1. 最有前途的制氢方法是什么呢
太阳能电解水制氢,太阳能热化学循环制氢。
利用太阳能生产氢气的系统,有光分解制氢,太阳能发电和电解水组合制氢系统。太阳能制氢是近30~40年才发展起来的。对太阳能制氢的研究主要集中在如下几种技术:热化学法制氢、光电化学分解法制氢、光催化法制氢、人工光合作用制氢和生物制氢。
相关信息:
利用太阳能生产氢气的系统,有光分解制氢,太阳能发电和电解水组合制氢系统,
在传统的制氢方法中,化石燃料制取的氢占全球的90%以上。化石燃料制氢主要以蒸汽转化和变压吸附相结合的方法制取高纯度的氢。利用电能电解水制氢也占有一定的比例。太阳能制氢是近30~40年才发展起来的。对太阳能制氢的研究主要集中在如下几种技术:热化学法制氢、光电化学分解法制氢、光催化法制氢、人工光合作用制氢和生物制氢。
2. 工业制取氢气常用方法有哪些
①电解法将水电解得氢气和氧气。氯碱工业电解食盐溶液制取氯气、烧碱时也副产氢气。电解法能得到纯氢,但耗电量很高,每生产氢气1m3,耗电量达21.6~25.2MJ。化学方程式:2H2O=通电=2H2↑+O2↑
②烃类裂解法此法得到的裂解气含大量氢气,其含量视原料性质及裂解条件的不同而异。裂解气深冷分离得到纯度90%的氢气,可作为工业用氢,如作为石油化工中催化加氢的原料。
③烃类蒸汽转化法烃类在高温和催化剂存在下,可与水蒸气作用制成含氢的合成气。为了从合成气中得到纯氢,可采用分子筛通过变压吸附除去其他气体;也可采用膜分离得到纯氢;用金属钯吸附氢气,可分离出氢气体积达金属的1000倍。
④炼厂气石油炼厂生产过程中产生的各种含氢气体,如催化裂化、催化重整、石油焦化等过程产生的含氢气体,以及焦炉煤气(含氢45%~60%)经过深冷分离,可得纯度较高的工业氢气。
3. 制氢技术有哪些呢
1、蒸汽甲烷重整
蒸汽甲烷重整(SMR)是一种从主要是甲烷的天然气中生产氢气的方法。它是目前最便宜的工业氢气来源。世界上近50%的氢气是通过这种方法生产的。该过程包括在蒸汽和镍催化剂存在下将气体加热到700–1100°C之间。
产生的吸热反应分解甲烷分子并形成一氧化碳CO和氢气H2。然后一氧化碳气体可以与蒸汽一起通过氧化铁或其他氧化物并进行水煤气变换反应以获得更多量的H2.这个过程的缺点是它的副产品是CO2、CO和其他温室气体的主要大气释放。
根据原料(天然气、富气、石脑油等)的质量,生产一吨氢气还会产生9至12吨CO2,这是一种可能被捕获的温室气体。
根据原料(天然气、富气、石脑油等)的质量,生产一吨氢气还会产生9至12吨CO2,这是一种可能被捕获的温室气体。
2、甲烷热解
说明甲烷热解的输入和输出,这是一种生产氢气且无温室气体的高效一步法
甲烷的热解是从天然气中生产氢气的过程。通过流过“气泡塔”中的熔融金属催化剂,氢气分离在一个步骤中进行。这是一种“无温室气体”方法,用于测量潜在的低成本氢气生产,以衡量其扩大规模和大规模运营的能力。该过程在更高的温度(1065°C或1950°F)下进行。
3、电解
电解包括使用电将水分解成氢气和氧气。水的电解效率为70-80%(转化损失为20-30%),而天然气的蒸汽重整的热效率在70-85%之间。电解的电效率预计将在2030年之前达到82-86%,同时随着该领域的进展继续加快,同时也保持耐用性。
水电解可以在50–80°C之间运行,而蒸汽甲烷重整需要700–1100°C之间的温度。两种方法的区别在于使用的一次能源;电力(用于电解)或天然气(用于蒸汽甲烷重整)。
