代,而语音识别产品和设备也会以其独特的魅力引领时代潮流,成为时代追逐的宠儿和焦点。



‘肆’ 如何解释语音识别的技术原理

语音识别,是人工智能的重要入口,越来越火。从京东科大讯飞合作的叮咚,亚马逊的明星产品Echo,到最近一个月谷歌Master和网络小度掀起的人机大战,赚够了眼球。但语音只是个入口,内容或者说引导用户做决策乃至消费,才是王道。.语音识别系统,分训练和解码两阶段。训练,即通过大量标注的语音数据训练声学模型,包括GMM-HMM、DNN-HMM和RNN+CTC等;解码,即通过声学模型和语言模型将训练集外的语音数据识别成文字。目前常用的开源工具有HTK Speech Recognition Toolkit,Kaldi ASR以及基于Tensorflow(speech-to-text-wavenet)实现端到端系统。我以古老而又经典的HTK为例,来阐述语音识别领域涉及到的概念及其原理。HTK提供了丰富的语音数据处理,以及训练和解码的工具。语音识别,分为孤立词和连续词语音识别系统。早期,1952年贝尔实验室和1962年IBM实现的都是孤立词(特定人的数字及个别英文单词)识别系统。连续词识别,因为不同人在不同的场景下会有不同的语气和停顿,很难确定词边界,切分的帧数也未必相同;而且识别结果,需要语言模型来进行打分后处理,得到合乎逻辑的结果。

‘伍’ 什么是语音识别技术

音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术,也就是让机器听懂人类的语音。也就是说,如果电脑配置有“语音辨识”的程序组,那么当你的声音通过一个转换装置输入电脑内部、并以数位方式储存后,语音辨识程序便开始以你输入的声音样本与事先储存好的声音样本进行对比工作。声音对比工作完成之后,电脑就会输入一个它认为最“象”的声音样本序号,就可以知道你刚才念的声音是什么意义,进而执行此命令。说起来简单,但要真正建立辨识率高的语音辨识程序组,却是非常困难而专业的,世界各地的学者们也还在努力研究最好的方式。专家学者们研究出许多破解这个问题的方法,如傅立叶转换、倒频谱参数等,使目前的语音辨识系统已达到一个可接受的程度,并且辨识度愈来愈高。
详细可参考中电网网络词条:语音识别技术~

‘陆’ 什么是语音技术

语音技术,一般指语音合成技术和语音识别技术。
分为:
语音合成即Text to Speech(TTS),就是让设备将文本信息转换成语音的形式朗读出来,就像给设备安装上了嘴巴。微软在此领域处于领先地位并有释出产品Microsoft Reader,一个优秀且免费的标准美音TTS。而中文TTS领域则有安徽科大讯飞,其产品讯飞语音电子书,收费软件价格 49元。
语音识别即Automatic Speech Recognition(ASR),就是让设备听懂人的语言。就像给设备安装了耳朵。
总之,语音技术就是让设备“能听会说”,使其更加智能化、人性化。

‘柒’ 语音识别的原理是什么

目前,主流的大词汇量语音识别系统多采用统计模式识别技术。典型的基于统计模式识别方法的 语音识别系统由以下几个基本模块所构成
信号处理及特征提取模块。该模块的主要任务是从输入信号中提取特征,供声学模型处理。同时,它一般也包括了一些信号处理技术,以尽可能降低环境噪声、信道、说话人等因素对特征造成的影响。 统计声学模型。典型系统多采用基于一阶隐马尔科夫模型进行建模。 发音词典。发音词典包含系统所能处理的词汇集及其发音。发音词典实际提供了声学模型建模单元与语言模型建模单元间的映射。 语言模型。语言模型对系统所针对的语言进行建模。理论上,包括正则语言,上下文无关文法在内的各种语言模型都可以作为语言模型,但目前各种系统普遍采用的还是基于统计的N元文法及其变体。 解码器。解码器是语音识别系统的核心之一,其任务是对输入的信号,根据声学、语言模型及词典,寻找能够以最大概率输出该信号的词串。 从数学角度可以更加清楚的了解上述模块之间的关系。首先,统计语音识别的最基本问题是,给定输入信号或特征序列,符号集(词典),求解符号串使得:
W = argmaxP(W | O) 通过贝叶斯公式,上式可以改写为
由于对于确定的输入串O,P(O)是确定的,因此省略它并不会影响上式的最终结果,因此,一般来说语音识别所讨论的问题可以用下面的公式来表示,可以将它称为语音识别的基本公式。 W = argmaxP(O | W)P(W)
从这个角度来看,信号处理模块提供了对输入信号的预处理,也就是说,提供了从采集的语音信号(记为S)到 特征序列O的映射。而声学模型本身定义了一些更具推广性的声学建模单元,并且提供了在给定输入特征下,估计P(O | uk)的方法。
为了将声学模型建模单元串映射到符号集,就需要发音词典发挥作用。它实际上定义了映射的映射。为了表示方便,也可以定义一个由到U的全集的笛卡尔积,而发音词典则是这个笛卡尔积的一个子集。并且有:
最后,语言模型则提供了P(W)。这样,基本公式就可以更加具体的写成:
对于解码器来说,就是要在由,,ui以及时间标度t张成的搜索空间中,找到上式所指明的W。
语音识别是一门交叉学科,语音识别正逐步成为信息技术中人机接口的关键技术,语音识别技术与语音合成技术结合使人们能够甩掉键盘,通过语音命令进行操作。语音技术的应用已经成为一个具有竞争性的新兴高技术产业。
与机器进行语音交流,让机器明白你说什么,这是人们长期以来梦寐以求的事情。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门交叉学科。近二十年来,语音识别技术取得显着进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。语音识别听写机在一些领域的应用被美国新闻界评为1997年计算机发展十件大事之一。很多专家都认为语音识别技术是2000年至2010年间信息技术领域十大重要的科技发展技术之一。

