❶ 智能配电网设计简单还是传统配电网设计简单
当然是传统配电网设计简单一点。
配电网是由架空线路、电缆、杆塔、配电变压器、隔离开关、无功补猜盯偿器及一些附属设施等组成的,在电力网中起重要分配电能作用的网络。
配电网按电压等级来分类
可分为高压配电网(35—110KV),中备兆咐压配电网(6—10KV,苏州有20KV),低压配电网(220/380V);
在负载率较大的特大型城市,220KV电网也有配电功能。
按供电区的功能来分类
可分为 城市配电网,农村配电网和工厂配电网等。
在城市电网系统中,主网是指110KV及其以上电压等级的电仿纯网,主要起连接区域高压(220KV及以上)电网的作用
配电网是指35KV及其以下电压等级的电网,作用是给城市里各个配电站和各类用电负荷供给电源
配电网一般采用闭环设计、开环运行,其结构呈辐射状。配电线的线径比输电线的小,导致配电网的 较大。由于配电线路的 较大 使得在输电网中常用的这些算法在配电网的潮流计算中其收敛性难以保证。
❷ 智能输电主要涉及到哪些区域
智能输电主要涉及柔性交/直流输电技术、输变电设备状态监测与运行维护念核管理、输电线路智能化巡检、输电线路运行维护管理集约化等技术领域。
(1)柔仔孝掘性交流输电技术领域:开展柔性输电智能调度、智能运行、关键设备智能监测和控制等基础理论研究;开发控制策略先进、高电压等级、大容量的柔性交流输电装置,包括静止同步慎凯补偿器、静止无功补偿器、可控并联电抗器、晶闸管控制串联电容器、故障电流限制器等;研究配置柔性交流输电装置时的全局性技术问题、与常规控制保护配合问题。
(2)柔性直流输电技术领域:开展百兆瓦级柔性直流输电系统及核心设备的关键技术研究;开展大功率绝缘栅双极型晶体管(IGBT)关键技术研究,提高成套设计、制造、试验能力;研究柔性多端直流输电技术。
(3)输变电设备状态监测与运行维护管理领域:研究开发标准统一、技术先进的输变电设备状态监测装置和系统;研究输变电设备状态监测系统与生产管理系统(PMS)及雷电定位系统的信息集成关键技术;开展智能评估诊断与状态检修技术、智能防灾与仿真技术、标准化与全寿命周期管理技术研究。
(4)输电线路智能化巡检领域:开展直升机/无人机智能巡检应用研究。开发小型化、模块化、标准化的机载巡检设备,实现机载智能巡检系统的集成化、低功耗、嵌入式;研发小型无人机飞行平台;研究无人机飞行控制、导航系统准度和精度控制技术,长距离实时通信技术;开发线路巡检实时数据分析诊断系统。
❸ 配电网自动化终端方法
你是具体什么方法?
配电网网架结构与配电自动化终端协同规划方法
电力建设
农村有源配电网自带樱亮动化终端布局规划方法
一种主动配电网配电自动化终端优化配置方法
智能配电网的配电自动化终端配置方法
配电网自动化终端布局规划方法研究
企业技术开...
查看更多相关论文 >
网络学术
❹ 机械机电系统集成及其智能化考研科目有哪些还有具体的参考书是哪些具体点谢谢了😂
机械机电系统集成及其智能化是机械电子工程专业下设的一个方向,没有指定参考书目。
浙江大学▲☆※机械电子工程专业2015年考研招生简章招生目录
专业代码:080202
研究方向
01机电系亩喊基统集成及智能化
02电液控制技术
03电子-气动控制技术
04测试与信号处理技术
05计算机仿真
06机器人技术
07微机电(MEMS)技术
08应用流体力学
09深海机电装备技术
考试科目
①101政治
②201英一或203日或241德
③301数学一
④845自动控制原理或832机械设计基础或831理论力学或857模拟与数字电子技术(优先考虑选择自动控制原理的考生)
复试科目、复试参考书
面试加笔试
面试:
英语口语、阅读、听力等能力测试,机械电子工程专业综合知识及综合分析判断能力
笔试:
机械电子综合(主要包括:机械原理、机械设计、理论力学、材料力学、电工电子学、自动控制、液压传动、微机原理及接口等)主要考查机电相关基础理论知识
备注:
1、机械电子工程国家重点学科点拥有流体动力与机电系统国家重点实验室和国家电液控制工程技术研究中心的科研条件支撑迅谨。欢迎与机械、电渗蠢子、控制、计算机等相关的理工科专业考生报考。
2、机械工程学系2015年总体拟招收学术学位硕士120人,其中推免生84人左右,拟招收推免生人数以最后确认录取人数为准。
❺ 智能电网重大科技产业化工程“十二五”专项规划的重点任务
风电机组/光伏组件随风速或辐照强度的出力特性、出力波动特性与概率分布;风电场、光伏电站集群出力的时空分布和出力特缺正性;风电场、光伏电站集群控制系统;大型风电基地或大型光伏发电基地的集群控制平台系统示范工程。
大规模间歇式能源发电实时监测技术、出力特性及其对调度计划的影响;大规模间歇式能源发电日前与日内调度策略与模型;省级、区域、国家级范围内逐级间歇式能源消纳的框架体系;多时空尺度间歇式能源发电协调调度策略模型及系统示范工程。
大型风电场接入的柔性直流输电系统分析与建模技术;柔性直流输电系统数字物理混合仿真平台;交/直流混合接入的控制方法;柔性直流输电系统故障分析与保护策略;输电工程关键技术及样机;核心装备研制与示范工程。
间歇式电源基础数据、模型及参数辨识技术;间歇式电源与电网的协调规划技术;间歇式电源并网全过程仿真分析技术;间歇式电源接入电网安全性、可靠性、经济性分析评估理论和方法。
适应高渗透率间隙性电源接入电网的综合规划方法;提高区域电网接纳间歇性电源能力的关键技术;时空互补的区域电网间歇性电源优化调度方法和协调控制策略;风、光、储、水等多种电源多点接入互敏嫌补运行技术;含高渗透率间歇性电源的区域电网防灾技术、应急机制、数字仿真平台和示范应用。
区域性高密度、多接入点光伏系统并网及其与配电网协调关键技术,重点研究屋顶、建筑幕墙与光伏一体化技术,并探索并网运营的商业模式;功率可调节光伏系统与储能系统稳定控制技术、区域性高密度、多接入点光伏系统的电能质量综合调节技术、新型孤岛检测与保护技术、能量管理技术;不同储能系统的高效率智能化双向变流器、新型集中与分散孤岛检测装置、分散计量测控系统和中央测控系统等关键设备。
