1. 遥感技术
4.1.1 概述
遥感是 20 世纪 60 年代发展起来的对地观察综合性技术。遥感一词来自英语 RemoteSensing,即“遥远的感知”。广义的理解,泛指一切无接触的远距离探测,包括对电磁场、力场、机械波等的探测,我们一般说的遥感是指狭义理解上的意思,即主要指的是电磁波探测。准确地说,遥感是指应用探测仪器,不与目标物接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
可以概括地说,遥感技术应具备三个要素:
(1)以专用设备(传感器)接收、记录远方地物电磁波辐射(包括反射或地物自身发射)的信号;
(2)将传感器接收的电磁辐射信号形成图像;
(3)通过对图像的处理和分析,不与之接触就可感知远方事物。
根据遥感的定义,遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分。任何目标物都具有发射、反射和吸收电磁波的性质,这是遥感的信息源。目标物与电磁波的相互作用,构成了目标物的电磁波特性,它是遥感探测的依据;接受、记录目标物电磁波的仪器叫传感器,如扫描仪、摄影机、雷达等,而装传感器的平台叫遥感平台,主要有地面平台、空中平台、空间平台;传感器接收目标物的电磁波信息,记录在数字磁介质或胶片上,胶片是由人或回收舱送到地面回收,而数字磁介质上记录的信息则可通过卫星上的微波天线传输给地面的卫星接收站;地面站接收到遥感卫星发送回来的数字信息,记录在高密度的磁介质上如光盘或磁带等,并进行一系列的处理,如信息恢复、辐射校正、卫星姿态校正、投影变换等,再转换成用户可使用的通用数据格式,或转换成模拟信号,才能被用户使用;最后就是应用了,遥感获取信息的目的就是应用,这是由各专业人员按不同的应用目的进行,在应用过程中,也需要大量的信息处理和分析,如不同遥感信息的融合及遥感与非遥感信息的复合等。总之,遥感技术是一个综合性的系统,涉及航空、光电、物理、计算机和信息科学等诸多领域,它的发展与这些相关领域是密不可分的。
4.1.2 遥感影像处理目的和内容
任何遥感系统获得的原始图像数据均是三维景物的二维投影显示,存在不同程度、不同性质的几何形态畸变和辐射量的失真等现象,严重影响其应用效果,必须进行消除处理。概括起来主要包括以下三个方面:
(1)对接收系统获得的遥感信号进行处理和记录,回放出原始遥感影像图,对图像中存在的畸变及失真现象,根据成像机理与相应的构象方程数学模型进行补偿和校正,这可统称为遥感变换和增强处理。
(2)根据人眼的视觉原理与观察事物的特点对遥感图像进行各种变换和增强,以改善和提高遥感图像中反映地物目标特性的视觉效果与可识别性。这可统称为遥感影像的变换和增强。
(3)对原始遥感图像所反映的地物目标波谱特征进行反演、统计和分析解译,提取出地物目标类别及其空间分布等信息。
4.1.3 规模化高效率处理技术
遥感技术作为一种快速、宏观的资源调查手段,近几十年来在土地利用、土地覆盖 / 土地覆被变化调查与研究中的作用得到了公认。多空间尺度、多时间尺度以及多光谱尺度的海量卫星遥感获取技术已经成熟,为土地管理应用提供了丰富的影像数据源,特别近年来高分辨率卫星不断发射升空,遥感影像数据量正在呈几何级数增长,给遥感影像数据处理带来了巨大的困难,也使影像数据应用与管理面临新的挑战。本项目在对河南省海量数据处理中建立了遥感影像规模化高效率的处理技术。主要采用了以下三种处理手段应用到遥感影像处理当中:
(1)基于 SAN 架构遥感影像流程化处理。日益增多的海量多源遥感数据对现有的遥感影像处理产生了巨大的压力,现有的遥感图像处理系统数据处理能力落后于遥感影像的获取能力,遥感影像处理能力已经成为遥感技术应用发展的主要限制因素。产生这种情况的主要原因在于现有的遥感影像处理系统缺乏通用处理流程,海量数据与中间成果的存取、处理、分发受计算机硬件的性能严重制约。针对此情况采用先进的 SAN 架构的存储系统,建立灵活有效的处理流程,当处理任务发生改变时,需要对流程进行必要的调整,一个有效的、可定制的并且方便扩展的处理系统至关重要。
