‘壹’ 渤海油田的主要特点
1.2.1.1 地质特征
(1)构造特征
S油田整体构造形态(图1.1)是一个受辽西1号断层控制,呈北东向展布的半背斜构造。构造主体 上次级迟灶断层不发育,除油田边界断层外,油田内只有一条次级断层,该断层没有破坏构造的完整性,仅 在局部控制Ⅱ油组的油水分布,断距约10~30m,延伸较长,约6km。
图1.1 S油田构造图
(2)储层特征
S油田东下段储层沉积相为陆相三角洲沉积。纵向上Ⅲ,Ⅱ,Ⅰ油组分别形成一个单独的沉积旋回。平面上,在油田范围内,沿构造轴向形成了两个相互连接的三角洲朵叶。
Ⅰ,Ⅱ油组两个沉积朵叶砂体在垂向上和平面上的分布和成因规律如下:
1)小层砂体的沉积微相主要由河口坝及水下分流河道组成,水下分流河道占23.7%,河口坝占 33.1%,天然堤占5%,远砂坝占18.2%,分流间湾占8%,浅湖相占12%。
2)东下段储层由南北两朵叶组成(图1.2),各小层南北两朵叶界线清晰,但是受河道摆动的影响,南北两朵叶在各小层之间的界线也左右摆动。南北两朵叶各小层沉积微相分布规律、储层特征存在一定 的差异:
两朵叶局部水流方向有所不同。南朵叶水流方向近东前前西向,而北朵叶水流方向近北西向。
两朵叶各微相空间分布规律不同。南朵码悔扮叶以河口坝为主,伴随少量水下分流河道,并且水下分流河 道多为河道末梢。北朵叶以水下分流河道为主,伴随少量河口坝砂体。
图1.2 S油田朵叶体模式图
3)储集物性:S油田储层疏松,胶结性差,物性较好。常规岩心分析结果表明,大部分样品孔 隙度主要分布在25%~35%之间,油组井点平均孔隙度为32%(图1.3),渗透率主要分布在100~ 1000mD之间(图1.4),平均渗透率为300mD,平均含油饱和度为72%,各油组的储层物性略有差别。孔隙类型以粒间孔为主,其次为溶蚀孔。
图1.3 孔隙度分布图
图1.4 渗透率分布图
(3)油组划分
纵向上分为4个油组(零油组和Ⅰ,Ⅱ,Ⅲ油组)和14个小层(图1.5)。根据小层精细对比、沉 积微相研究,结合流体性质以及油田生产动态资料,认为S油田受岩性及构造的影响,存在多个流体系统。
零油组:受岩性控制的薄层油气层,平面分布不稳定。
Ⅰ油组:地层厚度108~160m,主要岩性为中-细砂岩和泥岩不等厚互层,砂层总厚度10.6~ 89.7m。Ⅰ油组又分为Ⅰ上、Ⅰ下油组,Ⅰ上油组纵向上分为3个小层(1~3小层);Ⅰ下油组纵向上分为 5个小层(4~8小层)。
Ⅰ上油组:与Ⅰ下油组之间发育一套稳定的泥岩隔层,油组内部泥质夹层分布不稳定,在部分井区各 小层砂体纵向上叠置在一起,因此,Ⅰ上油组为一个独立的流体系统。评价井、开发井均未钻遇水层。
Ⅰ下油组第4小层:全油田稳定分布,为一个流体系统。位于构造低部位的C4井钻遇油底-1566.9m,G30井钻遇水顶-1 566.8m。
Ⅰ下油组第5小层:受岩性影响分为南区和北区。5小层南区与4小层、6小层之间发育稳定的泥岩隔层,为独立的流体系统。南区C7井钻遇油水界面,5小层北区与4小层之间泥质夹层发育不稳定,与4小层 为同一个流体系统。G28井钻遇油底。
Ⅰ下油组第6小层:受岩性影响分为南区和北区。6小层南区与7小层之间发育稳定的泥岩隔层,为 独立的流体系统。C6井钻遇油底,G11井钻遇油底,同样6小层北区具有独立的流体系统,H14井钻遇油底。
图1.5 S油田油藏剖面图
Ⅰ下油组第7小层:7小层仅在油田南部发育,与8小层之间发育稳定的泥岩隔层,具有独立的流 体系统。C10井钻遇油水界面。
Ⅰ下油组第8小层:8小层砂体仅在油田南部发育,与Ⅱ油组之间发育稳定的泥岩隔层,位于低部位 的E8井钻遇油底-1573.8m,E13井钻遇水顶-1572.7m,油水界面-1572m。
Ⅱ油组第9小层:受岩性和油田南部次级断层的影响分为西南区和东南区。西南区没有钻遇水层。东南区位于低部位的A5井钻遇油底,A11井钻遇水顶,A10井钻遇油底。另外,在油田中部的B8,F22 井区以及北部的H22,H16井区还发育薄层油气层,储层连通性差,属岩性油气藏。
Ⅱ油组第10小层:受岩性和油田南部次级断层的影响分为北区、西南区、东南区。10小层与9小层、11小层之间发育稳定的泥岩隔层,10小层北区、东南区和西南区各自具有独立的流体系统。
Ⅱ油组11~14小层:11~14小层之间泥质夹层发育不稳定,具有统一的流体系统。
另外,在Ⅰ上油组、Ⅰ下油组第4小层、Ⅱ油组第9小层、Ⅱ油组第11小层、Ⅲ油组分别钻遇气顶。
1.2.1.2 渤海油田地震资料的特点