微网的规划设计理论、方法、综合性能评价指标体系、规划设计支持系统、运行控制技术;微网动态模拟实验平台和微网中央运行管理系统;具有多种能源综合利用的微网示范工程。
大容量储能与间歇式电源发电出力互补机制,储能系统与间歇式电源容量配置技术及优化方法;储能电站提高间歇式电源接入能力应用控制与能量管理技术;储能电站的多点布局方法及广域协调优化控制技术。
多种类型新能源发电集中综合消纳在规划、分析、调度运行、继电保护、安稳控制、防灾应急等领域的关键技术。考虑到我国风光资源丰富区域的电网结构薄弱的特点,发展电源电网综合规划方法,提出时空互补的优化调度方法和协调控制策略,研究高可靠性继电保护与安全稳定协调控制系统,发展防灾技术和应急机制。
不同类型系统故障引起的大型风电场群连锁故障现象,抑制大型风电场群发生连锁故障技术方案,大型风电场群参与系统稳定控制的技术方案,包含系统级的大型风电场群故障穿越综合解决方案及其在大型风电基地上的示范应用。
风电机组、光伏发电系统先进控制技术;新能源发电设备监测与信息化技术;新能源电站的智能协调控制技术与协调控制系统。
含风光储的分布式发电接入配电网控制保护及可靠供电技术、信息化技术;含风光储分布式发电接入配电网的电能质量问题;包含风光储的分布式发电接入配电网示范工程。
综合利用多种技术手段,突破小水电群大规模接入电网的技术瓶颈,减少其对电网安全稳定运行的影响。研究提高小水电群接入消纳能力的电网优化方法和柔性交流、柔性直流输电技术,小水电发电能力预测技术,小水电监测与仿真平台集成技术,小水电与大中型水电站群系统多时空协调控制方法,小水电与风电、火电系统多时空协调控制,提高小水电群接入消纳能力的区域稳定控制理论、控制方法和控制系统。
间歇式能源发电出力的概率分布规律并建立相应的模型,间歇式能源网源协调控制技术,间歇式能源发电伏拿悔系统故障穿越技术,间歇式能源发电系统电气故障诊断及自愈技术。
“风电+抽蓄”的运营模式。设计风电抽蓄联合运行模式,建立包括联合优化模型、联合仿真、安全校核、模拟交易等在内的支撑系统,形成完整的风电抽蓄联合运行管理系统框架。
间歇式电源功率波动特性及其对电网的影响;广域有功功率及频率控制、分层分级无功功率及电压控制技术,电力系统动态稳定性分析及控制技术;机组-场群-电网分级分散协同控制技术;严重故障下新能源电力系统故障演化机理及安全防御策略,考虑交直流外送等方式下的间歇式电源紧急控制、输电系统紧急控制以及其他安控措施的协调控制技术。
含大规模间歇式电源的交直流互联大电网的协调优化运行技术,广域协调阻尼控制技术,状态监测与信息集成技术,实时风险评估技术,智能优化调度和安全防御技术。 电动汽车电池更换站运行特性,更换站作为分布式储能单元接入电网的关键技术和控制策略;电池梯次利用的筛选原则、成组方法和系统方案;更换站多用途变流装置;更换站与储能站一体化监控系统;更换站与储能站一体化示范工程。
电动汽车充电需求特性和规模化电动汽车充电对电网的影响;电动汽车有序充电控制管理系统;电动汽车有序充电试验系统。
电动汽车与电网互动的控制策略和关键技术;电动汽车智能充放电机、智能车载终端和电动汽车与电网互动协调控制系统;电动汽车与电网互动实验验证系统;电动汽车充放电设施检验检测技术。
电动汽车新型充放电技术;电动汽车智能充放电控制策略及检测技术;充电设施与电网互动运行的关键技术。
规模化电动汽车电池更换技术、计量计费、资产管理技术;充电设施运营的商业模式;基于物联网的智能充换电服务网络的运营管理系统建设方案。 基于锂电池储能装置的大容量化技术,包括电池成组动态均衡、电池组模块化、基于电池组模块的储能规模放大、电池系统管理监控及保护等技术;电池储能系统规模化集成技术,包括大功率储能装置及储能规模化集成设计方法、大容量储能系统的监控及保护技术、储能系统冗余及扩容方法、储能电站监控平台。
多类型储能系统的协调控制技术;多类型储能系统容量配置、优化选择准则以及优化协调控制理论体系;基于多类型储能系统的应用工程示范。
单体钠硫电池产品化和规模制备自动化中的关键问题以及集成应用中的核心技术,先进的钠硫电池产业化制备技术,MW级钠硫电池储能电站的集成应用技术。
MW以上级液流电池储能关键技术,5MW/10MWh全钒液流储能电池系统在风力发电中的应用示范,国际领先、自主知识产权的液流电池产业化技术平台。
锂离子电池的模块化成组技术;电池储能系统热量管理技术、状态监控及均衡技术、储能电池检测和评价技术;模块化储能变流技术,及各种不同型式的储能材料与功率变换器的配合原则;基于变流器模块的电池储能规模化系统集成技术,及储能系统电站化技术。
储能系统的特性检测技术;储能系统的应用依据和评估规范;储能系统并网性能评价技术,涵盖电力储能系统的研究、制造、测试、设计、安装、验收、运行、检修和回收全过程的技术标准和应用规范。 智能配电网自愈控制框架、模型、模式和技术支撑体系;含分布式电源/微网/储能装置的配电网系统分析、仿真与试验技术;考虑安全性、可靠性、经济性和电能质量的智能配电网评估指标体系;含分布式电源/微网/储能装置的配电网在线风险评估及安全预警方法、故障定位、网络重构、灾害预案和黑启动技术;智能配电单元统一支撑平台技术;智能配电网自愈控制保护设备和自愈控制系统;智能配电网自愈控制示范工程。
灵活互动的智能用电技术体系架构;智能用电高级量测体系标准、系统及终端技术;用户用电环境(特别是城市微气象)与用电模式的相互影响,不同条件下的负荷特性以及对用电交互终端、家庭用电控制设备的影响;智能用电双向互动运行模式及支撑技术。
智能配用电示范园区规划优化和供电模式优化方法。配电一次设备与智能配电终端的融合与集成技术;配电自动化系统与智能用电信息支撑平台及智能配电网自愈控制系统的集成技术;用电信息采集系统与高级量测系统、智能用电互动平台的集成技术;智能用电小区用户能效管理系统与智能家居的集成技术;智能楼宇自动化系统与建筑用电管理系统的集成技术;分布式储能系统优化配置方法和运行控制技术;提高配电网接纳间歇式电源能力的分布式储能系统优化配置方法和运行控制技术,分布式储能系统参与配电网负荷管理的优化调度方法,配电网分布式储能系统的综合能量管理技术;智能配用电示范园区。
