㈠ 跳频技术的介绍
跳频技术 (Frequency-Hopping Spread Spectrum; FHSS)在同步、且同时的情况下,收发两端以特定型式的窄频载波来传送讯号,对于一个非特定的接收器,FHSS所产生的跳动讯号对它而言,也只算是脉冲噪声。FHSS所展开的讯号可依特别设计来规避噪声或One-to-Many的非重复的频道,并且这些跳频讯号必须遵守FCC的要求,使用75个以上的跳频讯号、且跳频至下一个频率的最大时间间隔(Dwell Time)为400ms。
㈡ 跳频技术的工作要求
与一般的数字通信系统一样,跳频系统要求实现载波同步、位同步、帧同步。此外,由于跳频系统的载频按伪随机序列变化,为了实现电台间的正常通信,收发信机必须在同一时间跳变到同一频率,因此跳频系统还要求实现跳频图案同步。跳频系统对同步有两个基本要求:一是同步速度快,二是同步能力强。跳频电台的同步方法有精确时钟法、同步字头法、自同步法、FFT捕获法、自回归谱估计法等等。在实际应用中,同步方案常常综合使用多种同步方法。例如战术跳频系统中常用扫描驻留同步法,综合使用了精确时钟法、同步字头法、自同步法三种同步方法,分成扫描和驻留两个阶段进行。扫描阶段完成同步头频率的捕获,驻留阶段从同步头中提取同步信息,从而完成收发双方的同步。在自适应跳频中,同步还包括收发双方频率集更新的同步,保证双方同步地实现坏频点替代,否则会使收发双方频率表不一致,导致通信失败。频合器是跳频通信系统中的关键部分,市场大多数跳频电台中使用的频率合成器采用的是锁相环(PLL)频率合成技术,但是该技术的频率转换速度已经接近其极限,要进一步改善的技术难度越来越大,而且分辨率较低。为了能够进一步提高跳频速率,提出了直接式数字频合器(DDS)。它采用全数字技术,具有频率分辨率高,频率转换时间快,输出频率可以很高而且稳定性好,相位噪声低等优点,可满足快速跳频电台对频率合成器的要求。例如在美国的JTIDS 中,跳速达到每秒35800 跳,只有采用直接数字频合器才能实现。但是DDS的价格昂贵,复杂度大,直接用于战术跳频电台有一定的难度。如果采用DDS+PLL的方法,结合两者的长处,可以获得单一技术难以达到的效果。在跳频系统中,即使在信道条件良好的情况下,仍有可能在少数跳中出现错误,因此有必要进行差错控制。差错控制的方法主要分为两类:一是自动请求重发纠错(ARQ)技术;二是采用前向纠错(FEC)技术。ARQ技术可以很好的对付随机错误和突发错误,它要求有反馈电路,当信道条件不好时,需要频繁的重发,最终可能导致通信失败。FEC技术不需要反馈电路,但是需要大量的信号冗余度以实现优良的纠错,从而会降低信道效率。由于纠错码对突发错误的纠错能力较差,而通过交织技术可以使信道中的错误随机化,因此,经常采用编码与交织技术相结合的办法来获得良好的纠错性能。在跳频系统中常用的纠错编码技术有汉明码、BCH码、trellis 码、RS码、Golay码、卷积码和硬判决译码、软判决译码等。1993年提出了TURBO码,其信噪比接近于Shannon极限,引起了人们的极大兴趣。与RS码等常用的跳频编码相比, TURBO 码在跳频系统中显示了极大的应用潜能。此外,还可以把不同的编码方法结合在一起,取长补短,进行联合编码。在快跳频方式下,还可以运用重发大数判决来克服跳频频段内的快衰落。 跳频电台在实际应用中通常要组成跳频通信网,以实现网中的任何两个通信终端均能够做到点到点的正常通信。组网除了要避免近端对远端的干扰、码间干扰、电磁干扰等其它干扰以及由系统引起的热噪声等噪声干扰以外,还要注意避免由组网引起的同道干扰、邻道干扰、互调干扰、阻塞干扰等。采用跳频的多址通信网具有很多优点:抗干扰能力强,低截获概率,低检测概率,对频率选择性衰落有很好的抑制作用等等。但是,与常用的DS/CDMA系统相比,跳频网的最大用户数相对较小。
