㈠ 国内应用负载均衡比较成熟的技术有哪些
一、应用负载均衡技术:
1)轮循调度(Round-Robin) 它将请求依次分配不同的RS,也就是在RS中均摊请求。这种算法简单,但是只适合于服务器处理性能相差不大的情况。
2)加权轮循调度(Weighted Round-Robin) 它将依据不同服务器的权值分配任务。权值较高的服务器将优先获得任务,并且分配到的连接数将比权值较低的服务器更多。相同权值的服务器得到相同数目的连接数。
3)目的地址哈希调度 (Destination Hashing) 以目的地址为关键字查找一个静态hash表来获得需要的服务器。
4)源地址哈希调度(Source Hashing) 以源地址为关键字查找一个静态hash表来获得需要的服务器。
5)最小连接数调度(Least-Connection),把新的连接请求发送到当前连接数最小的服务器。
6)加权最小连接数调度(Weighted Least-Connection) 假设各台服务器的权值依次为Wi(I = 1..n),当前的TCP连接数依次为Ti(I=1..n),依次选取Ti/Wi为最小的服务器作为下一个分配的服务器。
7)基于地址的最小连接数调度(Locality-Based Least-Connection) 当上一次分配的服务器不忙(此时权重就是最大连接数)时,将当前来自同一目的地址的请求分配给同一台服务器,否则采用加权最小连接数调度算法分配服务器,并以它为下一次分配的首先考虑。
8)基于地址的带重复最小连接数调度(Locality-Based Least-Connection with Replication) 对于某一目的地址,对应有一个服务器子集。对此地址的请求,为它分配子集中连接数最小的服务器;如果子集中所有的服务器均已满负荷,则从集群中选择一个连接数较小的服务器,将它加入到此子集并分配连接;若一定时间内,这个子集未被做任何修改,则将子集中负载最大的节点从子集删除。
9)最短预期延迟调度(Shortest Expected Delay Scheling)(最短延迟调度) 将网络连接分配给具有最短预期延迟的服务器。
计算方式:当前每台服务器的当前连接数Ci,权重为Wi,取(Ci+1)/Wi最小的服务器
10)不排队调度(Never Queue Scheling)(最快调度)当集群中有一台服务器空闲时,就将当前的请求发送给此服务器;否则采用算法9)最短预期延迟算法。
二、链路负载均衡技术:
采用包括策略路由(基于源地址或者目的地址)、Round Robin(轮询)、Weighted Round Robin(加权轮询)、拥塞均衡、备份均衡等算法,充分满足用户差异化需求,最佳利用网络现有带宽资源,实现流出与流入(Inbound & Outbound)流量的多链路负载均衡,为用户建立最佳质量最佳服务的网络环境。
1)流出流量的负载均衡。对于流出流量进行智能的管理,实现多链路下的流出流量均衡,还可以按企业特定的策略选择出站链路,提高链路利用率,节约企业对通信链路的投资。
目的地址策略路由:根据目的IP地址智能选择流出路径,即当目的地址处于某一个ISP的IP地址范围内时,自动选择此ISP提供的链路。
Round Robin(轮询)算法:按照顺序选择多个链路出口作为每个数据流的流出路径
Weighted Round Robin(加权轮询算法):为每条链路设置一个权重值,按照权重顺序选择多个链路出口作为每个数据流的流出路径。在多条不同带宽的链路上,设置不同的权重,可以保证每条链路利用的均衡。
拥塞均衡算法:可以为每条链路设置拥塞阈值,当链路利用率超过阈值时,可以选择其它利用率较低的链路。
备份均衡算法:当两条或多条链路属于同一运营商时,可以将某一条链路设置为备份链路,备份链路在主链路没有拥塞时,一直处于闲置状态,当主链路拥塞后,流量才会进入备份链路。
2)流入流量负载均衡。采用智能DNS均衡算法实现企业入站流量在不同ISP链路上的流量均衡。
源地址策略路由:根据源IP所处的ISP,来进行智能DNS解析,返回属于此ISP的IP地址。
Round Robin算法:顺序将多个ISP的地址作为每次用户解析请求的返回地址。
Weighted Round Robin算法:为每个ISP提供的链路设置权重值,按照权重值顺序选择多个ISP的IP地址返回。