通用流程化的数据处理系统相当于一套规范的数据处理流水线,并且依托 SAN 架构的数据储存作为载体,根据数据处理的要求,很方便地定制所需的数据处理流程。也可以根据数据处理要求的变化而相应地更改数据处理流水线。通过总结众多处理流程的共性,概括出一些基本的处理要素,并且制定处理标准,从而使建立遥感影像流程化处理。
(2)自动和半自动配准技术的应用。配准包括两个主要的步骤:第一步要标注足够数量的控制点,而且要尽量分布均匀;第二步是使用两幅卫星影像中的一幅作为参考图像,将第二幅的地理投影信息和图像数据变换到和第一幅相同。
在探索自动寻找控制点的方法之前,需要先分析好控制点的特性,这样才能有的放矢。
传统手工标注控制点时,一般要求控制点选取在道路、桥梁、建筑等不会随季节等时间因素发生大的改变的地面特征点上,而河流、森林、田地等边界、内部会随着季节、天气发生很大变化的地面特征则不适合作为地面控制点。比如丰水期和枯水期的河道会有宽窄变化,夏季和冬季森林的遥感影像也会有很大的差异。因此,在公路拐点、沿线、桥梁的交叉口、大型建筑的角点等人眼易于分辨定位的地方标注控制点是很好的选择,这样可以方便地在另一张卫星影像上人工找出同名地物点。
此外,在非公路桥梁上的点,如果也是可以由人工易于辨认并修正,那么也可以作为控制点。
可以看到,配准同样也存在着手工标注控制点的瓶颈问题。而且和卫星影像精矫正比起来,配准后的卫星影像匹配程度要求更高,因此更需要大量高质量的控制点。单纯靠手工标注非常耗时,使用控制点影像库也需要积累有大量同一区域的控制点,对于陌生区域的标注无能为力。因此,如果能利用计算机在卫星影像上全自动或者半自动选取控制点,对于提高生产效率是非常有帮助的。
(3)区域网平差整体校正的应用。长期以来,卫星遥感影像的精确定位一直依赖于大量地面控制点,控制点的数量与分布直接影响遥感影像对目标定位的精度。而选用区域网平差进行影像参数模拟,可以在控制点数据库中选取少量的地面控制点,在景间需有一定数量的联接点,就完成影像纠正。校正所需控制点数量较少,可大幅度提高遥感影像处理效率。
2. 遥感技术
“遥感”一词最早由美国海军研究所伊夫林·L·普鲁特提出,1962年在美国密执安大学第一次国际环境遥感讨论会上被采用。遥感是从远距离高空及外层空间的各种平台上利用可见光、红外、微波等电磁波探测仪器,通过摄影或扫描、信息感应、传输和处理,研究地面物体的形状、大小、位置及其环境的相互关系及变化的现代技术学科。
(一)遥感发展概况
遥感的发展可分为两个阶段:第一是航空遥感阶段。第一次世界大战时期,利用飞机上的望远镜和照相机进行侦察。第二次世界大战后,航空遥感不断发展,目前已成为军事侦察和自然资源调查的重要手段。第二是航天遥感阶段。1957年,前苏联发射了第一颗人造地球卫星,开创了从外层空间探测地球的先河。美国航天局在20世纪60年代发射了“雨云”等气象卫星和“阿波罗”等载人航天器,用摄影机拍摄了第一批地球卫星照片。经过长期准备,特别是对各种地物光谱特征和遥感图像数据处理、分析判读技术进行研究后,美国于1972年7月23日发射了第一颗地球资源卫星(ERTS),专门从事地球资源遥感,之后又发射了第二批地球资源卫星(LANDSAT)。1998年,LANDSAT7号卫星发射升空;1999年9月,美国发射了IKONOS商用卫星,它的对地分辨率为1米,标志着美国的民用遥感已远远走在世界的前列。目前,美、俄、法、加、日、英、印、中等国家已成为世界上应用遥感技术较为成熟的国家。
(二)遥感技术及其特点
1.遥感技术的内容
遥感是能源作用下目标反射辐射→介质传输→遥感器→信息处理和应用的一个过程,实现这个过程所采取的各种技术手段统称为遥感技术,具体包括下列内容:
(1)遥感器技术,是专门研究制造感测目标信息和收集目标信息设备的技术。
(2)信息传输技术,是专门研究如何将遥感器收集、记录的信息资料传送到信息处理中心的技术。
(3)实地采样技术,是专门研究收集目标信息特征,为处理目前信息资料时判别目标提供依据的技术。
(4)信息处理技术,是分析判释和应用技术,包括信息数据的压缩、传输和校正技术及图像显示记录技术。
(5)识别分析判释技术以及信息存储和应用技术。
2.遥感技术的转点
遥感技术的主体是空间遥感技术,比较典型的如资源环境监测、气象预报等技术。美国在20世纪70年代初就发射了地球资源技术卫星,后来我国也成功地发射了气象卫星。空间遥感技术具有以下主要特点:
(1)获取信息量大。
(2)资料新颖,能迅速反映动态变化。
(3)获取的信息内容丰富。
(4)成图迅速。
(5)获取信息方便,全天时、全天候,不受地形限制等。
这些特点不仅使人类对宇宙和自然的认识有了新的飞跃,而且还大大增强了人类改造自然、开发和保护资源的能力。
空间遥感技术可以在数百万千米的高度通过遥感平台获取各种大、中、小比例尺的遥感影像,可称之为现代遥感技术。
(三)遥感的发展热点
1.传感器研制日趋深入
(1)遥感分辨率正日益多样化,遥感技术正朝着“宏观”和“微观”两个方向发展。为了满足精确探测物体或大规模研究目的需要,20世纪90年代末期及21世纪初发射的卫星传感器,大都注意把分辨率作为其获取信息的一个重要指标。加拿大于1995年11月发射的RADARSAT卫星4种作业方式下的空间分辨率分别为10米、28米、35米和50/100米,其扫描宽度相应为50千米、100千米、180千米和300/500千米。以色列发射的EROS-A和EROS-B两颗卫星的地面分辨率分别为2米和1米,扫描宽度分别为11千米和30千米。
目前,普遍认为,在卫星各项基本技术条件不变的情况下,缩小扫描范围,降低卫星高度就可以提高分辨率。以美国LANDSAT5为参考来看法国SPOT和以色列的EROS-A、EROS-B卫星,扫描幅度缩小了,而分辨率提高了。目前,各种遥感探测器的分辨率由千米级、百米级,发展到米级、分米级,形成了观察地球及其宇宙空间的影像金字塔,为研究多种自然地理环境提供了丰富的信息源,推动着遥感及其相关学科研究的不断发展。
(2)传感器波段更加细化。传感器的波段是衡量传感器性能优劣的重要参数,针对研究目的的不同,许多传感器设置了专用波段,而且波段的划分也更为精细。
RADARSAT卫星具有25种波束(Fl~F5,S1~S7,W1~W3,SNl~SN2,SWl,H1~H6及L1),加之其SAR数据的获取工作时间是ERS-1和JERS-1工作时间的两倍,因而能满足多领域遥感应用的需要。美国NASA计划1998年发射的EOS地球观测系统空间站搭载0.40~1.041微米的64波段中等分辨率成像光谱仪,0.40~2.50微米的92波段高分辨率成像光谱仪,1.4G赫兹(L波段)与6~90G赫兹6波段高分辨率微波辐射计,还有包括L波段(24厘米)、C波段(5.7厘米)和X波段(3.1厘米)在内的不同极化方式的EOS-SAR合成孔径雷达。可以看出,波段的增多与细分对提高传感器的探测精度及增强传感器的探测目的,具有极其重要的作用。
(3)传感器愈加专业化。针对事先拟定的研究对象及目标,许多遥感平台上都携带了专门的传感器。例如,欧洲空间局(ESA)于1995年4月发射的ERS-2卫星,安装有合成孔径雷达(SAR)和风力散射计组成的主动微波遥感系统(AMl),另外还搭载雷达测高仪、红外扫描仪、全球臭氧监测光谱仪、微波测深仪、精密测距仪以及激光反射仪等传感器,为多层次、多方位地研究环境问题提供了丰富的信息源。
目前,许多传感器都有明确的目的性和专业特点,有专门研究海水温度的传感器,也有为地质找矿设计的传感器,还有研究植被变化的传感器等等。传感器的专业特点愈强,研究的准确性就可能愈高,专题研究就可能愈加深入。