跳频通信网可以分为同步通信网和异步通信网。跳频通信网有多种组网方式,如分频段跳频组网方式、全频段正交跳频组网方式等。在分频段跳频组网方式中,系统把整个频段分成若干个子频段,不同的通信链路采用不同的子频段进行通信,从而有效地防止同一通信网间的干扰。全频段正交跳频组网方式仅用于同步跳频通信网中,也就是说整个通信网中只有一个基准时钟,通过设计在某一相同时刻t 的N 个相互正交的跳频频率序列来进行组网,这样尽管各个终端间的通信均使用相同频段,但是由于瞬时的跳频频率点不相同,因此可保证它们之间不会出现同频道干扰。自适应跳频通信系统中,由于在通信过程中会去除那些通信条件恶劣的信道,因此频率更新后可能会出现同频道干扰现象,故必须设计一种良好的频点更新算法,保证更新后的跳频序列之间依然是正交的,否则可能会使各通信节点之间频繁出现频率碰撞,导致无法正常通信。实际应用中也可以把以上两种组网方式结合进行。例如英国Recal-Tacticom 公司的Jaguar 系列电台在组网中就同时采用了这两种组网方式,可组网数目达到200—300 个。
除了以上这些关键技术以外,调制解调方法在跳频系统中也很重要,可以采用FSK、QAM、QPSK、QASK、DPSK、QPR、数字chirp 调制等多种调制方式。自适应跳频系统是在常规跳频系统的基础上,实时地去除固定或半固定干扰,从而自适应地自动选择优良信道集,进行跳频通信,使通信系统保持良好的通信状态。也就是说,它除了要实现常规跳频系统的功能之外,还要实现实时的自适应频率控制和自适应功率控制功能,因此就需要一个反向信道以传输频率控制和功率控制信息。 通过可靠的信道质量评估算法,发现了干扰频点后,应当在收发双方的频率表中将其删除,并以好的频点对它们进行替换,以维持频率表的固定大小。这种检测和替换是实时进行的。为增加跳频信号的隐蔽性和抗破译能力,跳频图案除具有很好的伪随机性、长周期外,各频率出现次数在长时间内应具有很好的均匀性。在引入自适应频率替换算法对频率表进行实时更新后,为保障系统性能,仍然要求跳频图案具有很好的均匀性,所以应当依次用不同的质量较好的频点来分别替换被干扰的频点。收端频率表的更新会导致收发频率表的不一致性。为了使收发频率表同步更新,必须通过反馈信道将收端的频率更新信息通知发方。这种信息的相互交换是一种闭环控制过程,需要制定相应的信息交换协议来保证频表可靠的同步更新。衡量协议有效性的另一个重要指标便是频点去除的速度。在检测出干扰频点后,干扰频点去除的速度越快,对通信的影响越小。
信道质量评估的另一个作用是进行自适应功率控制。功率控制就是要把有限的发送功率最好地分配给各个跳频信道,使得各个信道都能够以最小发射机功率实现正常通信,从而提高跳频信号的隐蔽性和抗截获能力。在自适应跳频系统中,系统检测每个信道的通信状况,并通过信道质量评估单元中的功率控制算法对每个跳频信道单独进行功率控制。 功率控制算法可以基于两种原则:一是比特误码率最小原则,算法为各个跳频信道选择适当的功率,使得接收方收到的数据比特误码率达到预定的误码门限;二是等信干比原则,此算法调整各个跳频信道的平均功率,使得各个跳频信道上的信干比相同,这里的信干比是指各个跳频信道上的信号功率/(对应信道上的干扰功率 + 传输损耗功率)。这两种算法的性能差不多。