拥塞均衡算法:为每条链路设置拥塞阈值,当链路利用率超过阈值时,返回利用率较低的链路对应的ISP的IP地址。
㈡ 常见的负载均衡技术
四层负责均衡:主要是指通过判断报文的IP地址和端口并通过一定的负载均衡算法来决定转发到哪个指定目标,主要工作在OSI模型的第四层。四层负载均衡对数据包只是起一个数据转发的作用,并不会干预客户端与服务器之间应用层的通信(如:三次握手等)。所以能对数据所进行的操作也就很少,但相对于七层负载均衡来讲效率会高上很多
七层负载均衡:也被称为“内容交换”,指的是负载均衡设备通过报文中的应用层信息(URL、HTTP头部等信息)和负载均衡算法,选择到达目的的内部服务器。七层负载均衡可以“智能化”地筛选报文中 应用层信息,然后根据不同的信息进行特定的负载均衡调度。这种方式提升了应用系统在网络层上的灵活性,另外也在一定程度上提升了后端系统的安全性。因为像网络常见的DoS攻击,这些攻击在七层负载均衡的环境下通常都在负载均衡设备上就截止了,不会影响到后台服务器的正常运行。
前网络中常见的负载均衡主要分为硬件负载均衡和软件负载均衡。硬件负载均衡比较知名的产品有F5 Big-IP、Cirtix Netscaler等等。而软件负载均衡就有着众多的开源项目,常见的有Haproxy、nginx、lvs等。
Haproxy:
lvs:
nginx:
Haproxy可以做代理服务相对于nginx而言有很多相同之处,统一可以基于mode tcp进行四层代理也可以基于mode http进行七层代理,但不同的是其无法使用location和if等进行匹配判断。突出优势在于有会话绑定,web管理界面,状态统计非常详细。官方推荐只启用一个进程,相对于nginx多进程架构工作并不理想,更多的线程可能会受到系统内存的一些限制。
程序环境:
主程序:/usr/sbin/haproxy
主配置文件:/etc/haproxy/haproxy.cfg
Unit file:/usr/lib/systemd/system/haproxy.service
查看配置文件
重要的几个参数,及性能调优,多数无需修改
发现日志发送给本机rsyslog的local2的facility,而本机的rsyslog里并没有定义,需要我们自己去配置
所以vim /etc/rsyslog.conf添加一段将local2的所有信息记录在对应日志文件中
由于HAProxy可以工作在七层模型下,因此,要实现HAProxy的强大功能,一定要使用强大灵活的ACL规则,通过ACL规则可以实现基于HAProxy的智能负载均衡系统。HAProxy通过ACL规则完成两银汪种主要的功能,分别是:
1)通过设置的ACL规则检查客户端请求是否合法。如果符合ACL规则要求,那锋贺仔么将放行;如果不符合规则,则直接中断请求。
2)符合ACL规则要求的请求将被提交到后端的backend服务器集群,进而实现基于ACL规则的负载均衡。HAProxy中的ACL规则经常使用在frontend段中,使用方法如下:
acl 自定义的acl 名称 acl 方法 -i [ 匹配的路径或文件] 其中:
·acl:是一个关键字,表示定义ACL规则的开始。后面需要跟上自定义的ACL名称。
·acl方法:这个字段用来定义实现ACL的方法,HAProxy定义了很多ACL方法,经常使用的方法有hdr_reg(host)、hdr_dom(host)、hdr_beg(host)、url_sub、url_dir、path_beg、path_end等。
·-i:表示不区分大小写,后面需要跟上匹配的路径或文件或正则表达式。与ACL规则一起使用的HAProxy参数还有use_backend,use_backend后面需要跟上一个backend实例名,表示在满足ACL规拍禅则后去请求哪个backend实例,与use_backend对应的还有default_backend参数,它表示在没有满足ACL条件的时候默认使用哪个后端
这些例子定义了www_policy、bbs_policy、url_policy三个ACL规则,第一条规则表示如果客户端以 www.z.cn 或 z.cn 开头的域名发送请求时,则此规则返回true,同理第二条规则表示如果客户端通过 bbs.z.cn 域名发送请求时,则此规则返回true,而第三条规则表示如果客户端在请求的URL中包含“buy_sid=”字符串时,则此规则返回true。