2.应用领域更为广阔
20世纪90年代后期以来的遥感,已远远超出了其发展初期的狭隘范围,并正在向多方位、多层次发展。
(1)资源与环境研究十分活跃。土壤学研究是遥感应用得最为广泛的领域之一,正因为如此,ISPRS第七委员会下设了再生资源、地质矿产资源、土地退化与荒漠化、灾害损失和环境污染、人类居住、陆地生态系统监测、雪、冰、海洋和海岸线监测以及全球监测等10个工作组,这些工作组不同程度地反映了资源与环境遥感的侧重点及发展方向。
在新的世纪,生存与发展成为人类面临的主要问题。世界各国都试图把治理环境、减少灾害作为未来研究的重点,而遥感技术则具有巨大的优越性。美国NASA的LANDSAT、法国的SPOT以及ESA的ERS等,都把地球作为一个研究对象,为科技工作者提供研究臭氧、植被、海水温度、大气状况的基础资料,同时也为人类研究地球,保护自己的家园提供更为翔实的测试信息及图像资料。
(2)宇宙遥感得到了进一步加强。目前遥感的发展已超出了“空对地”的范畴,发展到了“地对空”及“空对空”等多个方面。由美国、俄罗斯、法国等联合开展的火星(Mars)计划,就是宇宙遥感领域的代表。目前,它不仅把整个地球大气圈、水圈、岩石圈作为研究对象,而且把探测范围扩大到地球以外的日地空间。
宇宙遥感的发展,使人们的认识水平及能力不断得到提高,同时也帮助人们探讨一系列重大的学术问题。从目前火星探测器上发回的图像及数据分析中,科学家们已获得了许多有助于研究生命起源、星体形成、宇宙演化等重大问题的基础信息,同时也为进一步研究大地构造和宇宙资源的探测提供帮助。
3.多种高新技术日趋一体化
“3S”技术一体化是目前发展比较活跃的领域,在短短的几年中,数字摄影测量系统(DPS)及专家系统(ES)又悄然与“3S”技术融为一体,出现了所谓的“5S”技术。这些技术的交汇与融合是当今计算机科学和空间科学发展的产物,同时,也推动遥感学科本身以及相关学科(如地球科学、环境科学、城市科学、管理科学等)的相互渗透与相互综合,进而形成一门新的边缘学科——地理信息学,成为信息科学和信息产业的一个重要组成部分。信息科学的发展,又影响到几乎是全球性的生产方式和生活方式的改变,也影响了科学技术本身的发展,Internet的广泛普及使信息获取及共享更为快捷,使计算机渗透到辅助设计、辅助加工、辅助测试分析、经营管理等领域。
(四)地理信息系统与遥感的结合
GIS与RS的结合主要表现为RS是GIS的重要信息源,GIS是处理和分析应用遥感数据的一种强有力的技术保证。两者结合的关键技术在于栅格数据和矢量数据的接口问题:遥感系统数据普遍采用栅格格式,其信息是以像元形式存储的;而GIS数据主要采用图形矢量格式,是按点、线、面(多边形)形式存储的,它们之间的差别是由于影像数据和制图数据采用不同的空间概念表示客观世界的相同信息而产生的。
对于RS与GIS一体化的策略,Ehlers等提出了三个发展阶段:第一阶段,采用数据交换格式把两个软件模式联结起来;第二阶段,两个软件模式具有共同的用户接口,且同时显示;第三阶段,具有复合处理功能的软件体。
(五)遥感的地学实际应用
近年来我国关于RS和GIS结合集成的研究较多,经历了由初步探讨向逐渐成熟发展的过程。其应用主要包括两个方面:一是RS数据作为GIS的信息源;二是GIS为RS提供空间数据管理和分析的手段。张继贤在国内较早提出综合GIS信息中的地学知识和遥感数据可以提高遥感分类的精度,消除应用单一遥感图像判读所存在的若干弊端。但是,两者的结合由于存在数据转换的问题,因而相应软件的研究也很重要。任小虎等在应用RS与GIS集成系统GRAMS的过程中,认为该软件虽然可以实现表面无缝的结合,但是就其内部格式的转换上却还不能实现数据的共享与自由转换。初期的关于RS如何为GIS提供数据和信息的研究也开展得较多,如刘滨谊等在对城乡区域进行规划的过程中,就借助RS作为主要信息源来采集区域信息,并在此基础上进行规划设计。向发灿在对湖北武昌和陕西安塞的土地评价中,也应用RS获取评价因子的值作为信息源,进行复合和叠加,并在此基础上,由GIS进行加工和处理,实现了动态快速的土地资源评价。具体到RS与GIS完全结合与数据格式的转换问题,秦志远提出了“结合锥”的结合模式和混合Freeman链码结构,以解决这一问题。