主动配电网的网络结构及其信息控制策略,主动配电网对间歇式能源的多级分层消纳模式,主动配电网与间歇式能源的协调控制技术。
智能配电网下新型保护、量测的原理和算法;智能配用电高性能通信网技术;智能配电网广域测量、自适应保护及重合闸等关键技术;开发智能配电网新型量测、通信、保护成套设备,智能配电网新型量测、通信、保护成套设备的产业化。
智能配电网的优化调度模式、优化调度技术,面向分布式电源、配电网络以及多样性负荷的优化调度方法;包括优化调度系统以及新能源管控设备等关键装备;智能配电网运行状态的安全、可靠、经济、优质等指标评价技术。
钢铁企业等大型工业企业电网的智能配用电集成技术。配电自动化系统与智能用电信息支撑平台及智能配电网自愈控制系统的集成技术;用电信息采集系统与高级量测系统、智能用电互动平台的集成技术;分布式储能系统优化配置方法和运行控制技术。
适于岛屿、油田群的能源高效利用的智能配网集成技术,包括信息支撑平台、自愈控制、用电信息采集、高级量测、用电互动、能效管理、储能系统优化配置和运行控制,建设配网综合示范工程。
高效自治微网群的规划设计及评价体系,稳态运行与多维能量管理技术,多空间尺度微网群自治运行控制器样机,统一调度平台软件,多空间尺度高效自治微网群的示范应用。
孤岛型微电网的频率稳定机理与负荷-频率控制方法,孤岛型微电网的电压稳定机理与动态电压稳定控制方法,大规模可再生能源接入孤岛型微电网的技术,孤岛型微电网系统的示范工程建设及现场运行测试与实证性研究。 电网智能调度一体化支撑关键技术;大电网运行状态感知、整体建模、风险评估与故障诊断技术;多级多维协调的节能优化调度关键技术等。
在线安全分析并行计算平台的协调优化调度技术,复杂形态下在线安全稳定运行综合安全指标、评价方法和实现架构;大电源集中外送系统阻尼控制技术,次同步谐振/次同步振荡的在线监测分析预警及阻尼控制技术;基于广域信息的大电网交直流智能协调控制和紧急控制技术等。 传感器接口及植入技术,电子式互感器(EVT/ECT)的集成设计技术,智能开关设备的技术标准体系及智能化实施方案;具备测量、控制、监测、计量、保护等功能的智能组件技术及其与智能开关设备的有机集成技术;适用于气体介质的压力与微水、高抗振性能的位移、红外定位温度、声学、局部放电信号等传感器及接口技术,各类传感器的可靠性设计技术和检验标准;开关设备运行、控制和可靠性等状态的智能评测和预报技术,智能开关设备与调控系统的信息互动技术,开关设备的程序化和选相合闸控制技术等。
高压设备基于RFID、GPS及状态传感器的一体化识别、定位、跟踪和监控的智能监测模型,输变电设备智能测量体系下的全景状态信息模型;具有数据存储能力、计算能力、联网能力、信息交换和自治协同能力的一体化智能监测装置;基于IEC标准的全站设备状态信息通讯模型和接口体系构架,输变电设备状态信息和自动化信息的集成关键技术,标准化全站设备状态采集和集成设备关键技术;输变电高压设备智能监测与诊断技术,输变电区域内多站的分层分布式状态监测、采集和一体化数据集成、存储、分析应用系统。 智能配用电信息及通信体系与建模方法;智能配用电系统海量信息处理技术;智能配用电信息集成架构及互操作技术;复杂配用电系统统一数据采集技术;智能配用电业务信息集成与交互技术;智能配用电信息安全技术;智能配用电高性能通信网技术等。
电力通信网络技术体制的安全机理与属性;通信安全对智能电网安全稳定运行的影响;保障智能电网各个环节的通信安全技术与组网模式;广域电网实时通信业务可靠传输技术、支持多重故障恢复的通信网自愈与重构技术;电力通信网络的安全监测及防卫防护技术;电力通信网络安全性能优化技术;电力通信网络安全评价体系;智能电网通信网络综合管理与网络智能分析技术,电力通信网综合仿真与测试平台,电力通信智能化网络管理示范工程。
实用的新型电力参量传感器,以及多参量感知集成的无线传感器网络技术、多测点多参量的光纤传感网络技术;多种传感装置的融合技术;电力传感网综合信息接入与传输平台技术;电力物联网编码技术、海量数据存储、过滤、挖掘和信息聚合技术;新一代高性能电力线载波(宽带/窄带)关键通信技术;电力新型特种光缆及试点工程,新型特种光缆设计、制造、试验、施工、运维等配套支撑技术及基本技术框架,新型特种光缆的应用模式和技术方案;智能电网统一通信的应用模式、部署方式和网络架构,统一通信在支撑调度、应急、用电管理等各环节的应用和解决方案。
智能电网统一信息模型及信息化总体框架;电网海量信息的存储结构、索引技术、混合压缩技术、数据并发处理、磁盘缓存管理、虚拟化存储和安全可靠存储机制等信息存储技术;基于计算机集群系统的并行数据库统一视图和接口、并行查优、海量负载平衡和海量并行数据的备份和恢复技术;海量实时数据与非实时数据的整合检索和利用技术;云计算在海量数据处理中的应用技术;海量实时数据库管理系统;高效存储及实时处理智能信息服务平台示范工程。
电网可视信息的模式识别、图形分析、虚拟现实等技术,可视化支撑技术架构;智能监控系统架构,计算机视觉感知方法、智能行为识别与处理算法等关键技术;智能电网双向互动的信息服务平台技术,桌面终端、移动终端、互动大屏幕等多信息展现渠道;智能电网双向互动的信息服务平台示范工程。 静止同步串联补偿器、统一潮流控制器的关键技术,包括主电路拓扑、仿真分析技术、关键组件的设计制造技术、控制保护技术、试验测试技术,开发工业装置并示范应用;利用柔性交流输电设备的潮流控制和灵活调度技术。
高性能、低成本、安装运维方便的高压大容量新型固态短路限流器,包括新型固态限流装置分析建模与仿真技术、固态限流器主电路设计技术、固态限流器的控制与保护策略,工程化的高压大容量新型固态限流装置研制。
面向输电系统应用的高温超导限流器的核心关键技术,包括超导限流装置的限流机理、主电路拓扑、建模和仿真分析、优化设计方法、控制策略、保护系统、试验测试技术,220kV高温超导限流器示范装置研制。
高压直流输电系统用高压直流断路器分断原理理论分析、模型与仿真、直流断路器总体方案、成套电气与结构、关键零部件、系统集成化、成套试验方法、SF6断路器电弧特性等,15kV级直流断路器样机研制及示范工程。