(1)原有地震数据类型复杂
渤海地区20世纪80年代以来持续开展地震勘探,原始数据的复杂性具体表现在二维地震数据和三 维地震数据的叠合、三维和三维数据的拼接。这些造成构成时移地震基础观测的数据在采集方式、采集 设备和参数、施工条件以及采集时间间隔等方面都存在巨大差异。
(2)采集导航定位精度低
海上采集的地震数据,其导航定位系统是成像、数据比较以及时移地震应用的基础。然而,早期导 航定位系统不够精确,存在10m左右的误差,且不同时期的导航定位系统精度相差较大。
(3)地震资料品质相对较差
由于采集技术本身的限制和渤海地震地质条件的限制,渤海地区的常规地震资料分辨率低,目的层 主频大多在35Hz以下,只能分辨20m以上的储层,且在断层、尖灭点处成像精度更低。
(4)环境和气候条件等直接影响地震采集施工效率和资料品质
渤海水深相对较浅,是我国主要的渔业基地,渔船较多;渤海又是我国海上运输的重要通道;它处 于我国北部,每年11月到次年4月风浪较大,且有冰冻,在一年的时间里大约只有6个月的时间可以进 行地震采集作业。这样的环境和气候条件也给时移地震数据采集提出了挑战。
1.2.1.3 渤海油田开发状况
S油田分两期开发,其中Ⅰ期包括A,B,J三个平台,于1993~1997年陆续投产;Ⅱ期包括C,D,E,F,G,H六个平台,于2000年至2001年陆续投产(图1.6)。到2004年6月份,全油田共有开发井256口(包 括5口水平分支井,1口调整井),其中油井207口,注水井40口。另外水源井9口(有2口为出砂井 转为水源井)。全油田采用反九点法规则井网进行注水开发。
(1)流体性质
地面原油性质:S油田原油具有密度大、粘度高、胶质沥青含量高、含硫量低、含蜡量低、凝固点低 等特点,Ⅰ油组地面原油密度为0.975g/cm3,Ⅱ油组为0.951g/cm3,属重质稠油(图1.7)。
综合地面及地下原油性质分析结果,S油田原油性质分布具有以下规律:在平面上,构造高部位原油 性质明显好于构造低部位。原油粘度在平面上变化较大,同一油组构造高部位的原油粘度明显小于低部位。在纵向上,同一口井Ⅱ油组原油性质要好于Ⅰ油组。
溶解气油比:根据PVT分析结果,Ⅰ油组溶解气油比为26m3/m3,Ⅱ油组为32m3/m3,Ⅲ油组借用Ⅱ 油组值32m3/m3。
(2)油气藏类型和油气水系统
S油田储层分布比较稳定,油层呈层状分布。根据小层精细对比、沉积微相研究,结合流体性质以及 油田生产动态资料,认为S油田受岩性及构造的影响。油藏类型属受岩性影响的在纵向上、横向上存在多个油气水系统的构造层状油气藏,存在多个流体系统。
图1.6 S油田两期开发示意图
图1.7 S油田稠油粘度平面分布图
根据油藏构造形态、油层分布特点以及油气水关系,S油田的油气藏可分为四种类型。
1)馆陶组的底水块状油藏,储层分布稳定,油层分布在构造高处。具有统一的油水界面,海拔 -975m。
2)东营组下段的零油组的层状气藏,其砂层薄,分布不稳定。具有统一的油气界面,海拔-1227m。
3)东营组下段的Ⅰ和Ⅱ油组的多个小气顶的构造层状油藏,其油层厚,分布稳定,是油田的主力 生产层位。Ⅰ和Ⅱ油组各自具有独立的油气水系统,同时受断层、构造和储层的影响,各油组内部又具 有多个油气水系统。油水界面由南向北油水界面抬高,从C区到G区再到H区,Ⅰ油组油水界面海拔 由-1576m到-1565m再到-1543m。
4)东营组下段的Ⅲ油组的构造层状油藏,储层分布主要受潜山古地貌控制,具有一个油水界面(海 拔-1607m)和两个油气界面。
(3)采出程度
全油田叠合含油面积42.5km2。到2006年6月份的采出程度为8.2%。其中A1采出程度10.7%,A2 采出程度17.6%,B采出程度16.2%,C采出程度2.9%,J采出程度9.3%。
1.2.1.4 油田开发面临的问题
作为中国海上最大的自营油田,S油田自1993年投产至今,大部分已进入高含水期,储层物性及流 体性质等均发生了明显变化,油水运动、油水动态分布日趋复杂;受层间、层内、平面三大矛盾制约,注入水沿高渗透层突进,形成严重的无效水驱或低效水驱,造成油田含水高,采出程度低,开发过程中 许多问题凸现,剩余油分布认识不明确,开发调整方案的制订非常困难,已经开始影响到生产:
现象之一:综合含水大幅上升,采油指数降低,进入产量递减阶段,近两年自然递减率为13%。
现象之二:个别井组注入水突进明显,含水较高,纵向上单层突进,平面上单向突破。