‘捌’ 语音识别技术的简介

语音识别技术的应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。语音识别技术与其他自然语言处理技术如机器翻译及语音合成技术相结合,可以构建出更加复杂的应用,例如语音到语音的翻译。
语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。

‘玖’ 语音识别技术的原理

语音识别系统提示客户在新的场合使用新的口令密码,这样使用者不需要记住固定的口令,系统也不会被录音欺骗。文本相关的声音识别方法可以分为动态时间伸缩或隐马尔可夫模型方法。文本无关声音识别已经被研究很长时间了,不一致环境造成的性能下降是应用中的一个很大的障碍。
其工作原理:
动态时间伸缩方法使用瞬间的、变动倒频。1963年Bogert et al出版了《回声的时序倒频分析》。通过交换字母顺序,他们用一个含义广泛的词汇定义了一个新的信号处理技术,倒频谱的计算通常使用快速傅立叶变换。
从1975年起,隐马尔可夫模型变得很流行。运用隐马尔可夫模型的方法,频谱特征的统计变差得以测量。文本无关语音识别方法的例子有平均频谱法、矢量量化法和多变量自回归法。
平均频谱法使用有利的倒频距离,语音频谱中的音位影响被平均频谱去除。使用矢量量化法,语者的一套短期训练的特征向量可以直接用来描绘语者的本质特征。但是,当训练向量的数量很大时,这种直接的描绘是不切实际的,因为存储和计算的量变得离奇的大。所以尝试用矢量量化法去寻找有效的方法来压缩训练数据。Montacie et al在倒频向量的时序中应用多变量自回归模式来确定语者特征,取得了很好的效果。
想骗过语音识别系统要有高质量的录音机,那不是很容易买到的。一般的录音机不能记录声音的完整频谱,录音系统的质量损失也必须是非常低的。对于大多数的语音识别系统,模仿的声音都不会成功。用语音识别来辨认身份是非常复杂的,所以语音识别系统会结合个人身份号码识别或芯片卡。
语音识别系统得益于廉价的硬件设备,大多数的计算机都有声卡和麦克风,也很容易使用。但语音识别还是有一些缺点的。语音随时间而变化,所以必须使用生物识别模板。语音也会由于伤风、嗓音沙哑、情绪压力或是青春期而变化。语音识别系统比指纹识别系统有着较高的误识率,因为人们的声音不像指纹那样独特和唯一。对快速傅立叶变换计算来说,系统需要协同处理器和比指纹系统更多的效能。目前语音识别系统不适合移动应用或以电池为电源的系统。