高压输电系统用高压直流陆上和海底电缆的绝缘结构型式、机械和电学特性、绝缘、结构和导电材料选择、成型工艺、相关测试和试验方法、可靠性试验,±320kV级陆上和海底电缆的研制及相关试验测试。
直流输电系统中的直流电流和电压测量方法和技术,直流输电系统直流电流和电压测试系统方法和技术路线,直流输电系统测量装置计量和标定方法,高电位直流电流和直流电压测试系统,全光直流电流互感器和全学直流电压互感器,满足特高压直流输电和柔性直流输电需求的样机及相关试验、认证和示范应用。
换流器拓扑结构和主回路优化、多端柔性直流供电系统分析、计算和仿真;多端直流供电系统与交流供电系统的相互影响和运行方式,研究多端直流供电系统的控制保护系统架构、电压、潮流和电能质量控制方法;紧凑型、模块化换流站设备及其控制保护系统,它们在城市供电中的示范应用。
直流配电网拓扑结构、基本模型、控制保护方案,直流配网仿真模型和技术,直流配电网设计技术,直流配电网换流站关键装备,直流配电网经济安全指标体系和评估方法,考虑各类分布式电源接入和电动汽车充换电设备与电网互动情况下的直流配电网建设和优化运行方案,直流配电网管理和控制系统,直流配电网示范工程及相关技术、装置和系统的有效验证。 在一个相对独立的地域范围,建立一个涵盖发电、输电、配电、用电、储能的智能电网综合集成示范工程,实现智能电网多个领域技术的综合测试、实验和示范,并研究智能电网的可行商业运营模式,形成对未来智能电网形态的整体展示,体现低碳、高效、兼容接入、互动灵活的特点。
智能电网集成综合示范的技术领域包括:
大规模接入间歇式能源并网技术;
与电动汽车充电设施协调运行电网技术;
大规模储能系统;
高密度多点分布式供能系统;
智能配用电系统;
用户与电网的互动技术;
智能电网信息及通信技术。
❻ 智能电网技术的分析
《智能电网技术》主要内容:
智能电网是当前全球电力工业关注的热点,涉及从发电到用户的整个能源转换过程和电力输送链,成为未来电网的发展方向。《智能电网技术》在借鉴国内外相关领域研究结果的基础上,结合正在开展的研究实践工作,对智能电网的概念、主要领域和关键技术、工程实践进行了较为系统、全面的介绍。
全书共分七章。第一章概要介绍智能电网的基本知识和国内外的研究现状,第二章至第七章分别介绍智能电网基础技术、大规模新能源发电及并网技术、智能输电网技术、智能配电网技术、智能用电技术、智能电网实践与展望。附录中对目前智能电网技术标准体系及部分智能电网国际组织与研究机构进行了简要介绍。
《智能电网技术》主要供电力系统管理人员和技术人员使用,也可供政府部门、企事业单位以及高等院校相关人员参考。
智能电网(smart power grids),就是电网的智能化,也被称为“电网2.0”,它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标。
美国电力科学研究院将智能电网 定义为:
一个由众多自动化 的输电和配电系统构成的电力系统,以协调、有效和可靠的方式实现所有的电网 运作,具有自愈功能;快速响应电力市场和企业业务需求;具有智能化的通信 架构,实现实时、安全和灵活的信息流,为用户提供可靠、经济的电力服务。
中国的智能电网的基本特征是在技术上要实现信息化、自动化、互动化。
智能电网概念的发展有3个里程碑:
第一个就是2006年,美国IBM公司提出的“智能电网”解决方案。IBM的智能电网主要是解决电网安全运行、提高可靠性,从其在中国发布的《建设智能电网创新运营管理-中国电力发展的新思路》白皮书可以看出,解决方案主要包括以下几个方面:一是通过传感器 连接资产和设备提高数字化程度;二是数据的整合体系和数据的收集体系;三是进行分析的能力,即型斗山依据已经掌握的数据进行相关分析,以优化运行和管理。该方案提供了一个大的框架,通过对电力生产、输送、零售的各个环节的优化管理,为相关企业提高运行效率及可靠性、降低成本描绘了一个蓝图。是IBM一个市场推广策略。
第二个是奥巴马上任后提出的能源计划,除了已公布的计划,美国还将着重集中对每年要销汪耗费1200亿美元的电路损耗和故障维修的电网系统进行升级换代,建立美卜中国横跨四个时区的统一电网;发展智能电网产业,最大限度发挥美国国家电网 的价值和效率,将逐步实现美国太阳能 、风能、地热能的统一入网管理;全面推进分布式能源管理,创造世界上最高的能源使用效率。
可以看出美国政府的智能电网有三个目的,一个是由于美国电网设备 比较落后,急需进行更新改造,提高电网运营的可靠性;二是通过智能电网建设将美国拉出金融危机的泥潭;三是提高能源利用效率。
第三个是中国能源专家武建东提出的“互动电网”。互动电网,英文为Interactive Smart Grid,它将智能电网的含义涵盖其中。互动电网定义为:在开放和互联的信息模式基础上,通过加载系统数字设备和升级电网网络 管理系统,实现发电、输电、供电、用电、客户售电、电网分级调度、综合服务等电力产业全流程的智能化、信息化、分级化互动管理,是集合了产业革命、技术革命和管理革命的综合性的效率变革。它将再造电网的信息回路,构建用户新型的反馈方式,推动电网整体转型为节能基础设施,提高能源效率,降低客户成本,减少温室气体排放,创造电网价值的最大化。
历史发展
2005年,坎贝尔发明了一种技术,利用的是(Swarm )群体行为原理,让大楼里的电器互相协调,减少大楼在用电高峰期的用电量。坎贝尔发明了一种无线 控制器 ,与大楼的各个电器相连,并实现有效控制。比如,一台空调运转15分钟,以把室内温度维持在24℃;而另外两台空调可能会在保证室内温度的前提下,停运15分钟。这样,在不牺牲每个个体的前提下,整个大楼的节能目标便可以实现。这个技术赋予电器于智能,提高能源的利用效率。
2006年欧盟理事会的能源绿皮书《欧洲可持续的、竞争的和安全的电能 策略》(A European Strategy forSustainable,Competitive and SecureEnergy)强调智能电网技术是保证欧盟电网电能质量的一个关键技术和发展方向。这时候的智能电网应该是指输配电过程中的自动化技术。