现象之三:合采合注的弊端显现,动态数据难以判断单个小层的动用情况与含水状况,注入水的主 要驱油方向认识不清。
现象之四:反九点法规则井网注水开发,Ⅰ期地层压力仍在下降,亏空严重,注水井欠注。
现象之五:部分井组生产动态与原来的小层对比方案存在矛盾。层间非均质及平面非均质严重,部 分砂体连通性差。
究其原因,总结归纳为:
1)油田地质条件太复杂,尽管是三角洲相,但砂岩疏松,砂泥岩互层薄且横向变化快;
2)地震资料的分辨率和信噪比太低,无法真正从地震数据中获得小层信息;
3)稠油水驱;
4)反九点法规则井网;
5)合注合采的开发方案导致层间干扰严重;
6)在依托工程S油田开发阶段的基础研究中,没有真正体现垂向靠井横向靠地震的总体工作思路;
7)不同采集参数、方向、方式等因素的影响尽管已在处理过程中充分考虑,但是条件太复杂,地震 响应特征仍是多因素的综合反映,如何从中提取有关储层和含油气性的信息仍比较困难。
针对S油田的实际状况和上述问题,显然需要认真分析和应用开发动态数据,建立精细油藏地质模 型(第二次静态建模),应用前期研发的大批关键技术,开展时移地震资料的三高处理、匹配处理、地 震差异求取、地震差异综合解释等工作,以求得剩余油分布,提出优化的开发调整方案。
‘贰’ 关于海上石油钻井平台的问题
采油过程中会排放出大量天然气,而目前的技术,钻井过程中的气体是无法回收的,不点燃就排放的话,一旦沉降下来,与空气混合,就是爆炸性气体,遇凳首脊到摩擦引起的电火花就可以引爆混合气体,枣渗爆炸威力足可以毁掉整个钻井平台。
所以就在排放口直接点燃了。一些化工厂或石油处理厂芹梁也有点火塔,在生产中同样会产生类似的气体,就象水放的时间长了会产生水蒸气一样(不过水蒸气无害罢了),解决处理这些废气非常麻烦,不仅种类多,而且大多是易燃易爆的,成本很高,所以只好燃烧掉了。
海上平台的工作海深一般是900~1200米、最大3000米,目前美国壳牌公司的最大钻井深度是3000米。陆地的最大是8875米,在四川。
‘叁’ 我国深海采油技术已经走在世界前列,可为何我国海外油田并不多
开采油田不止需要先进的技术,也要考虑所处的环境。运用先进的技术开采完以后,需要把石油运到合适的地方,这个运送的步骤很难。
利布拉油田是巴西迄今勘探发现的最大规模的单体盐下层区块,且为油的质量上乘,通过开发有望让巴西成为全球主要石油出口国之一,对当地经济发展有重大意义。但是,这块油田处于1英里厚的海盐层之下的深海层,技术上的难题与资金的瓶颈令巴西本土石油公司不得不通过国际合作寻求突破,巴西尚且如此,我国亦然,不能冲动的进行深海采油。尘亩
深海采油固然是开采油田的一个好办法,但是环境问题也不容小觑。我们要在保护环境的前提下与他国合作一起开采油田,不可贸然行动。
‘肆’ 大海中的石油钻井,究竟能承受多大风浪
钻井平台的洞搜地基都是深入海底的穗颤帆,非常牢靠,几乎地球上最强的风浪也不能对钻井平台造成损猜雹伤,抗风能力达到17级以上。
‘伍’ 海上稠油油田开发新模式和少井高产新技术
按中国海油勘探监督手册地质分册(1997.3)规定,稠油系指在温度20℃条件下,原油纳宽相对密度介于0.900~0.940之间的原油;或按我国石油工业行业标准SY/T6169-1995规定,称为稠油的原油系指在油层条件下,原油黏度>50mPa.s,通常相对密度>0.920的原油。
我国在近海油田中,稠油油田基本探明地质储量占海域全部基本探明地质储量的65%,渤海稠油油田地质储量占渤海全部储量的85%,且多集中在一些亿吨级到几亿吨级的大型油田中,可见其举足轻重的地位。更为重要的是,渤海海域是中国海油未来5年原油产量跃升的主要海区,提高稠油油田开发效果和采收腔燃率,是关系到中国海油近期产量大幅度上台阶、今后持续高速发展的重大战略问题。
一、海上稠油油田开发新模式
(一)目前国内海洋油气田开发生产的主要模式
海洋油田的开发模式基本上承袭了陆上油田的开发模式:首先进行一次采油,在开发初期,依靠油藏自身能量开采出部分原油,这期间的主要投资是打井,采油方式是自喷、下泵举升。当地层能量降低到一定程度时,就施以保持地层能量为主要目的的注水、注气开发,进入所谓的二次采油阶段,这期间的主要投资是建立注入系统(包括注入设备、管网等)。迄今为止,国内外海上油田都未采用三次油技术。CNOOC的“十五”规划和2015年发展规划就是按此模式做出的。
从石油工业的发展历史看,一、二、三次采油的原油开发模式的形成是石油生产实际过程,也是人们对石油开采规律的认识不断深入的结果,是石油开发技术不断进步的体现。
