① 腰部CT检查都有哪些内容
一、普通检查 CT扫描无任何外加因素进行多层面轴状位的连续扫描称普通扫描或称平扫。做腰椎常规扫描取仰卧位,同时为减少因腰椎正常的生理前突所造成的伪影,采用双膝屈曲位和垫高双腿。先摄正位或侧位像定位(一般采用侧位定位法),以便确定扫描部位及主机架的最佳倾角。根据临床和病理情况不同,腰椎常用的扫描方法有三种: (1)连续扫描: 取5mm层厚,Smm层距,主机架呈垂直位置,扫描观察区。该方法主要用于要检查部位的骨及软组织结构。特别对骨结构异常如椎管狭窄、小关节病变、椎弓崩裂、肿瘤、炎症、结核等。 (2)椎间盘扫描: 取4-5mm层厚,4-5mm层距。主机架平面与椎间盘平面平行。每个椎间盘扫3-5层,其中上下两层位于椎间隙上下骨质内。一般扫描L3,4,L4,5和L5S1椎间隙。根据需要可加扫L1,2和L2,3椎间隙。观察椎间盘、小关节、黄韧带、神经根、侧隐窝等,此为椎间盘病变的常规检查方法。 (3)薄层扫描: 层厚为2mm,间隔2mm。主机架平面与椎间盘平面平行。当椎间隙变窄或需精确扫描时采用此法。 (4)窗技术: 对脊柱应分别观察骨和软组织结构,一般观察骨,窗宽为1000H,窗位为150H;而观察软组织及椎间盘,窗宽为350H,窗位为50H。 二、增强扫描 静脉注射造影剂后,进行扫描的方法称增强扫描或称强化扫描。血供丰富的组织明显,椎间盘组织无明显变化。脊髓与脊柱病变增强扫描效果不如颅脑系统显着。 三、CT腰椎三维重建 CT只能对腰椎进行横断位扫描,其图像也仅是前后左右的二维图像,重建可显示矢状位、轴状位和冠状位三维图像。采用薄层扫描,范围从上一椎体椎弓根下缘到下一椎体椎弓根上缘,必要时增加扫描层面。扫描线尽量与椎间隙平行。扫描后采用脊柱三维重建软件进行处理显像。螺旋CT多平面重建技术是诊断极外侧型腰椎间盘突出症的可靠方法。 四、椎管造影 CT扫描在蛛网膜下隙内注入含碘的水溶性造影剂后,再行脊柱CT扫描的方法,常用的造影剂有Omnipaque、Isovisi等。多用于脊髓病变或椎管内病变。造影剂的浓度一般为200-300mg/ml,剂量为10-15ml。让病人平卧4-6小时,使造影剂在椎管内很好地弥散。CTM的优点在于造影剂可弥散均匀填满蛛网膜下隙,清晰勾画出脊髓、脊神经及终丝的形态,以便测量脊髓的大小、蛛网膜下隙的宽窄等。注人造影剂后,不可立即进行CT扫描,此时造影剂一方面浓度太高,神经根等组织不易显示,另一方面弥散不均,可能出现伪像,影响诊断。 五、椎间盘造影 CT扫描是在椎问盘内注人造影剂后.再作CT扫描的方法,用于诊断椎间盘病变。一般采用非离子性含碘造影剂,每个椎间盘注入1.5-3.Oml,1-3小时后扫描。目前随着MRI技术的发展,其对一般椎间盘突出的诊断价值已经降低,但它对椎间孔和孔外型椎间盘突出以及椎间盘源性下腰痛有极其重要的诊断价值。 总之,在CT的连续扫描中,还是有很多的结构需要得到足够的关注的,CT增强也是一个很好的选择。祝您身体健康!
② 什么是螺旋CT多平面重组技术
多平面重建(MPR)
医学图库
MPR是从原始的横轴位图象经后处理获得人体组织器官任意的冠状、矢状、横轴、和斜面的二维图象处理方法,与MR图象十分相近,显示全身各个系统器官的形态学改变,尤其在判断颅底、颈部、肺门、纵隔、腹部、盆腔及大血管等解剖结构和器处理官的病变性质、侵及范围、毗邻关系有着明显优势
③ 常用CT影像后处理(三维重建)的方法是
基于CPU的光线投射,基于GPU的三维纹理体绘制
④ CT图像重建主要有哪些步骤
请说得具体点,是扫描过程中将扫描到的信息重建成断层图像还是工作站将现有的断层图像重建成三维图像?