2006年中期,一家名叫“网点“(Grid Point)的公司最近开始出售一种可用于监测家用电路耗电量的电子产品,可以通过互联网通信技术调整家用电器的用电量。这个电子产品具有了一部分交互能够,可以看作智能电网中的一个基础设施。
2006 年,美国IBM公司曾与全球电力专业研究机构、电力企业合作开发了“智能电网”解决方案。这一方案被形象比喻为电力系统的“中枢神经系统”,电力公司可以通过使用传感器、计量表、数字控件和分析工具,自动监控电网,优化电网性能、防止断电、更快地恢复供电,消费者对电力使用的管理也可细化到每个联网的装置。这个可以看作智能电网最完整的一个解决方案,标志着智能电网概念的正式诞生。
2007年10月,华东电网正式启动了智能电网可行性研究项目,并规划了从2008年至 2030年的“三步走”战略,即:在2010年初步建成电网高级调度中心,2020年全面建成具有初步智能特性的数字化电网,2030年真正建成具有自愈能力的智能电网。该项目的启动标志着中国开始进入智能电网领域。
2008年美国科罗拉多州的波尔得(Boulder)已经成为了全美第一个智能电网城市,每户家庭都安装了智能电表 ,人们可以很直观地了解当时的电价,从而把一些事情,比如洗衣服、烫衣服等安排在电价低的时间段。电表还可以帮助人们优先使用风电和太阳能等清洁能源。同时,变电站可以收集到每家每户的用电情况。一旦有问题出现,可以重新配备电力。
2008年9月 Google与通用电气联合发表声明对外宣布,他们正在共同开发清洁能源业务,核心是为美国打造国家智能电网。
2009年1月25日美国白宫最新发布的《复苏计划尺度报告》宣布:将铺设或更新3000英里输电线路,并为4000万美国家庭安装智能电表——美国行将推动互动电网的整体革命。2月2 日能源问题专家武建东在《全面推动互动电网革命拉动经济创新转型》的文章中,明确提出中国电网亟须实施“互动电网”革命性改造。
2009年2月4日,地中海岛国马耳他在周三公布了和IBM达成的协议,双方同意建立一个“智能公用系统”,实现该国电网和供水系统数字化。IBM及其合作伙伴将会把马耳他2万个普通电表替换成互动式电表,这样马耳他的电厂就能实时监控用电,并制定不同的电价来奖励节约用电的用户。这个工程价值高达9100万美元(合7000万欧元),其中包括在电网中建立一个传感器网络。这种传感器网络和输电线、各发电站以及其他的基础设施一起提供相关数据,让电厂能更有效地进行电力分配并检测到潜在问题。 IBM将会提供搜集分析数据的软件,帮助电厂发现机会,降低成本以及该国碳密集型发电厂的排放量。
2009年2月10日,谷歌表示已开始测试 名为谷歌电表﹙PowerMeter﹚的用电监测软件。这是一个测试版在线仪表盘,相当于谷歌正在成为信息时代的公用基础设施。
2009年2月28日,作为华北公司智能化电网建设 的一部分——华北电 网稳态、动态、暂态三位一体安全防御及全过程发电控制系统在京通过专家组的验收。这套系统首次将以往分散的能量管理系统、电网广域动态监测系统、在线稳定分析预警系统高度集成,调度人员无需在不同系统和平台间频繁切换,便可实现对电网综合运行情况的全景监视并获取辅助决策支持。此外,该系统通过搭建并网电厂管理考核和辅助服务市场品质分析平台,能有效提升调度部门对并网电厂管理的标准化和流程化水平。
美国谷歌2009年3月3日向美国议会进言,要求在建设“智能电网(Smart Grid)”时采用非垄断性标准。
2010年1月12日,国家电网公司制定了《关于加快推进坚强智能电网建设的意见》,确定了建设坚强智能电网的基本原则和总体目标。
智能电网主要特征要素(Key Elements)
归纳为六点,即具有坚强、自愈、兼容、经济、集成、优化等特征。
(1)坚强(Robust)
在电网发生大扰动和故障时,电网仍能保持对用户的供电能力,而不发生大面积的停电事故;在自然灾害和极端气候条件下、或人为的外力破坏下仍能保证电网的安全运行;具有确保信息安全的能力和防计算机 病毒破坏的能力。
(2)自愈(Self-Healing)
具有实时、在线连续的安全评估和分析能力,强大的预警控制系统和预防控制能力,自动故障诊断、故障隔离和系统自我恢复的能力。
(3)兼容(Compatible)
能支持可再生能源的正确、合理地接入,适应分布式发电 和微电网的接入,能使需求侧管理的功能更加完善和提高,实现与用户的交互和高效互动。
(4)经济(Economic al)
支持电力市场和电力交易的有效开展,实现资源的合理配置,降低电网损耗,提高能源利用效率。
(5)集成(Integrated)
实现电网信息的高度集成和共享,采用统一的平台和模型,实现标准化、规范化和精细化的管理。
(6)优化(Optimized)
通过优化提高资产的利用,降低投资成本和运行维护成本。
❼ 智能配电网的智能配电网的主要技术内容
1) 配电数据通信网络。
2) 先进的传感测量技术 ,如光学或电子互感器、架空线路与电缆温度测量、电力设备状态在线监测、电能质量测量等技术。
3) 先进的保护控制技术,包括广域保护、自适兆脊应保护、配电系统快速模拟仿真、网络重构等技术。
4) 高级配电自动化。
5) 高 级 量 测 体 系 ( Advanced MeteringArchitecture ,AMA)是一个使用智能电表通过多种通信介质 ,按需或以设定的方式测量、收集并分析用户用电数据的系统。
6) DER 并网技术 ,包括 DER 在配电网的“即插即用”以及微族搜渗网(Micro Grid)两部分技术内容。
7) DFACTS是柔性交流输电(FACTS)技术在配电网的延伸 ,包漏友括电能质量与动态潮流控制两部分内容。
8) 故障电流限制技术 ,指利用电力电子、高温超导技术限制短路电流的技术。
❽ 建筑供配电与照明
建筑供配电与照明详细信息
参考价:¥29.60
作者:丁文华,苏娟
主编 出版社:武汉理工大学出版社
出版时间:2008年9月
版 次:1
印刷时间:2008-9-1
开 本:16开
纸 张:胶版纸
印 次:1
包 装:平装