(二)这种模式的主要问题
该模式已经被众多陆上油田证明在技术和经济上都是成功的,海上油田采用该模式有利于减少风险,因为其投资是分阶段进行的,且相对分散,利于资金回收。国内外海上油田的开发生产成功实践也证明,利用这种模式来开发我国的海上油田是可行的,但它的问题也很明显,存在着巨大的改革余地和发展潜力。
由于高含水期提高采收率、进一步高产稳产的三次采油技术在国内外并未完全过关,油田现行的开发模式事实上是以水驱提高采收率最大值为基础进行开发方案设计的。一、二阶段划分相当严格清楚,三次采油阶段只作为一种设想而未考虑进去,使实际采收率不超过30%,这样使油田开发生产时间很长,采收率不高,原油洞圆亮产量不高,或高产稳产期短,含水上升快。即使三次采油提高采收率的技术过关,能够实施并达到设计要求,使最终采收率也有所提高,但油田开发期却因此而大大加长。在采收率一定的情况下,油田开发期越长,就意味着其经济效益越低,换言之,这种模式的效益必然不高,或者说现在的油田开发效益的提高尚有巨大空间和余地。
另一方面,从理论上讲,石油勘探开发的核心业务都应同时着重进行两项工作,一是大力进行勘探,尽可能增加储量,一是努力提高原油采收率,以最大限度利用已掌握的资源。但是迄今为止,国内外的石油公司由于历史、社会、经济和传统观念的影响,在制定其核心业务的发展战略时,重点首先在加大勘探力度、增加储量上,对油田开发的重点是如何提高单井产量和油田产量,以及如何延长高产稳产时间,而为实现高产稳产在很大程度上也依赖于找到新储量和动用新储量,很少谈到以尽量提高现有油藏采收率为目标来保证做到高产和稳产。因此多年来一直对水驱后进一步提高油藏采收率的三次采油技术重视不够,以至于至今提高水驱后油藏采收率技术的三次采油技术未能有所突破,这也是这种模式能够一直存在的重要原因。
在现在科技进步已经使这种技术的解决成为可能的情况下,如果把提高油藏采收率作为核心业务的发展战略目标,则有可能为我们核心业务的发展带来更为广阔的发展空间和更大的潜力。因此,现有模式不是适应海上油田开发生产特点的最佳模式,应对其进行实际改革,建立起海上油田开发生产的新模式。
(三)新模式的基本思路
受海洋油田开发环境、特点以及自然条件等因素的限制,海洋石油开发更应该以提高原油采收率和经济效益为中心,即在相对较短(平台使用期)的时间内,在同时考虑最大经济效益和最高原油采收率前提下,快速、高效地开发油田。
如何充分利用先进的原油开发技术,将更多的原油经济快速地开采出来,不仅是经济效益的要求,更是保护资源、合理利用资源的要求。如果以最大限度利用石油资源为目的,目前的做法应该是,根据目前石油开采的最新技术成果和油藏条件,先制定原油采收率目标(特别是在目前大幅度提高采收率的三次采油技术将有可能有所突破和发展的时候,这一点更为重要),再根据海洋油田开发的特点(时间限制)和开发技术现状,反过来制定开发模式、进行经济评价、制定开发方案,从而有可能打破现有模式,带来开发观念的更新,带来更大经济效益和社会效益。
近5~10年来,原油开采技术和为原油开采服务的相关技术领域有很大进步,为海洋石油开发模式的更新和开发效益的提高奠定了技术基础。这些技术包括:提高油井产量类技术(包括水平井采技术、压裂防砂技术、井下举升技术等)、提高原油采收率类技术(如聚合物驱、复合化学驱等)和高分子化学、胶体化学、表面化学及化工合成技术等。在充分考虑这些技术进步的基础上,重新审视、论证海洋油田的开发模式,在促进海洋石油开发技术进步的同时,也必将促进我国相关领域的技术进步。
因此新模式的基本思路是:以目前原油开发领域的最新技术为依托,以最大限度提高原油的采收率为开发指标,以最大经济效益为目标来制定开发方案。
(四)新模式的基本含义
依靠科技进步和科学化的管理,以大幅度提高现有油藏采收率(由20%~25%提高到35%~40%,甚至更高)为基本出发点,来规划、设计发展中国海上油田的开发、生产与经营,在有限的开采期限内,使现有的油气田发挥最大的经济效益,获得更多的原油产量。
a.以尽量提高油藏采收率为开发生产的战略目标(而不是以现有技术能够达到的采收率为目标)进行开发方案设计。①核心业务中,把加大勘探的技术资金投入以寻找更多的储量与尽最大努力提高已掌握的油田采收率放在同等重要位置,而在开发中把努力提高采收率作为开发的战略目标;②加大对提高采收率技术的攻关力度,以尽快形成实用技术作为新模式的先行和技术保证:③以可以提高的最大采收率(目标为35%~40%)为目标进行开发方案设计,并为今后进一步提高采收率留下“接口”。