第四、第五、第六条规则定义了当www_policy、bbs_policy、url_policy三个ACL规则返回true时要调度到哪个后端backend,例如,当用户的请求满足www_policy规则时,那么HAProxy会将用户的请求直接发往名为server_www的后端backend,其他以此类推。而当用户的请求不满足任何一个ACL规则时,HAProxy就会把请求发往由default_backend选项指定的server_cache这个后端backend。
与上面的例子类似,本例中也定义了url_static、host_www和host_static三个ACL规则,其中,第一条规则通过path_end参数定义了如果客户端在请求的URL中以.gif、.png、.jpg、.css或.js结尾时返回true,第二条规则通过hdr_beg(host)参数定义了如果客户端以www开头的域名发送请求时则返回true,同理,第三条规则也是通过hdr_beg(host)参数定义了如果客户端以img.、video.、download.或ftp.开头的域名发送请求时则返回true。
第四、第五条规则定义了当满足ACL规则后要调度到哪个后端backend,例如,当用户的请求同时满足host_static规则与url_static规则,或同时满足host_www和url_static规则时,那么会将用户请求直接发往名为static的后端backend,如果用户请求满足host_www规则,那么请求将被调度到名为www的后端backend,如果不满足所有规则,那么将用户请求默认调度到名为server_cache的这个后端backend。
log:全局的日志配置,local0是日志设备,info表示日志级别。其中日志级别有err、warning、info、debug4种可选。这个配置表示使用127.0.0.1上的rsyslog服务中的local0日志设备,记录日志等级为info。
maxconn:设定每个HAProxy进程可接受的最大并发连接数,此选项等同于Linux命令行选项“ulimit -n”。
user/group:设置运行HAProxy进程的用户和组,也可使用用户和组的uid和gid值来替代。
daemon:设置HAProxy进程进入后台运行。这是推荐的运行模式。
nbproc:设置HAProxy启动时可创建的进程数,此参数要求将HAProxy运行模式设置为daemon,默认只启动一个进程。该值的设置应该小于服务器的CPU核数。创建多个进程,能够减少每个进程的任务队列,但是过多的进程可能会导致进程崩溃。
pidfile:指定HAProxy进程的pid文件。启动进程的用户必须有访问此文件的权限。
mode:设置HAProxy实例默认的运行模式,有tcp、http、health三个可选值。
retries:设置连接后端服务器的失败重试次数,如果连接失败的次数超过这里设置的值,HAProxy会将对应的后端服务器标记为不可用。此参数也可在后面部分进行设置。
timeout connect:设置成功连接到一台服务器的最长等待时间,默认单位是毫秒,但也可以使用其他的时间单位后缀。
timeout client:设置连接客户端发送数据时最长等待时间,默认单位是毫秒,也可以使用其他的时间单位后缀。
timeout server:设置服务器端回应客户端数据发送的最长等待时间,默认单位是毫秒,也可以使用其他的时间单位后缀。
timeout check:设置对后端服务器的检测超时时间,默认单位是毫秒,也可以使用其他的时间单位后缀。
bind:此选项只能在frontend和listen部分进行定义,用于定义一个或几个监听的套接字。bind的使用格式为: bind [<address>:<port_range>] interface <interface>其可以为主机名或IP地址,如果将其设置为“*”或“0.0.0.0”,将监听当前系统的所有IPv4地址。port_range可以是一个特定的TCP端口,也可是一个端口范围,小于1024的端口需要有特定权限的用户才能使用。interface为可选选项,用来指定网络接口的名称,只能在Linux系统上使用。