随着跳频技术的不断发展,其应用也越来越广泛。战术电台中采用跳频技术的主要目的是提高通信的抗干扰能力。早在70 年代,就开始了对跳频系统的研究,现已开发了跳频在VHF 波段(30—300MHz)的低端30—88MHz、UHF波段(300MHz 以上)以及HF 波段(1.5—30MHz)的应用。随着研究的不断深入,跳频速率和数据数率也越来越高,美国Sanders 公司的CHESS 高速短波跳频电台已经实现了5000跳/秒的跳频速率,最高数据数率可达到19200bps。此外,CHESS跳频电台与一般的跳频电台还有所不同,它以DSP 为基础,采用了差动跳频(DFH)技术。通过现代数字处理技术,CHESS跳频电台较好解决了短波系统带宽有限(导致数据速率低的原因)、信号间相互干扰、存在多径衰落等的问题。同时,它的瞬时信号带宽很窄,对其它信号的影响很小。可以看到,实现更高跳速、更高数据速率的跳频电台正是跳频通信系统的未来发展方向,软件无线电的概念也已逐渐应用到新型的跳频电台中。短波自适应跳频电台已经在当前的军事通信中占有了很重要的一部分。与VHF/UHF频段不同,短波信道有许多固有特点,例如,受多径时延、幅度衰落、天气变化等因素的影响,信道条件变化莫测。但是随着各种新技术的出现,短波通信的可靠性得到了技术上的保证,而自适应跳频技术就是这些新技术中的一种。它通过分析波段上的频率占用率,自动搜索无干扰或未被占用的跳频信道进行跳频,不仅避免了自然干扰,也不会受到短波频谱大量占用的影响。它会根据需要自动地改变跳频序列,有效的适应恶劣环境。它在海湾战争中体现出的优越性引起了各国的高度重视。
㈢ 跳频技术是什么
跳频技术与直序扩频技术完全不同,是另外一种意义上的扩频。跳频的载频受一个伪随机码的控制,在其工作带宽范围内,其频率合成器按PN码的随机规律不断改变频率。在接收端,接收机的频率合成器受伪随机码的控制,并保持与发射端的变化规律一致。
跳频是载波频率在一定范围内不断跳变意义上的扩频,而不是对被传送信息进行扩谱,不会得到直序扩频的处理增益。跳频相当于瞬时的窄带通信系统,基本等同于常规通信系统,由于无抗多径能力,同时发射效率低,同样发射功率的跳频系统在有效传输距离内小于直扩系统。跳频的优点是抗干扰,定频干扰只会干扰部分频点。用于语音信息的传输,当定频干扰只占一小部分时不会对语音通信造成很大的影响。
跳频的高低直接反映跳频系统的性能,跳频越高抗干扰的性能越好,军用的跳频系统可以达到每秒上万跳。实际上移动通信GSM系统也是跳频系统,其规定的跳频为每秒217跳。出于成本的考虑,商用跳频系统跳速都较慢,一般在50跳/秒以下。由于慢跳跳频系统实现简单,因此低速无线局域网产品常常采用这种技术。
㈣ 跳频技术的原理概述
跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。从通信技术的实现方式来说,“跳频”是一种用码序列进行多频频移键控的通信方式,也是一种码控载频跳变的通信系统。从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。其中:跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率;数据终端包含对数据进行差错控制。
与定频通信相比,跳频通信比较隐蔽也难以被截获。只要对方不清楚载频跳变的规律,就很难截获我方的通信内容。同时,跳频通信也具有良好的抗干扰能力,即使有部分频点被干扰,仍能在其他未被干扰的频点上进行正常的通信。由于跳频通信系统是瞬时窄带系统,它易于与其他的窄带通信系统兼容,也就是说,跳频电台可以与常规的窄带电台互通,有利于设备的更新。
㈤ 移动通信中的跳频技术是怎么的
跳频技术引入的目的
随着数字移动通信网络的飞速发展,移动用户的急剧增加,那么网络中单位面积的话务量也在不断地增加。在某些大城市的市中心等繁华地段,在忙时甚至出现严重的话务拥塞情况,面对日益增长的话务需求,需要对网络进行扩容以满足容量和覆盖的要求。