丛书名:高等职业技术教育建筑设备类专业规划教材
国际标准书号ISBN:9787562928171
建筑供配电与照明目录
课题1 供配电系统基本知识
1.1 供配电系统概述
1.1.1 电力系统的基本概念及组成
1.1.2 供配电系统的组成
1.1.3 供配电的基本要求
1.2 额定电压及供电质量
1.2.1 额定电压
1.2.2 供电质量
1.2.3 电压的选择
1.3 电力系统中性点运行方式
1.3.1 电力系统中性点的运行方式
1.3.2 低压配电系统的TN系统
思考题与习题
技能训练
课题2 负荷分级及其计算
建筑供配电与照明内容推荐
本书共分10个课竖庆行题,包括供配电系统基本知识、负荷分级及其计算、10 kV高压配电设计、低压配电系统设计、短路电流及其计算、导线截面及高低压电器选择、继电保护及二次系统、建筑照明与配电设计、防雷与接地以及电源装置等。本书适用于高职高专院校建筑电气工程技术、楼宇智能化工程技术及相关专业的教学用书,也可作为电气工程技术人员的参考书和培训教材。
建筑供配电与照明在线试读
课题1 供配电系统基本知识
1.1供配电系统概述
1.1.1 电力系统的基本概念及组成
电能是现代人们生产和生活的重要能源。它为工业、农业、交通运输和社会生活提供能源。电能既易于由其他形式的能量转换而来,又易于转换为其他形式的能量以供使用。电能的输送和分配既简单、经济,又易于控制、调节和测量,能方便地实现生产过程的自动化。因此,电能已广泛应用到社会生产的各个领域和社会生活的各个方面。
建筑供配电就是指建筑所需电能的供应和分配问题。建筑物所需要的电能绝大多数是由公共电力系统供给的,所以有必要先了解电力系统的基本知识。
电力系统是由发电厂、电力网和电能用户组成的一个发电、输电、变配电和用电的整体。图1.1所示是电力系统的组成。
土巴兔在线免余哗费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:【https://www.to8to.com/yezhu/zxbj-cszy.php?to8to_from=seo__m_jiare&wb】,就能免费领取差首哦~
❾ 电气工程及其自动化专业必看书目有哪些
电气工程及其自动化专业必看书目如下:绝袜激
《智能控制》《自动控制原理及应用》《现代控制工程》《智能控制》《好枣电机控制》《电路分析基础》《模拟电子技术基础》《数字电子技术基础》《微机原理及应用》《现代检测技术》《单片机原理及应用》《电气工程概念》《运动控制系统》《电力系统分析》《信号与系统》《信号与线性系统》《信号与线性系统分析》《计算机网络》《计算机组成原理》《计算机组成原理与汇编语言程序设计》《电气控制与可编程控制器技术》《小型可编程控制器使并袜用技术》《单片机与可变成控制器应用技术》《数字信号处理》《数字信号处理基础及实现》《电力系统分析》《电力系统分析与设计》。
❿ 电表开发新思维:智能电表与"仪器云"融合技术的应用
电表开发新思维:智能电表与"仪器云"融合技术的应用
中国现代电网量测技术平台
张春晖
2017年5月25日
1,采用"仪器云"高精度计算的智能电表远程在线检测系统开发应用正当时!
1)传统的智能电表远程在线检测系统技术发展进程
•2002年,吉林省电科院发布:«多路三相电能表远程微机检测系统的开发»。
•随后,2004年由华中电网举返技术中心,2005年由厦门航空公司,2007年由上海电力表计量测管理所,2007年由云南电力试验研究院,2008年由原河南思达高科公司,2009年由华北电科院,华北电网公司,2010年由太原市优特奥科公司,2010年由郑州三辉电气公司,2014年由郑州瑞能公司相继发表传统的智能电表远程在线检测系统技术研究论文或新产品信息。
•以上传统的智能电表远程在线检测系统发展进程中,系统方案不断改进,其共同特征:需要配备1只标准电能表及计算系统,复杂了互感器二次回路。由于投资较大,目前,只用于部分电网关口计量点,少量110kV及以上高压变电站。同时,现在的智能电表远程在线检测技术,主要对安装于现场的标准表与被检智能电表的计量结果进行比对,而对标准计量装置的送检,维护又成为新问题,对电能计量自动化系统(或用电信息采集系统)的主站也未发挥其可集中实施数据分析,处理功能。
2)本课题的由来
2017年2月,由深圳供电局,清华大学学者发表:«基于"测量仪器云"的电子式电能表远程在线检测系统»提出:智能电表远程在线检测技术开发新思路:在"仪器云"环境下,进行高精度的数据计算,处理,可以替代标准电能表及计算系统,大幅减少互感器二次回路改进工程量,降低系统成本,有利于系统推广应用。该文还给出了用户新配置的高速率数据采集终端实施方案。关于"仪器云",只作简要介绍,未叙述新一代系统设计技术方案。
之前,2014年8月,清华大学学者发表:«云计算环境下仪器虚拟化研究»提出:"仪器云"环境下,仪器虚拟化系统的物理架构及广义的"仪器云"运作程序,未涉及智能电表远程在线检测系统具体案例。
近期,国家电网报就"国网云"平台上线运作作了一些省级电网业务系统迁移上云应用的报道。
再看国网的需求:从2010年至今,国网陆续安装应用三相智能电表约3800万只。从2018年起,这些量多面广的电表进入运行周期为8年的定期轮换更新阶段。为此,2017年初,国网下发«关于2017年计量工作的指导意见(国家电网营销[2017]105号)»文首次提出:"全面推进智能电表状态检测与状态更换工作",其"基础计量工作:全面开展全事件采集工作,提高计量在线监测和智能诊断的准确性"。"状态检测方面:先是完成MDS系统和营销业务系统的配套功能让迟部署,再是按照先主站评价制定计划,再开展现场检测的原则,开展 I ,II , III 类用户计量装坦答李置的电能表状态检测"。
可见,由于国网计量部门未推广应用传统的智能电表远程在线检测系统,三相智能电表的状态检测,只能依靠现场检测,局部考核的方法。可以说,运行三相智能电表计量准确性的宽负荷范围,24h持续考核是道技术难题。因此,研究符合国网:全面推行三相智能电表状态检测与状态更换要求的新一代智能电表远程在线检测系统开发与应用正当时!