环境影响
截至2020年,大部分氢气由化石燃料生产,导致二氧化碳排放。当排放物释放到大气中时,这通常被称为灰氢,当通过碳捕获和储存(CCS)捕获排放物时,这通常被称为蓝氢。
假设美国上游和中游的甲烷泄漏率和生产通过蒸汽甲烷重整器(SMR)改装了二氧化碳捕获装置。使用具有二氧化碳捕获功能的自热重整器(ATR)可以在令人满意的能源效率下实现更高的捕获率,并且生命周期评估表明,与具有二氧化碳捕获功能的SMR相比,此类工厂的温室气体排放量更低。
经评估,在欧洲应用ATR技术与二氧化碳的综合捕获相比,其温室气体排放量低于燃烧天然气,例如,H21项目报告称,由于二氧化碳强度降低了68%,因此温室气体排放量减少了68%。天然气与更适合捕获二氧化碳的反应器类型相结合。
使用较新的无污染技术甲烷热解生产的氢气通常被称为绿松石氢气。高质量的氢气直接由天然气生产,相关的无污染固体碳不会释放到大气中,然后可以出售用于工业用途或储存在垃圾填埋场。
由可再生能源生产的氢气通常被称为绿色氢气。有两种从可再生能源生产氢气的实用方法。一种是电制气,其中电力用于电解水制氢,另一种是利用垃圾填埋气在蒸汽重整器中制氢。当由风能或太阳能等可再生能源生产时,氢燃料是一种可再生燃料。
通过电解由核能产生的氢有时被视为绿色氢的一个子集,但也可以称为粉红色氢。奥斯卡港核电站于2022年1月达成协议,以每天公斤的数量级供应商业粉红色氢气。
4. 目前制氢的方法有哪些
(1)太阳能电解水制氢。电解水制氢是目前应用较广且比较成熟的方法,效率较高,但耗电大,用常规电制氢成本比较高。
(2)太阳能热分解水制氢。将水或水蒸气加热到3000K(K是热力学单位,3000K约等于3273℃)以上,水中的氢和氧便能分解。这种方法制氢效率高,但需要高倍聚光器才能获得如此高的温度。
(3)太阳能热化学循环制氢。在水中加入一种或几种中间物,然后加热到较低温度,经历不同的反应阶段,最终将水分解成氢和氧,而中间物不消耗,可循环使用。产生污染是这种制氢方法的主要问题。
(4)太阳能光化学分解水制氢。这一制氢过程与上述热化学循环制氢有相似之处,在水中添加某种光敏物质作催化剂,增加对阳光中长波光能的吸收,利用光化学反应制氢。
(5)生物光合作用制氢。科学家发现,兰绿藻等许多藻类在无氧环境中适应一段时间,在一定条件下都可以进行光合放氢。目前,由于对光合作用和藻类放氢机理了解还不够,藻类放氢的效率很低,目前还不能实现工业化产氢。
5. 传统制氢技术是什么
在人类生存的地球上,虽然氢是最丰富的元素,但自然氢的存在极少,因此必须将含氢物质处理后方能得到氢气。氢能是一种二次能源,要开发利用这种理想的清洁能源,必须首先开发氢源,即研究开发各种制氢的方法。氢能属于二次能源,可以由各种一次能源提供,其中包括矿物燃料、核能、太阳能、水能、风能及海洋能等。
含氢最丰富的物质是水,其次就是各种矿物质燃料,主要是煤、石油、天然气以及各种生物质等,因此从长远看,以水为原料制取氢气是最有前途的方法,原料取之不尽,而且氢燃烧释放出能量后又生成产物水,不会对环境造成污染、各种矿物燃料制氢是目前制氢的最主要方法,但其储量有限,并且在制氢过程中不但耗费能源,而且还会对环境造成污染。目前其他各类含氢物质转化制氢的方法尚处于次要地位,有的正在研究开发,但随着氢能应用范围的扩大,对氢源要求不断增加,也不失为一种提供氢源的方法。目前从大的方面讲,制氢技术既有传统的方法,又有一些新的方法。当然,随着科技的发展,还将会有其他的新的制氢方法不断问世。