在网络建设的初期,由于用户数量不多,因此网络规划中首先考虑的是覆盖问题,但是随着网络的不断扩容,覆盖的不断完善,我们发现容量问题成为制约网络进一步发展的瓶颈。对于我国现在采用的GSM网络由于受到频段的限制,在经过这么多年的快速扩容之后,容量上的限制表现得越来越明显。
对于网络扩容,通常我们可以采用以下几种方法:小区分裂,增加新的频段以及提高频率复用度来增加每个小区配置等方法。很显然在网络建设的初期通常采用小区分裂,通过不断增加新的基站(宏蜂窝和微蜂窝基站)来达到扩容的目的,但是随着站距的不断接近,我们发现网络的干扰也在不断的增加,因此当宏蜂窝基站的站距达到一定程度之后就很难在网络中增加新的基站。那么在这种情况下就出现了在GSM900网络的基础上引入GSM1800网络,通过引入这一新的频段来解决网络瓶紧问题,这也是我们现在所看到中国移动和联通公司在现网所采用的DCS双频网络。但是由于GSM900/GSM1800频段有限而且各个运行商所分配到的频率资源不同,而且考虑到引入双频网的成本很高,因此可以考虑通过在现有的GSM900单频网络或在引入GSM1800的双频网络中通过提高频率复用度,增加单位面积的容量配置来达到节省网络成本和提高容量的目的。通过引入跳频、功率控制、不连续发射等无线链路控制技术来达到扩容的目的。
跳频系统工作原理
我们大家都知道跳频技术是一种扩频通信技术,由于跳频技术具有通信的秘密和对抗干扰,因此它首先被应用于军事通信。但是随着移动通信的发展和数字化,跳频技术已在数字蜂窝系统中获得应用,我国所采用的GSM移动通信系统就采用了这种技术。
跳频是指载波频率在很宽频带范围内按某种图案(序列)进行跳变。信息数据D经信息调制成带宽为Bd的基带信号后,进入载波调制。载波频率受伪随机码发生器控制,在带宽Bss(Bss>>Bd)的频带内随机跳变,实现基带信号带宽Bd扩展到发射信号使用的带宽Bss的频普扩展。可变频率合成器受伪随机序列(跳频序列)控制,使载波频率随跳频序列的序列值改变而改变,因此载波调制又被称为扩频调制。
跳频系统的特点跳频系统具有以下特点:
* 跳频系统大大提高了通信系统抗干扰、抗衰落能力;
* 能多址工作而尽量不互相干扰;
* 不存在直接扩频通信系统的远近效应问题,即可以减少近端强信号干扰远端弱信号的问题;
* 跳频系统的抗干扰性严格说是"躲避"式的,外部干扰的频率改变跟不上跳频系统的频率改变;
*跳频序列的速率低,通常情况,码元速率小于或等于信息速率。在TDMA系统中,跳频速率往往等于每秒传输的帧数。GSM系统中每秒跳频为217次。
在GSM数字蜂窝系统中,跳频技术可以提高抗衰落、抗干扰能力。跳频技术对于静态或慢速移动的移动台具有很好的抗衰落效果,而对于快速移动的移动台由于同一信道的两个连接的突发脉冲序列其位置差已足以使它们与瑞利变化不相关,因此跳频增益很小,这就是跳频所具有的频率分集。由于跳频时频率在不停的变化,频率的干扰是瞬时的,因此跳频具有干扰分集。
㈥ 跳频通信的跳频技术的发展
随着跳频技术的不断发展,其应用也越来越广泛。战术电台中采用跳频技术的主要目的是提高通信的抗干扰能力。早在70 年代,就开始了对跳频系统的研究,现已开发了跳频在VHF 波段(30—300MHz)的低端30—88MHz、UHF波段(300MHz 以上)以及HF 波段(1.5—30MHz)的应用。随着研究的不断深入,跳频速率和数据数率也越来越高,现在美国Sanders 公司的CHESS 高速短波跳频电台已经实现了5000跳/秒的跳频速率,最高数据数率可达到19200bps。此外,CHESS跳频电台与一般的跳频电台还有所不同,它以DSP 为基础,采用了差动跳频(DFH)技术。