‘拾’ 语音识别技术的基本方法

一般来说,语音识别的方法有三种:基于声道模型和语音知识的方法、模板匹配的方法以及利用人工神经网络的方法。 该方法起步较早,在语音识别技术提出的开始,就有了这方面的研究,但由于其模型及语音知识过于复杂,现阶段没有达到实用的阶段。
通常认为常用语言中有有限个不同的语音基元,而且可以通过其语音信号的频域或时域特性来区分。这样该方法分为两步实现:
第一步,分段和标号
把语音信号按时间分成离散的段,每段对应一个或几个语音基元的声学特性。然后根据相应声学特性对每个分段给出相近的语音标号
第二步,得到词序列
根据第一步所得语音标号序列得到一个语音基元网格,从词典得到有效的词序列,也可结合句子的文法和语义同时进行。 模板匹配的方法发展比较成熟,目前已达到了实用阶段。在模板匹配方法中,要经过四个步骤:特征提取、模板训练、模板分类、判决。常用的技术有三种:动态时间规整(DTW)、隐马尔可夫(HMM)理论、矢量量化(VQ)技术。
1、动态时间规整(DTW)
语音信号的端点检测是进行语音识别中的一个基本步骤,它是特征训练和识别的基础。所谓端点检测就是在语音信号中的各种段落(如音素、音节、词素)的始点和终点的位置,从语音信号中排除无声段。在早期,进行端点检测的主要依据是能量、振幅和过零率。但效果往往不明显。60年代日本学者Itakura提出了动态时间规整算法(DTW:DynamicTimeWarping)。算法的思想就是把未知量均匀的升长或缩短,直到与参考模式的长度一致。在这一过程中,未知单词的时间轴要不均匀地扭曲或弯折,以使其特征与模型特征对正。
2、隐马尔可夫法(HMM)
隐马尔可夫法(HMM)是70年代引入语音识别理论的,它的出现使得自然语音识别系统取得了实质性的突破。HMM方法现已成为语音识别的主流技术,目前大多数大词汇量、连续语音的非特定人语音识别系统都是基于HMM模型的。HMM是对语音信号的时间序列结构建立统计模型,将之看作一个数学上的双重随机过程:一个是用具有有限状态数的Markov链来模拟语音信号统计特性变化的隐含的随机过程,另一个是与Markov链的每一个状态相关联的观测序列的随机过程。前者通过后者表现出来,但前者的具体参数是不可测的。人的言语过程实际上就是一个双重随机过程,语音信号本身是一个可观测的时变序列,是由大脑根据语法知识和言语需要(不可观测的状态)发出的音素的参数流。可见HMM合理地模仿了这一过程,很好地描述了语音信号的整体非平稳性和局部平稳性,是较为理想的一种语音模型。
3、矢量量化(VQ)
矢量量化(VectorQuantization)是一种重要的信号压缩方法。与HMM相比,矢量量化主要适用于小词汇量、孤立词的语音识别中。其过程是:将语音信号波形的k个样点的每一帧,或有k个参数的每一参数帧,构成k维空间中的一个矢量,然后对矢量进行量化。量化时,将k维无限空间划分为M个区域边界,然后将输入矢量与这些边界进行比较,并被量化为“距离”最小的区域边界的中心矢量值。矢量量化器的设计就是从大量信号样本中训练出好的码书,从实际效果出发寻找到好的失真测度定义公式,设计出最佳的矢量量化系统,用最少的搜索和计算失真的运算量,实现最大可能的平均信噪比。
核心思想可以这样理解:如果一个码书是为某一特定的信源而优化设计的,那么由这一信息源产生的信号与该码书的平均量化失真就应小于其他信息的信号与该码书的平均量化失真,也就是说编码器本身存在区分能力。
在实际的应用过程中,人们还研究了多种降低复杂度的方法,这些方法大致可以分为两类:无记忆的矢量量化和有记忆的矢量量化。无记忆的矢量量化包括树形搜索的矢量量化和多级矢量量化。 利用人工神经网络的方法是80年代末期提出的一种新的语音识别方法。人工神经网络(ANN)本质上是一个自适应非线性动力学系统,模拟了人类神经活动的原理,具有自适应性、并行性、鲁棒性、容错性和学习特性,其强的分类能力和输入-输出映射能力在语音识别中都很有吸引力。但由于存在训练、识别时间太长的缺点,目前仍处于实验探索阶段。
由于ANN不能很好的描述语音信号的时间动态特性,所以常把ANN与传统识别方法结合,分别利用各自优点来进行语音识别。

阅读全文

与语音技术如何诊断相关的资料

热点内容
王者荣耀如何查看朋友的比赛信息 浏览:172
苏东坡在为民方面有哪些技术贡献 浏览:950
鞍山商铺交易都收什么费用 浏览:434
如何将不同数据导入另一个表格 浏览:354
浙江美的中央空调代理怎么联系 浏览:472
etc哪个软件能查信息 浏览:590
快递镇级代理一年能赚多少 浏览:557
转帐交易显示接触式是什么意思 浏览:558
温州电脑市场和数码广场哪个好 浏览:911
产品验收容易出现哪些问题 浏览:415
政府干预市场的优势和局限是什么 浏览:268
iqooz3怎么清除设置数据 浏览:403
嘀嗒出行线下交易对司机什么影响 浏览:473
出售看过的书如何发信息 浏览:672
如何评估飞猪马蜂窝接入数据 浏览:762
投资市场看哪个行业 浏览:896
猫眼电影小程序怎么删除订单 浏览:754
王者荣耀游戏里怎么清除数据 浏览:528
商丘哪个市场批发种子 浏览:857
鲜奶吧适合卖什么产品 浏览:976