传统的制氢技术主要有5种,即水电解制氢、矿物燃料制氢、生物质制氢、太阳能制氢以及光化学制氢。具体如下:
6. 氢气有哪些制取方法
煤制氢、生物制氢、电解水、烃类制氢。
7. 生物制氢的方法有哪些
生物制氢的方法:
1、生物发酵制氢装置
2、高效发酵法生物制氢膨胀床设备
3、高效微生物制氢及氢能-电能转化一体化装置
4、利用农作物生物质制氢及氢能发电装置
5、从生物质制取富氢气体的方法和装置
6、利用再生资源制备乙炔气体的方法
7、串行流化床生物质气化制氢装置及方法
8、折流发酵制氢反应设备
9、一种利用污水厂剩余污泥厌氧发酵制氢的方法与装置
10、有机固态物质的连续式超临界水气化制氢方法与装置
11、植物秸秆生物制氢发酵液的制备方法
12、一种生物质制取含氢气体的方法
13、固体热载体催化气化生物质制取富氢气体的方法
14、天然混合厌氧产氢微生物的筛选方法
15、利用工业有机废水生物制氢的方法
16、使用汽爆植物秸秆发酵制备氢气的方法
17、一种海洋绿藻两步法生物光解水制氢方法
18、用农业固体废弃物生产氢气的方法
19、一种生物质下吸式气化炉催化制氢的方法及其装置
20、有机废水处理生物制氢方法与设备
21、一种生物制氢发酵液的制备方法
22、糖类、蛋白质、有机酸生物制氢发酵液的制备方法
8. 制氢技术有哪些呀
制氢技术有:
1.煤制氢
这是当前成本最低的制氢方式,我国实现大规模制氢的首选技术。我国当前的氢气源生产结构仍以煤为主。根据中国煤炭工业协会公开数据显示,2020年中国氢气产量超过2500万吨,其中煤制氢所产氢气占62%、天然气制氢占19%,工业副产气制氢占18%,电解水制氢仅占1%左右。在中国,煤气化制氢适用于大规模制氢,由于原材料煤炭资源丰富,价格较为低廉,已经具备了一定的经济性优势和规模效益。
2.天然气制氢
全球氢气主要来源为天然气,天然气制氢发展潜力大。天然气制氢是北美、中东等地区普遍采用的制氢路线。工业上由天然气制氢的技术主要有蒸汽转化法、部分氧化法以及天然气催化裂解制氢。天然气制氢发展潜力大,但目前存在资源约束和成本较高的问题。
3.石油制氢
多应用在石化行业,石油制氢原料通常不直接用石油制氢,而用石油初步裂解后的产品,如石脑油、重油、石油焦以及炼厂干气制氢。采用炼油副产品石脑油、重质油、石油焦和炼厂干气制氢,在制氢成本上并不具有优势。如果将这些原料用于炼油深加工可以发挥更大的经济效益,因此,不建议将炼油副产品制氢作为炼油厂制氢的发展方向,而应该考虑可再生能源制得的氢气。
4.甲醇制氢
甲醇制氢装置规模灵活,但稳定性、可靠性差。绿色甲醇能量密度高,是理想的液体能源储运方式。利用可再生能源发电制取绿氢,再和二氧化碳结合生成方便储运的绿色甲醇,是通向零碳排放的重要路径。
制氢技术的特点:
1.天然气制氢:虽然适用范围广,但是原料利用率低,工艺复杂,操作难度高,并且生成物中的二氧化碳等温室气体使之环保性降低。
2.工业尾气制氢:利用工业产品副产物,成本较低。但是以焦炉气制氢为例,不仅受制于原料的供应,建设地点需依靠焦化企业,而且原料具有污染性。
3.电解水制氢:产品纯度高、无污染,但是高成本了限制其推广。