通过现代数字处理技术,CHESS跳频电台较好解决了短波系统带宽有限(导致数据速率低的原因)、信号间相互干扰、存在多径衰落等的问题。同时,它的瞬时信号带宽很窄,对其它信号的影响很小。可以看到,实现更高跳速、更高数据速率的跳频电台正是跳频通信系统的未来发展方向,软件无线电的概念也已逐渐应用到新型的跳频电台中。短波自适应跳频电台已经在当前的军事通信中占有了很重要的一部分。与VHF/UHF频段不同,短波信道有许多固有特点,例如,受多径时延、幅度衰落、天气变化等因素的影响,信道条件变化莫测。但是随着各种新技术的出现,短波通信的可靠性得到了技术上的保证,而自适应跳频技术就是这些新技术中的一种。它通过分析波段上的频率占用率,自动搜索无干扰或未被占用的跳频信道进行跳频,不仅避免了自然干扰,也不会受到短波频谱大量占用的影响。它会根据需要自动地改变跳频序列,有效的适应恶劣环境。它在海湾战争中体现出的优越性引起了各国的高度重视。
在现有的DS/CDMA 系统中,远近效应是一个很大的问题。由于大功率信号只在某个频率上产生远近效应,当载波频率跳变到另一个频率时则不受影响,因此跳频系统没有明显的远近效应,这使得它在移动通信中易于得到应用和发展。在数字蜂窝移动通信系统中,如果链路间采用相互正交的跳频图案同步跳频,或者采用低互相关的跳频图案异步跳频,可以使得链路间的干扰完全消除或基本消除,对提高系统的容量具有重要意义。此外,跳频是瞬时窄带系统,其频率分配具有很大的灵活性,在现有频率资源十分拥挤的条件下,这一点具有重要意义。
跳频的多址性能对于组网有很重要的意义。加拿大Laval 大学提出了在光纤网络中应用快跳频技术。该系统利用Bragg 光栅替代传统跳频系统中的频率合成器,跳速达到10G数量级。系统在30个用户,比特误码率为10-9的条件下,数据速率为500Mb/s。与采用非相干DS/CDMA 技术的光纤网络相比,同时有相同数量的用户使用时,FFH/CDMA系统的比特误码率明显优于DS/CDMA 系统。
此外,跳频技术在GSM、无线局域网、室内无线通信、卫星通信、水下通信、雷达、微波等多个领域也得到了广泛的应用。
由于跳频系统本身也存在着一些缺点和局限,如信号隐蔽性差,抗多频干扰以及跟踪式干扰能力有限等,而扩频的另一种方式直接序列扩频却有较好的隐蔽性和抗多频干扰的能力。把这两种扩频技术结合起来,就构成了直接序列/跳频扩展频谱技术。它在直接序列扩展频谱系统的基础上增加载波频率跳变的功能,直扩系统所用的伪随机序列和跳频系统用的伪随机跳频图案由同一个伪随机码发生器生成,所以它们在时间上是相互关联的,使用同一个时钟进行时序控制。意大利Telettra 公司的Hydra V 电台是采用了直接序列/跳频混合扩频技术的第一代战术电台。由于采用了直接序列扩频DBPSK 调制方式,比单独采用跳频技术多获得9dB 的处理增益,从而提高了电台的抗干扰性能。
㈦ 跳频通信的原理 技术是什么
跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。从通信技术的实现方式来说,“跳频”是一种用码序列进行多频频移键控的通信方式,也是一种码控载频跳变的通信系统。从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。其中:跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率;数据终端包含对数据进行差错控制。
与定频通信相比,跳频通信比较隐蔽也难以被截获。只要对方不清楚载频跳变的规律,就很难截获我方的通信内容。同时,跳频通信也具有良好的抗干扰能力,即使有部分频点被干扰,仍能在其他未被干扰的频点上进行正常的通信。由于跳频通信系统是瞬时窄带系统,它易于与其他的窄带通信系统兼容,也就是说,跳频电台可以与常规的窄带电台互通,有利于设备的更新。