目前,RS与GIS一体化的集成应用技术渐趋成熟,在植被分类、灾害估算、图像处理等方面均有相关应用报道。在应用GIS的空间分析功能为RS数据提供空间数据管理和分析的研究中,多是考虑GIS的DEM数据、气候、环境等因素的空间分布。如刘纪远等在对中国东北植被综合分类的研究中,探讨了将GIS提供的地理数据与遥感数据复合的可行性,尝试在GIS环境下将气温、降水、高程3个影响区域植被覆盖的主要指标,按一定的地面网格系统和数学模式进行定量化,生成数字地学影像,并使之与经过优化、压缩处理的NOAA-AVHRR数据进行复合,取得了良好的效果。李震等在对青藏高原冰川变化的研究中,以RBV、MSS、TM遥感资料为信息源,提取冰川界线,形成冰川边界图;以GIS为工具分析该冰川群的变化,得出了布喀塔格山峰北部冰川的变化规律。综合应用GIS和RS进行旱情监测、土地利用分类的技术也已相当成熟。黄家柱等充分发挥RS、GIS、计算机制图技术及网络技术等学科前沿的优势,研制了“长江三角洲地区遥感卫星动态决策咨询系统”,代表了RS和GIS结合并综合其他多学科技术的新方法。
3. 遥感技术的未来发展趋势是什么呀
行业主要上市公司:中国卫星(600118)、北斗星通(002151)、雷科防务(002413)、航天电子(600879)、北方导航(600435)、欧比特(300053)、航天宏图(688066)、超图软件(300036)、四维图新(002405)、中科星图(688568)、中科国信(430062)
本文核心数据:遥感卫星存量、商业遥感卫星存量、商业遥感卫星发射量、商业遥感卫星占比、遥感卫星市场规模
行业概况
1、定义
遥感卫星是一种利用卫星上所装载的遥感器对地球表面和低层大气进行光学或电子探测以获取有关信息的应用卫星。用卫星作为平台的遥感技术称为卫星遥感。通常,遥感卫星可在轨道上运行数年。卫星轨道可根据需要来确定。遥感卫星能在规定的时间内覆盖整个地球或指定的任何区域,当沿地球同步轨道运行时,它能连续地对地球表面某指定地域进行遥感。遥感卫星由卫星平台、遥感器、信息处理设备和信息传输设备组成。
目前,我国的非军用遥感卫星主要有民用和商用两类用途,其中民用遥感卫星主要指不以营利为目的,主要服务于国家政府部门、公众业务等的遥感卫星,以国家投资为主;商业遥感卫星主要指以营利为目的,广泛应用于商业市场的遥感卫星,以市场公司投资为主。
以上数据参考前瞻产业研究院《商业遥感卫星行业市场前瞻与投资前景分析报告》。
4. 遥感卫星的成像原理是什么
原理:由于地物各部分反射的光线强 度不同,使感光材料上感光程度不同,形成 各部分的色调不同所致。
在近红外波段,洁净水体的反射率远比土壤和植被的反射率低,所以在卫星图像上可以很容易地区分水体和非水体的界限。
像黄河这样泥沙含量较高的水体,其反射率的最大值移向可见光波段,但仍比土壤和植被为低。这样,在卫星图像上就能够将发生凌汛的地点及其区域判读出来,进而可以根据像元数估算淹没范围和面积。
(4)卫星遥感技术如何进入扩展阅读
特点:
卫星遥感调查具有视点高、视域广、数据采集快和重复、连续观察的特点,获取的资料为数字化,可直接进入用户的计算机图像处理系统。
所有的遥感卫星都需要有遥感卫星地面站,从遥感集市平台获得的卫星数据可监测到农业、林业、海洋、国土、环保、气象等情况,遥感卫星主要有气象卫星、陆地卫星和海洋卫星三种类型。
卫星遥感调查具有传统的调查方法无法比拟的优势。卫星遥感调查在土地资源、森林资源,地质矿产资源、水利资源调查和农作物估产等方面具有广阔的应用前景。