3)本文作者经汇总以上新情况并将新一代系统具体化后,编写出:«电表开发新思维:智能电表与"仪器云"融合技术的应用»。本文重点叙述采用"仪器云"高精度计算的智能电表远程在线检测系统开发项目,还讨论智能电表与"仪器云"融合技术的拓展应用开发项目及市场前景评估,供参考。
2,采用"仪器云"高精度计算的智能电表远程在线检测系统开发项目
1)云计算环境下,仪器虚拟化技术
本部分内容主要录用于«云计算环境下仪器虚拟化技术研究»:
"仪器的虚拟化技术是实现仪器程序控制和远方测量的基础"。"很多原来由硬件设备完成的仪器功能,都可通过软件算法来完成,从而使仪器的开发和使用成本大为降低"。
云计算功能中有一项基础设施即服务(IAAS)模式:
"IAAS模式的基本思想是将CPU,内存,存储设备,网络设备等IT 基本硬件资源通过虚拟机管理程序(VMH)进行虚拟化,然后按需分配给运行于上层的虚拟机(VM)。对用户来说,每个虚拟机(VM)实例就相当于1台带网络功能的自定义计算机或服务器"。
"目前,云计算中应用最广泛的是硬件级虚拟化技术,因为这种技术的效率最高"。
"硬件级虚拟化技术中,虚拟机与物理硬件具有相同的指令集合,虚拟机的绝大多数指令可以直接在硬件上执行"。
"仪器虚拟化新模式,将远程仪器模拟成云平台本地的硬件设备直接接入到虚拟机管理程序(VMH)中,告知VMH有仪器接入云中,而不提供任何与仪器操作相关的具体信息或功能"。
IAAS模式下的远程测量方式:
仪器----(总线连接)----仪器提供者----(网络连接)----仪器虚拟化:CPU/内存/硬盘----虚拟机管理程序(VMH)----虚拟机(VM):与仪器虚拟化及其CPU/内存/硬盘一一对接,操作系统,测量程序。
2)采用"仪器云"高精度计算的智能电表远程在线检测系统设计纲要
本部分内容主要参照«基于"测量仪器云"的电子式电能表远程在线检测系统»,«云计算环境下仪器虚拟化研究»,并结合本文作者实际计量工作经验编写而成。
一是,新一代系统架构,包括:
•用户(YH):安装有被检电能表,新配置的高速率数据采集终端。
新配置的数据采集终端:以4000Hz的采样频率采集现场的电压,电流数据。"该数据采集终端由高精度数据采集单元,电表通信模块,4G无线通信模块以及中央控制单元4部分组成"。其中,中央控制单元"在操控过程中,最重要的是应确保上传至"仪器云"的采样数据与被检智能电表的电能计量脉冲之间的时间要严格一致。这样,才能保证智能电表远程在线检测的精确度。中央控制单元可采用精密时钟协议IEEE1588,来对数据采用终端与被检智能电表进行时间同步"。
数据采集终端的开发:为降低成本,可将电能计量自动化系统(或用电信息采集系统)中的负荷控制终端加以适当改造而获得数据采集功能。如现场条件不具备,也可以单独设计成产品来应用。
•电能计量自动化系统(或用电信息采集系统)主站(ZZ)
•仪器所有者(IS):本地仪器(或本地工作计算机)的所有者
•仪器代理(IA):部署于本地仪器的上位机(或本地工作计算机)中,或通过专门的硬件设备实现。IA的基本功能是将本地仪器(或本地工作计算机)的接入信息通过网络推送到"仪器云"的仪器资源管理系统(IRM)上。同时,附加一些辅助信息,以便用户(YH)或仪器所有者(IS)对本地仪器(或本地工作计算机)进行识别等。
IA将接入的本地仪器(或本地工作计算机)远程虚拟成资源节点。这些资源节点的状态信息被保存于"仪器云"的存储控制器(IM)上。
•"仪器云"平台,主要有:
---- 仪器资源管理系统(IRM):受理由仪器代理(IA)推送的本地仪器(或本地工作计算机)的接入信息
---- 云控制器(CC):其用户接口提供由用户来查询和调用已授权的仪器资源
---- 存储控制器(IM ):提供仪器资源在云中的注册和管理功能
---- 集群控制 器(CLC):内有节点控制器(NC)
---- 节点控制器(NC):内有虚拟机,包括应用程序---操作系统--- 仪器驱动
•新一代系统架构内的通信方式
---- 仪器资源管理系统(IRM),云控制器(CC),存储控制器(IM):
通过4G无线公网或电力专网接入:仪器代理(IA),用户(YH),仪器所有者(IS),电能计量自动化系统(或用电信息采集系统)主站(ZZ)
通过共用的私有网络接入:集群控制器(CLC)
---- 集群控制器(CLC):通过专用的私有网络接入节点控制器(NC),其内有虚拟机(VM)
---- 节点控制器(NC):与仪器代理(IA)进行虚拟连接。
二是,新一代系统的运作要求与程序
•系统运作前的准备
电能计量自动化系统(或用电信息采集系统)主站(ZZ):
按用户被检智能电表的现场检测要求,需向仪器代理(IA)提供的被检智能电表的参数,各类计算方法,检测结果的处理要求,保证检测正确性措施等。对向云控制器(CC)申请需用已授权的本地仪器(或本地工作计算机)的技术条件。
•对用户(YH)的要求:
系统主站(ZZ)发出检测命令后,首先进行被检智能电表与新配置的数据采集终端之间的计量时间同步。随后,将数据采集终端采集的现场电压,电流数据,被检智能电表的电能计量输出信息,通过4G无线公网或电力专网上传到ZZ申请需用的仪器代理(IA),进行数据/信息计算,处理。还需向ZZ发送远程在线检测的启,止时间。
•新一代系统运作程序
----系统主站(ZZ)"可通过云控制器(CC)
提供的用户接口来查询和调用已授权的本地仪器(或本地工作计算机)资源。当ZZ需要使用某一授权的本地仪器(或本地工作计算机)时,即可向CC提交申请"
---- "然后,由CC向存储控制器(IM)发送资源调用命令。此时,IM就可以将仪器资源节点的接入信息通过集群控制器(CLC)推送到ZZ申请需用的虚拟机所在节点上。最终,包含虚拟管理程序(VMH)的节点控制器(NC)将与本地仪器(或本地工作计算器)建立一个虚拟连接,并向其上用户运行的虚拟机(VM)发出硬件接入通知。随即,VM上就会显示‘发现新硬件‘的信息,并提示安装驱动程序"。
---- 系统主站(ZZ)将系统运作前准备的各项要求,发送给ZZ申请需用并已确认的本地仪器(或本地工作计算机)节点的虚拟机上。该节点虚拟机按ZZ提供的各项要求,操作对用户被检智能电表的检测程序,并将检测结果发送回ZZ。
---- 当ZZ"使用完本地仪器(或本地工作计算机)后,该仪器资源可被IM回收。若该仪器资源为共享资源,那么其它用户可继续申请该仪器资源。所有的仪器资源调度和管理功能都在IM中实现"