b.假设化学驱(聚合物驱、复合驱)提高采收率技术已经过关,且行之有效,其中聚合物驱可将水驱后的采收率再提高10%~12%(或更高),复合驱可再提高20%~25%。
c.完全打破一、二、三次采油的严格界限,而把它们作为3种不同情况下的采油和提高采收率的手段和系列技术,按油藏特性和最新的开发开采技术,对3套系列技术进行综合、优化、组配和集成,形成一种能在最短时间内达到油藏最高采收率的技术经济开发模式以及相应的系列配套技术,以实现“在条件允许的尽可能短的时间内,使油田达到尽可能高的采收率”的目标。以渤海油田为例,将ODP规定的现有采收率25%再提高10%~15%,使之达到35%~40%,使一、二、三次采油优化组合,使总开发时间不延长或进一步缩短,不仅使油藏总采油量比原来有大幅度提高,而且使每年原油产量有大幅度提高,油田的综合总投入相对减少,从而获得比现在更大的社会经济效益。
(五)新模式的基本内容
(1)充分应用其他学科的最新成果,改进完善化学驱技术,努力提高海洋油田的最终采收率目前我国海洋油田所用的一次采油和二次采油技术基本过关,完全能够达到ODP规定的指标,而二次采油水驱后的进一步提高采收率的三次采油完全没有考虑。目前投入开发的海洋油田,其整体渗透率高,非均质性也较强,油藏湿度和原油黏度都比较适合以增加驱替相黏度、控制流度为主要机理的化学驱或复合化学驱技术。而目前国内外的聚合驱提高采收率技术已经有了新的发展和重大突破,在可以预见的几年之内就可能达到满足海洋油田三次采油需要的水平。因此,在注水开发中期或早期,采用三次采油技术,配合相应的先进工艺技术和生产设备,可以实现真正意义上的强化采油目的,使最终采收率比原ODP的要求再提高10%~20%成为可能。这也相当于找到了新的石油储量,为CNOOC提高产量,增加石油储备做出技术上的支持,成为新模式的技术及物质基础。
(2)利用高新技术加速一次采油的开采速度,缩短一次采油时间
在不损害油层(或不造成不可逆损害)的前提下,利用先进的技术和设备,修改开发方案,大幅度提高油井产量,大幅度提高油田原油年产量。
在一次采油技术比较完善的情况下,积极采用新技术、新设备,进一步增加原油日产量,缩短一次采油时间,是新模式的第一个环节。利用目前先进的大位移水平井技术,扩大油井控制动用原油面积,提高油井日产量。利用优快钻井完井技术和进一步搞好全过程油层保护技术,进一步提高单井产量。利用多种提液技术,扩大油井的生产能力,搞好现代完井防砂技术,提高油井产量,从而加快一次采油速度,缩短一次采油时间,为实施提高油藏采收率技术赢得时间,也为新模式在更短的时间内生产出更多的原油提供必要的“出口”。
(3)提前进入二次采油阶段
一次采油时间的缩短,相对而言就是提前进入二次采油时期。而更为重要的是,要大力增加油田原油日产量,就需要较以往更为提前注水,以便做到在保持地层能量和驱替机理作用下,使油田维持这个较长的稳产期。在这期间,在合理的井网、合理的注水速度下,提高油藏动用程度,增加产量,在中低含水期使原油高速经济地开采出来,获得较好的经济效益。
(4)缩短注水开发时间,提前进入三次采油阶段
缩短注水开发时间有几方面原因。一是因为海上平台的有效期较短,海上油田的注水开发就不能像陆上油田那样持续很长时间,所以必须为实施提高采收率技术挤出时间。二是因为注水开发中后期的效益不高。随着注水开发的延续,水驱在高渗透层突破时间较短,原油含水率将不断上升,影响油田的产油指数。三是现有研究表明,二次采油和三次采油在本质上并无严格的区别和界限,因此,需要模糊二次采油、三次采油概念,将注水开发与三次采油有机结合成一个整体,提前进入到油田的开发过程中。
综上所述,新模式的特点是:①在CNOOC的核心业务中把努力提高油藏采收率作为油田开发与生产的战略目标,并与勘探放到同样重要的位置上。把“在最短时间内,开采原油达到油藏最大采收率”作为油田开发的指导思想。在现阶段把尽快解决聚合物驱技术、使采收率再提高10%以上作为此模式的基础及技术保证。②利用石油开发生产最新技术,大幅度提高油井产量和油田产能,加快油田开发速度,缩短一次采油时间。③模糊二、三次采油界限,合并这两个阶段,把它作为提高油藏采收率、使油田高产稳产的两项系列技术,加以优化、组合、综合应用,在达到大幅度提高油藏采收率的同时,大大缩短油田开发时间,以获得更大的社会经济效益。