⑤ 多层螺旋ct的后处理技术有哪些
一、窗口技术; 二、兴趣区的测量和确定; 三、图像重建技术:多平面重建,仿真内窥镜技术,仿真内窥镜技术,仿真内窥镜技术; 四、CT血管造影重建 ; 五、C T脑血流灌注成像
⑥ 地球物理计算机层析成像(CT)技术
地球物理CT的发展主要受医学CT的影响。80年代CT技术已在地球物理学研究中得到了实际的应用。我国的地学CT起步稍晚一些,但目前已接近先进国家的水平。在地学CT中,一般通过在钻孔-钻孔、地面-钻孔和井下坑道间发射和接收地震波、声波或电磁波,并将在相应位置上接收到的有关地球物理场的信号经CT处理后得到最终勘测区的图像。与医学CT比较,地球物理CT的目标和参数比较复杂,是一项计算高度密集性的技术。层析成像处理中必须考虑到射线的弯曲,并且还须考虑到发射器和接收器位置难于随意设置的限制。在地学应用的初期,主要用ART(代数重建技术)和SIRT(同步迭代重建技术)的计算方法。近年来,由于专门用于地球物理CT的资料采集仪器和计算技术的发展,CT技术在水、工、环地质方面的应用范围已得到了扩展,在矿区采矿工作面超前探测、岩溶、断裂带等的调查中发挥了有益的作用。以下简单介绍几种目前应用的CT方法。
一、井间地震走时层析成像
根据惠更斯原理和网络理论的最小走时射线追踪为基础的走时层析成像的正演理论及算法,能模拟任意复杂介质射线,保证阴影区也有射线通过。该方法计算速度快,收敛稳定,分辨率高,是目前用于射线追踪的最先进算法。可以利用两种方法来实现惠更斯原理的射线追踪,一是基于网络理论的最短途径算法,另一种是基于动力学的波阵面算法。这两种算法都能模拟直达波、折射波、反射波、散射波和绕射波,而且一次计算即可得到一个共激发点记录的全部走时,计算效果很好。其中以网络理论为基础的寻求最短路径的方法是目前追踪不均匀介质中真实射线的较好方法,适用于层析成像问题中的大量高精度射线的追踪计算。朱介寿等提供的广东某地高层建筑场地的地震走时层析成像资料中,查明了场地的基岩起伏及埋深、10m内溶洞的分布及埋深。
二、利用折射和绕射波作浅层地质层析成像
CT处理专家一致强调精确估计初始模型的重要性。为此,Belfer等将相关反演(初步估算)和层析重建(最后估算)结合起来,试图用于提高初始模型的精度。但后来发现这些计算过于依赖覆盖模型,并且对延伸问题不利。为此他们利用了以相关反演层析成像和异质同形成像的综合方法。该方法可同时利用折射波和绕射波反演。反演中利用折射波走时可以建立低频速度-深度模型。通过对共炮点记录进行线性时间校正,可以得出折射迭加剖面,从该剖面中可取得视截距时间作为初始数据。根据相关反演所得的模型,利用SIRT进行折射层析;利用绕射时距曲线,用异质同形成像以获得关于浅层的连续信息。该新曲线的参数是入射角以及与绕射波有关的波前曲率半径。利用该综合方法,可以提高识别浅层局部目标的可靠性。为验证该方法的实用性,在赫鲁莎伦附近选择一个巷道作为实验探测目标。利用记录资料绘制了初步的速度-深度模型,并将该模型的数据资料用于相关反演。经层析重建处理,得到了包括巷道位置在内的低速异常的影像。在取得的异质同形影像中,可以看到与绕射波有关的尖峰,探测到的分布在巷道边缘的波至也和隧道位置相一致。
三、矿山工作面电磁波高精度CT及其应用
CT技术中,图像重建十分重要,它的数学计算主要包括变换法和代数迭代法。目前地学界以代数迭代法为主作图像重建。代数重建法是依据射线原理,首先对成像条件提出一个初始模型,然后把模型网格化,计算出投影函数的观测值与理论值的残差量。然后将每条射线的残差量以它穿过每一网格的路径长度为权分摊到网格中去。经反复修改模型和反复迭代,直到满足方程收敛条件为止。工作面电磁波透视法采用偶极子天线发射,若在多个发射点上对场强分别作多重观测,便可形成相应的矩阵方程。然后利用SIRT算法计算该矩阵方程,就可以反演各像元的吸收系数值,从而实现工作面成像区内吸收系数反演成像。利用反演计算的成果,可以绘制成像区的吸收系数等直线图和色谱图。该成像技术在国内某矿一条长650m工作面上,作了CT探测,发现异常14个,解译断层12条。工作面电磁波衰减系数CT色谱图上显示中间区段内断层的切割关系以及最大落差位置,修正了原来的推断。该探测的主要成果已被回采工作证实。
⑦ CT三维重建
核磁共振是可以做三维重建的,而且相对于CT的效果要好,因为核磁的精度高一些,扫描间距也可以设置得小一些。对于软组织来说,核磁和CT都是可以的。至于三维重建的问题,你要找认识的医生,否则这是非标准测量,一般的医院医生未必会同意的。拿到扫描的核磁或者CT图片,利用MIMICS软件可以进行三维重建。
恰好我的专业是生物力学,希望我的回答能帮助到你