三是,"仪器云"平台的搭建
先叙述"国网云":
•2017年4月27日,"国网云"正式发布,一体化"国网云"平台同时上线。
"国网云"包括企业管理云,公共服务云和生产控制云。其中,公共服务云是覆盖外网区域的资源及服务,支撑电力营销,客户服务,电子商务等业务。
"国网云"部署于国网的三地集中式数据中心及27家省级公司的数据中心。2016年,国网在其总部,北京,冀北,天津,上海,浙江,江苏,福建,黑龙江,陕西电力等单位组织启动了企业管理云和公共服务云的试点建设,部署云平台组件,实现同期线损等12类应用迁移上云。
•参考:"国网云"上云案例
冀北电力:营销稽查系统迁移上云
"国网云"操作系统可以根据营销稽查系统需求,自动匹配和选择最合适的资源。冀北电力通过云操作系统"应用管理"模块,进行营销稽查系统一键部署。几秒钟就可以完成5个应用实例的部署,并把实例平均分布在3台物理主机上。云操作系统还支持资源的状态转化,即物理机转变为虚拟机。
再讨论"仪器云"平台搭建的技术路线:
鉴于"国网云"具有明显的优势:强大的并行,分布式,跨域计算能力,根据迁移上云业务系统需求,自动匹配和选择最合适的资源,云操作系统支持资源由物理机转变为虚拟机。同时,用电信息采集系统和用户可以方便地上云。因此,本文作者建议:"仪器云"平台的搭建优先选用"国网云"作为依托,进行新一代系统部署。为此:
•先要编制适应国网"公共服务云"要求,经规范后的采用"仪器云"高精度计算的智能电表远程在线检测系统的操作和应用软件系统。
•经与有意向的省级电网数据中心协议:新一代系统的操作与应用软件系统,通过省级电网的"国网云"组件,在国网"公共服务云"操作系统中,开发相应的模块,进行采用"仪器云"高精度计算的智能电表远程在线检测系统的部署。
•新一代系统:应与
有意向的省级电网数据中心合作试点后推广应用。
说明:"仪器云"平台的搭建,采用与云计算服务供应商合作开发模式,待考证后再讨论。
3)采用"仪器云"高精度计算的智能电表远程在线检测系统计量溯源的讨论
按JJG 1001的规定:校准,在规定条件下,为确定计量器具示值误差的一组操作。
•采用"仪器云"高精度计算给出的三相有功功率值,在用户被检智能电表的现场环境下,可以用高准确度的三相标准电表来进行现场校准测试。以0.2S级被检智能电表为例,由"器云"计算出的三相有功功率的计量误差,应不大于0.05%。在现场,可采用的三相标准表准确度宜为0.01级,或0.02级,实际计量误差不大于0.012%。
•采用"仪器云"计算出的三相有功功率,在现场进行校准测试,目前还没有相应的计量校准规范。
作为第一步,建议先通过制定地方[计量器具]检定规程的渠道,经协商:由省级计量院为主,合作制定:采用"仪器云"高精度计算出的三相有功功率数据的计量校准规范。再报经省级计量行政部门批准发布在本地区施行,作为检定依据的法定技术文件。
有关新一代系统计量溯源的后续工作,视本课题进行情况再讨论。
4)采用"仪器云"高精度计算的智能电表远程在线检测系统的应用前景
•国网,110kV及以上高压变电站估计有近10000个站。近5年来,采用传统的智能电表远程在线检测系统约400个站,占总量的4%。每个站按投资30万元计算,国网合计投资1.2亿元。
•采用"仪器云"高精度计算的智能电表远程在线检测系统,前面已经提到:由于不需要标准表及计算系统,互感器二次回路改进工程量小,投资大幅下降,可以普及应用,适应全面推进三相智能电表状态检测与状态更换工作的新需求。按60%的110kV及以上高压变电站,每个站投资10万元计算,国网共需投资6亿元。
•再说,新一代系统可以扩大应用到月用电量为100万kWh及以上或变压器容量为2000kVA及以上的大工业户。这些用户约占国网拥有大工业户的10%,即5万户。每户投资控制在1万元,国网需投资5亿元。
3,智能电表与"仪器云"融合技术的拓展应用开发项目
智能电表与"仪器云"融合技术优先选用"国网云"作为依托,在用电信息采集系统主站高级应用软件支持下,可能开发出电网计量,控制,补偿系列新产品,具有广阔的应用前景。
1)具有状态检测功能的三相智能电表。主要是将现有三相智能电表,经过技术改进,输出高速率的现场电压,电流采样数据,通过4G无线公网或电力专网,发送到"仪器云",在用电信息采集系统主站支持下,由"仪器云"高精度计算出三相有功功率,实现对这些运行三相智能电表进行24h的状态检测,无需再定期安排现场检测工作。
国网,推广应用具有状态检测功能的三相智能电表:现有大工业户48万户,每只新型0.2S级表计按3000元计算,国网需投资14亿元。非普工业户中用电容量最大的约10%,即128万户,每只新型0.5S级表计按2000元计算,国网需投资25亿元。两项合计投资39亿元。
2)谐波源用户:安装具有非正弦波全功率(有功功率,无功功率,畸变功率,视在功率)计算功能的高端三相智能电表
该新型高端三相智能电表的非正弦波全功率计算功能,由该表计输出高速率的现场电压,电流数据,由用电信息采集系统主站提供非正弦波全功率计算软件,最终,由"仪器云"实现高精度的非正弦波全功率的计算,并将计算结果发送回该高端表计,进行数据保存和相应的处理。
据某省级电力计量中心对60个大工业户谐波源进行现场测试的结果:电压谐波含有率基本都在5%以内,60%的大工业户电流谐波严重超标。
具有非正弦波全功率计算功能的高端三相智能电表的主要用途:由非正弦波畸变功率引起的大工业户低功率因数测试,由非正弦波引起用电能耗增长率评估,为电价行政部门制定控制电网谐波污染的经济制裁措施,提供现场计量数据。
推广应用方面,国网拥有大工业户的20%,即10万户,安装具有非正弦波全功率计算功能的高端三相智能电表,每只表计按4000元计算,国网(或大工业户)需投资4亿元。
3)国网的高压变电站,公变台区(约400万个站),专变用户(约150万户)随着智能配电网建设的推进,需要安装应用较多的电能质量监测,智能控制与补偿设备,无功平衡监测与智能补偿装置,三相负荷平衡监测与智能补偿措施等,都可以在现有现场专用/综合终端基础上进行技术改进,或配置新的数据采终端,输出高速率的现场电压,电流采样数据,在用电信息采集系统主站相关软件系统支持下,由"仪器云"高精度计算并将计算结果发送回相应的终端,来实现以上各项配用电业务工程。