4.光解水与生物质制氢:技术尚未成熟,实现商业化还需一定的时间。
9. 制氢的全部方法
1、太阳能电解水制氢。电解水制氢是目前应用较广且比较成熟的方法,效率较高,但耗电大,用常规电制氢成本比较高。
2、太阳能热分解水制氢。将水或水蒸气加热到3000K(K是热力学单位,3000K约等于3273℃)以上,水中的氢和氧便能分解。这种方法制氢效率高,但需要高倍聚光器才能获得如此高的温度。
3、太阳能热化学循环制氢。在水中加入一种或几种中间物,然后加热到较低温度,经历不同的反应阶段,最终将水分解成氢和氧,而中间物不消耗,可循环使用。产生污染是这种制氢方法的主要问题。
4、太阳能光化学分解水制氢。这一制氢过程与上述热化学循环制氢有相似之处,在水中添加某种光敏物质作催化剂,增加对阳光中长波光能的吸收,利用光化学反应制氢。
(9)制氢技术有哪些扩展阅读
太阳能制氢方法步骤
典型的光电化学分解太阳池由光阳极和阴极构成。光阳极通常为光半导体材料,受光激发可以产生电子空穴对,光阳极和对极(阴极)组成光电化学池,在电解质存在下光阳极吸光后在半导体带上产生的电子通过外电路流向阴极,水中的氢离子从阴极上接受电子产生氢气。
半导体光阳极是影响制氢效率最关键的因素。应该使半导体光吸收限尽可能地移向可见光部分,减少光生载流子之间的复合,以及提高载流子的寿命。光阳极材料研究得最多的是TiO2。TiO2作为光阳极,耐光腐蚀,化学稳定性好。而它禁带宽度大,只能吸收波长小于387nm的光子。
10. 制氢新方法有哪些
为了寻求经济实用的制氢方法,各国科学家都在努力探索。除了我们上面谈到的传统制氢方法之外,近些年国外又发现了一些新的方法。这些新的制氢技术主要有:
用氧化亚铜做催化剂从水中制取氢气国外有研究人员将0.5克氧化亚铜粉末加入到0.2升的蒸馏水中,然后用一盏玻璃灯泡中发出的460~650纳米的可见光进行照射,在氧化亚铜催化剂的作用下,水分解成氢和氧。研究人员用这种方法共进行了30次实验,从分解的水中得到了不同比例的氢和氧。
实验过程中发现,如果得到的氧的压力增加到500帕斯卡,水的分解过程就会减慢。氧化亚铜粉末的使用寿命可达1900小时之久。日本东京技术研究所计划进一步研究如何提高氢的产生效率,同事研制能够在波长更长的可见光照射下发挥活性的催化剂,该研究所正在试验一种新的含铜铁合金的氧化物。
用新型的钼化合物从水中制氢
西班牙瓦伦西亚大学的两位科学家发明了一种低成本的从水中制取氢的方法。他们对催化转化器进行改造,仅需要很少的成本就会使水分解。他们用一种从钼中获取的化学产品做催化剂,而不使用电能。如果用氢做原料,用这种方法从半升水中制得的氢足以使一辆小汽车行驶633千米。
用光催化剂反应和超声波照射把水完全分解法制氢以前,曾经有人发现二氧化钛经光(紫外线)照射可分解水的现象。他们本打算应用这一方法制氢,但由于氢和氧的生成量较少,在经济上不划算,从而中断了这一研究。
不久前的研究成果表明,同时使用光催化剂反应和超声波照射的方法能够把水完全分解。这种“超声波光催化剂反应”之所以能使水完全分解,是由于在超声波的作用下,水被分解为氢和双氧水,而双氧水经过光催化反应又可分解成氧和氢。
稍稍令人遗憾的是,超声波照射和二氧化钛光催化剂虽然获得了完全分解水的结果,但氢的生成量却比较少。在添加二氧化锰后,再用超声波照射,二氧化锰分解后的锰离子可溶解到溶液中,使双氧水产氢量增加。