若上述4个环节在技术上、经济上可行,这种模式的结果将是在较短时间内,在保证油田每年高产量的同时,使我国油气资源的利用率大大提高。并且在加快资金回收的同时,相当于用少得多的投资再增加半个到一个同样的油田。这对以经济效益为中心的海洋石油来说,将大大提高海洋资金利用率,降低海洋开发生产的风险。
(六)海洋油田开发新模式的可行性分析
1.大幅度提高年产量的技术、设备、市场可行性分析
在国内,目前石油供求市场处于供大于求的状态,并且这一局面将持续很长时间。国内石油加工企业的加工能力还未达到饱和。同时,随着国民经济的持续健康快速发展以及石油加工技术的进步,对成品油的需求以及石油加工能力还将进一步增加。因此,CNOOC大幅度提供石油年产量不存在市场阻力。
目前,提高油藏开发速度的各种单一技术都相对成熟,或经过短期攻关就能够成熟,只要加以组织、整合与集成,就可以实现加快一次采油速度、缩短一次采油时间的目的。而油藏早期注水技术在我国已是成熟技术,用于此模式中应不是问题。
化学驱提高采收率的三次采油技术是构成新模式的基础和关键。近20~30年来,由于国内外专家(特别是国内)的不懈努力,目前该领域已经取得重大进展,而且已经处于即将突破的前夕。只要集中力量,可望在2~3年内即可突破,形成可用于海洋油田的实用技术,为新模式的建立和应用打下技术基础。
2.我国聚合物驱油技术发展现状
国内外提高原油采收率的理论与实践已经证明,对于适合于聚合物驱和复合驱提高采收率的油藏,只要物驱替液性能达到设计要求,则可将其水驱后的采收率再提高10%~20%。聚合物驱提高采收率技术已经在大庆油田的主力油藏进入工业化应用阶段,其采收率比水驱提高12%,三元复合驱在大庆的先导性证验结果表明,采收率比水驱提高20%。
经过“八五”、“九五”攻关,聚合物驱油已经在我国形成了系列配套技术。具体包括聚合物驱油提高采收率机理研究、聚合物流变性与渗流特性研究、注水后期油藏精细描述研究、聚合物的筛选与评价、聚合物驱油数值模拟、聚合物驱油合理井网设计、防窜及聚合物采出液回注工艺技术、地面配注配套设备、聚合物驱油经济评价等。它们具体应用的规模和效果及水平处于世界领先,但由于聚合物溶液的黏度在更高温度和矿化度条件下无法达到设计要求或因成本太高而没有大面积推广。
与陆上油田相比,海上油田注聚合物驱的主要难点在于:①要求聚合物具有很好的耐盐性,因为海上油田注聚只能采用高矿化度的海水配制,同时,由于环保要求,其产出污水不能直接排放,必须回注;②要求聚合物具有很好的溶解性,因为海上平台空间有限,不允许建大型储液罐;③要求聚合物具有很好的增黏能力,一方面是因为海上注聚成本的要求,另一方面是渤海原油物性的要求,因为渤海油田的地下原油黏度高,为了实现流度控制,必然要求聚合物溶液在经济允许的前提下具有更高的黏度;④要求聚合物具有良好的注入性和抗剪切能力,这是海上油田大井距对聚合物的必然要求。
经过国内专家的不懈努力,在最近10年,以适应恶劣油藏条件下的驱油用聚合物的研制开发取得突破性进展,特别是适合于高温高矿化度油藏化学驱用的新型疏水缔合水溶性聚合物NAPS的研制成功,使聚合物驱和复合化学驱的应用范围大大拓宽,温度已经拓展到90℃,矿化度已经拓展到5×104mg/L,驱油剂的配制条件已经从清水配制拓展到污水配制,从技术上已经具有解决海上油田聚合物驱的上述四大难题的基础条件,为目前中国海上油田采用以提高原油采收率为目标的强化开采模式提供了保证。
图10-7南堡35-2油田产量规划
南堡35-2油田位于渤海中部海域,1996年5月发现,石油地质储量9854×104m3,其中基本探明含油面积16.4km2,地质储量7917×104m3。
南堡35-2油田是一个被断层复杂化的鼻状构造,储层为明化镇组下段和馆陶组,孔隙度在22%~44%之间,渗透率介于50~5000md之间,油层岩性疏松易出砂,原油地面密度介于0.939~0.966g/cm3之间,黏度为196~2010 mPa·s,属于重质稠油,油品差,产量低。
南堡35-2油田是一个复式油气聚集区,具有多种油气类型,由于受构造演化、断层切割和储层分布的影响,油田具有多套油水系统,油水关系复杂,自油田发现以来,进行了多轮油藏研究,均达不到中国海油内部盈利率的需要而未能启动。2003年采用了水平分支井技术,减少了开发井的井数,提高了油井产能(相当于水平井产量的1.2倍),降低了钻完井成本,使南堡35-2油田开发建设项目得以启动。南堡35-2油田能够有效益地开发,为我国海上稠油油田的经济开发展示了很好的前景。
‘陆’ 中国海上油田排名
中国海上油田排名前五的有:渤海油田、南海东部油田、南海西部油田、南海深水油气田和平湖油气田。