option httplog:在默认情况下,HAProxy日志是不记录HTTP请求的,这样很不方便HAProxy问题的排查与监控。通过此选项可以启用日志记录HTTP请求。
option forwardfor:如果后端服务器需要获得客户端的真实IP,就需要配置此参数。由于HAProxy工作于反向代理模式,因此发往后端真实服务器的请求中的客户端IP均为HAProxy主机的IP,而非真正访问客户端的地址,这就导致真实服务器端无法记录客户端真正请求来源的IP,而X-Forwarded-For则可用于解决此问题。通过使用forwardfor选项,HAProxy就可以向每个发往后端真实服务器的请求添加X-Forwarded-For记录,这样后端真实服务器日志可以通过“X-Forwarded-For”信息来记录客户端来源IP。
option httpclose:此选项表示在客户端和服务器端完成一次连接请求后,HAProxy将主动关闭此TCP连接。这是对性能非常有帮助的一个参数。
log global:表示使用全局的日志配置,这里的global表示引用在HAProxy配置文件global部分中定义的log选项配置格式。
default_backend:指定默认的后端服务器池,也就是指定一组后端真实服务器,而这些真实服务器组将在backend段进行定义。这里的htmpool就是一个后端服务器组。
option redispatch:此参数用于cookie保持的环境中。在默认情况下,HAProxy会将其请求的后端服务器的serverID插入cookie中,以保证会话的session持久性。而如果后端的服务器出现故障,客户端的cookie是不会刷新的,这就会出现问题。此时,如果设置此参数,就会将客户的请求强制定向到另外一台健康的后端服务器上,以保证服务正常。
option abortonclose:如果设置了此参数,可以在服务器负载很高的情况下,自动结束当前队列中处理时间比较长的连接。
-balance:此关键字用来定义负载均衡算法。目前HAProxy支持多种负载均衡算法,常用的有如下几种:
cookie:表示允许向cookie插入SERVERID,每台服务器的SERVERID可在下面的server关键字中使用cookie关键字定义。
option httpchk:此选项表示启用HTTP的服务状态检测功能。HAProxy作为一个专业的负载均衡器,它支持对backend部分指定的后端服务节点的健康检查,以保证在后端backend中某个节点不能服务时,把从frotend端进来的客户端请求分配至backend中其他健康节点上,从而保证整体服务的可用性。
option httpchk的用法如下: option httpchk <method> <uri> <version> 其中,各个参数的含义如下:
check:表示启用对此后端服务器执行健康状态检查。
inter:设置健康状态检查的时间间隔,单位为毫秒。
rise:设置从故障状态转换至正常状态需要成功检查的次数,例如,“rise 2”表示2次检查正确就认为此服务器可用。
fall:设置后端服务器从正常状态转换为不可用状态需要检查的次数,例如,“fall 3”表示3次检查失败就认为此服务器不可用。
cookie:为指定的后端服务器设定cookie值,此处指定的值将在请求入站时被检查,第一次为此值挑选的后端服务器将在后续的请求中一直被选中,其目的在于实现持久连接的功能。上面的“cookie server1”表示web1的serverid为server1。同理,“cookie server2”表示web2的serverid为server2。
weight:设置后端真实服务器的权重,默认为1,最大值为256。设置为0表示不参与负载均衡。
backup:设置后端真实服务器的备份服务器,仅仅在后端所有真实服务器均不可用的情况下才启用。
用nginx反代后端的两台tomcat主机,做动静分离,如果是jsp结尾的就发往后端,否则就交给nginx处理。
在两台tomcat主机上创建应用
nginx配置
则动静分离就实现了,并且我们还基于uri实现了会话粘性