1、渤海油田
中国最大的海上油脊颤侍田,2010年渤海油田油气产量达到3000万吨,占中国海油国内总产量的60%,也是原油产量仅次于大庆油田的全国第二大油田。
‘柒’ 海上油气藏精细描述技术
油气藏描述包括对油气田的静态描述和动态描述两部分。静态描述主要指对油气田的构造、储层,三维空间的物性和含油性特征以及分布规律的描述,并计算油气田的油气地质储量。动态描述则是对油气田在开发过程中的地下油气藏基本参数变化,油田、油井产能以及开发开采方式、采收率、产液剖面、吸水剖面等油田生产中动态规律的研究和描述,并用这些动态所反映的油气藏地下实际情况,来修改、完善静态描述提供的地质模型,预测油气田未来动态变化趋势,以及这种变化对油气田生产的影响。同样油田建模也包括静态建模和动态建模。静态模型称为油气田地质模型,动态模型称为油气藏模型。
油气藏精细描述技术,在我国海上是20世纪80年代中期对外合作期间引进发展起来的新技术,是一项融油气田地质、开发地震、岩石物理、油气藏工程研究等技术为一体的油气藏地质综合研究。中国海油使用这项新技术以来,取得了很多曾引起国外专家高度重视和肯定的成果。
最为成功的油气藏描述成果是1987年前后,中国海油向原国家储委提交的绥中36-1油田和东方1-1气田迹誉基本探明储量报告中应用的储量描述技术。其中,绥中36-1油田储量研究工作的油藏描述技术,还在1988年昆明召开的全国储量工作年会上进行了介绍和推广,受到与会陆地各油田储量研究单位专家和领导的赞赏和肯定。提交的绥中36-1油田基本探明储量报告,获1987年度国家优秀储量报告升好奖。这是中国海油组建以来,首次获得的一项国家优秀储量成果奖。东方1-1气田储量报告获1996年度国家储委颁发的储量报告一等奖和1997年国家科委颁发的科技进步三等奖。
一、渤海稠油油田油藏描述
(一)绥中36-1油田
绥中36-1油田,是中国海油在辽东湾海域发现的一个地质储量上亿吨的大油田,也是2000年以后,渤海地质吵州铅实现年产千万吨目标的支柱油田之一。油田现已按预期目标全面建成投产。
油田位于辽东湾水深约30m的海域,西距河北省秦皇岛市102km,北距海上锦州20-2凝析气田4km。在区域构造上,处于辽东湾-下辽河拗陷,辽西低凸起中段绥中36-1构造的中南高点,海域平均水深30m。
1986年6月,在构造北高点,钻探了绥中36-1-1井,在下第三系东营组下段和前新生界风化壳附近见油气显示,于前新生界底部的风化壳试油时,油水同出。
对绥中36-1-1井钻井、测试资料和本区二维地震资料精细研究、解释之后,1987年2月在距绥中36-1-1井南11km处的南高点,以潜山和下第三系东营组为目标,钻探了绥中36-1-2D井。该井在下第三系东营组下段钻遇厚达200多米的疏松砂质岩油层。DST测试时,获折算日产原油93m3、天然气61m3。
绥中36-1油田位于辽西凹陷的东侧的辽西大断层的上升盘,是一个在前新生界基底上发育起来的断裂半背斜。
主要储层段岩性为一套砂质岩与泥岩频繁互层的沉积组合,纵向上分Ⅰ、Ⅱ两个油组,其中I油组(上油组)是油田生产主力油层,每个油组包含若干个厚度不等的薄砂层。油层分布稳定、横向连通好、非均质性强(图9-1)。
图9-1绥中36-1油田储层与油气聚集关系图
油藏类型为一个受岩性影响的、受构造控制的边水层状油藏。油田预计在高部位可能有储量规模不大的气顶。
1.油田早期储量描述
1987年绥中36-1油田第一口发现井获得成功后,结合1口预探井的钻井、取心,测井及试油结果,开展了油田早期预评价。结合已采集的二维地震资料,充分发挥地质、地球物理、岩石物理及石油工程等学科技术优势,用常规油田地质综合研究方法和地质数理统计法,计算了油田控制级石油地质储量,并完成了5口评价井的部署(图9-2)。
图9-14崖城13-1气田开发井位图
1995年,对东方1-1气田的气藏综合描述和储量计算,使中国海油再一次在南海西部海域实现了稀井广探的战略部署,提供的储量报告获当年国家储委储量报告一等奖和1996年度国家科委科技进步三等奖。
(二)崖城13-1气田
崖城13-1气田,是中国海油和美国阿科公司于1983年6月在中国莺歌海盆地联合勘探发现的地质储量约亿万立方米的大气田。气田位于海南岛南部海域,距三亚市100km左右,水深98m。
1983年6月在崖城13-1构造上部署2口探井,其中崖城13-1-1井钻至3822m花岗岩基底完钻。电测解释气层24层141.2m,从3278m到3587mDST测试3层,其中 DST2层(3658.6~3701m)获日产天然气58×104m3,从而发现了崖城13-1气田,它是在南海海域发现的第一个大气田。
崖城13-1气田为一个在基底隆起上发育起来的继承性背斜构造,构造西南部受断层切割而复杂化。以断层为界,主体被断层复杂化为半背斜(图9-14)。主要储集层为下第三系渐新统陵水组三段砂岩,次要储层为上第三系三亚组楔形砂光体A和下第三系陵水组二段的楔形砂光体B,储集层分布较稳定,具有扇三角洲沉积特征。气田具有统一正常温度、压力系统,气藏类型为层状边水气藏。气田主体分布在构造东部,构造高部位储层遭剥蚀。
为了进一步研究气田构造、断层空间展布,落实储量,为开发提供可信的地质依据,1992年阿科公司在气田内采集290km2、测网密度12.5m×12.5m的三维地震资料,并进行室内保幅保真精细处理和反射系数、亮点、瞬时速度、瞬时频率等多项特殊处理。使用这些资料不仅搞清了基岩顶面形态,而且为标定气层顶、底和层间的关系提供了可信的依据。以此为基础,结合钻井试油及测井成果,完成了对气田构造、储层的描述和储量研究,并向国家提供了该气田的基本探明地质储量报告。
崖城13-1气田气藏描述是采用地质综合方法,综合地震信息、地质资料和测井成果在精细三维储层建模基础上完成的。
开发地震研究中,结合8口预探井、评价井的钻探成果,在过井地震记录上用桥式对比法确定了相应储层的地震响应,精细地标定了气层,并根据层序地层学原理划分了5个地震层序,建立了气田3个作图层位、4个不整合面和5个地震层序的地震-地质解释模型和储层沉积模型。通过精细研究,以储量计算单元为制图单元,编制了相应的气层顶、底构造图和气层的等厚图。经钻井标定,搞清了主力气层顶面为一组代表低层速度、低密度、强振幅波谷反射的地震响应。
在此基础上,计算了气田的地质储量(包括证实储量和各级控制储量)。
崖城13-1气田自1983年发现以来,一度引起国内外的关注,继中方完成储量描述后,国内外先后有8家公司参与气田的储量计算。各家公司运用气田的实际资料,背靠背地用崖城13-1气田等厚图进行计算,结果与中方基本一致。1990年7月,国家储委批准了崖城13-1气田储量。崖城13-1气田储量描述最大特色,就是充分发挥了海上地震,特别是三维地震的采集、处理和精细解释的优势,使用了先进的斯伦贝谢测井解释技术和油气田地质综合研究技术。
‘捌’ 海洋石油采油技术是什么
海洋采油技术和陆上采油技术大体相同,举升技术、注入技术、增产技术、修井技术、集输技术几乎都可以照搬陆上工艺。以举升技术为例,除了抽油机采油方法因为占地太大无法使用外,其他举升方式完全一样。海洋常用的采油方法是自喷采油、气举采油、电泵采油和水力泵采油。
但是海洋采油和陆上采油比较,也有自身特点。
第一,海洋采油的安全问题比陆上要更多地被人们关注,因此油井的井底和井口戚数必须设置安全阀,一旦发生意外,安全阀将自动把油井关闭,避免更大损失,也防止原油污染海域。
第二,海洋采油井从设计上就要求油层套管比陆上的尺寸大。目前陆上油田油层多数使用51/2英寸套管,个别地方使用7英寸套管。而海洋一般使用7英寸套管,甚至用95/8英寸油层套管,这是因为海上油井单井产量较高,而且从安全考虑采油管柱下入工具缺仔老较多,同时为追求高产可能会用双管法采油,这都要求油层套管尺寸要大一些。
第三,海洋油井的导管称为隔水导管,除了保护油井外,还要求与平台导管架连接成整体共同承受海浪、浮冰的横向冲击载荷,因此比陆伏升上油井导管尺寸要大、强度要高、下入深度要长。
第四,陆上多为直井,海上多为定向井,海上建筑平台和敷设海底管线耗资昂贵,所以尽量在一个平台多打一些井,例如,一个井口平台可设36口井,其中35口为定向井。
第五,安置在水下的井口越来越多,随着科学技术的进步,人们正由近海向深海进军,试想当水深超过1000米时,井口导管架该是一个多么大的庞然大物,而海上施工机具又该具备何等负载能力?于是人们已经研究并实施安装海底井口底盘,用钻井船通过海底底盘钻出多口定向井,通过潜水员或机器人安装海底采油树。
‘玖’ 海上石油钻井与陆地钻井区别
海上石油钻井与陆地相比,主要有四点不同:
一是如何在水面之上平稳地立起井架,并要经受得住风浪的袭击;
二是在转盘至海底之间,如何建立一个特殊的井口装置悄孙早,把海水与井筒隔绝开来;
三是海上钻井直井少斜井多,必须有保证钻机等钻井设备正常工作的海上钻井平台;
四是海上钻井凯庆费用高,要比陆启雀上钻井高3倍至10倍。