通信收发双方的跳频图案是事先约好的,同步地按照跳频图案进行跳变。这种跳频方式称为常规跳频(Normal FH)。随着现代战争中的电子对抗越演越烈,在常规跳频的基础上又提出了自适应跳频。它增加了频率自适应控制和功率自适应控制两方面。在跳频通信中,跳频图案反映了通信双方的信号载波频率的规律,保证了通信方发送频率有规律可循,但又不易被对方所发现。常用的跳频码序列是基于m 序列、M序列、RS码等设计的伪随机序列。这些伪随机码序列通过移位寄存器加反馈结构来实现,结构简单,性能稳定,能够较快实现同步。它们可以实现较长的周期,汉明相关特性也比较好,但是当存在人为的故意干扰(如预测码序列后进行的跟踪干扰)时,这些序列的抗干扰能力较差。
在90 年代初,出现了基于模糊(Fuzzy)规则的跳频图案产生器。在这种系统中,由模糊规则、初始条件以及采样模式共同来决定系统的输出序列。只要窃听者不知道模糊规则、初始条件、采样模式三者的任何一个,就无法预测到系统的输出频率,由此就提高了系统的抗窃听能力和抗干扰能力。模糊跳频给出的跳频码序列与传统的跳频码序列相比更加均匀,也更难预测。
90年代末有人提出了混沌(chaotic)跳频序列。其基本思想是通过混沌系统的符号序列来生成跳频序列。在这个混沌系统中要确定一个非线性的映射关系、初始条件和混沌规则,三者唯一确定一个输出序列。由此确定的混沌跳频序列体现了良好的均匀性,低截获概率,良好的汉明相关特性以及具有理想的线性范围。
与一般的数字通信系统一样,跳频系统要求实现载波同步、位同步、帧同步。此外,由于跳频系统的载频按伪随机序列变化,为了实现电台间的正常通信,收发信机必须在同一时间跳变到同一频率,因此跳频系统还要求实现跳频图案同步。跳频系统对同步有两个基本要求:一是同步速度快,二是同步能力强。目前跳频电台的同步方法有精确时钟法、同步字头法、自同步法、FFT捕获法、自回归谱估计法等等。在实际应用中,同步方案常常综合使用多种同步方法。例如战术跳频系统中常用扫描驻留同步法,综合使用了精确时钟法、同步字头法、自同步法三种同步方法,分成扫描和驻留两个阶段进行。扫描阶段完成同步头频率的捕获,驻留阶段从同步头中提取同步信息,从而完成收发双方的同步。
在自适应跳频中,同步还包括收发双方频率集更新的同步,保证双方同步地实现坏频点替代,否则会使收发双方频率表不一致,导致通信失败。频合器是跳频通信系统中的关键部分,目前大多数跳频电台中使用的频率合成器采用的是锁相环(PLL)频率合成技术,但是该技术的频率转换速度已经接近其极限,要进一步改善的技术难度越来越大,而且分辨率较低。为了能够进一步提高跳频速率,提出了直接式数字频合器(DDS)。它采用全数字技术,具有频率分辨率高,频率转换时间快,输出频率可以很高而且稳定性好,相位噪声低等优点,可满足快速跳频电台对频率合成器的要求。例如在美国的JTIDS 中,跳速达到每秒35800 跳,只有采用直接数字频合器才能实现。但是DDS的价格昂贵,复杂度大,直接用于战术跳频电台有一定的难度。如果采用DDS+PLL的方法,结合两者的长处,可以获得单一技术难以达到的效果。在跳频系统中,即使在信道条件良好的情况下,仍有可能在少数跳中出现错误,因此有必要进行差错控制。差错控制的方法主要分为两类:一是自动请求重发纠错(ARQ)技术;二是采用前向纠错(FEC)技术。ARQ技术可以很好的对付随机错误和突发错误,它要求有反馈电路,当信道条件不好时,需要频繁的重发,最终可能导致通信失败。FEC技术不需要反馈电路,但是需要大量的信号冗余度以实现优良的纠错,从而会降低信道效率。由于纠错码对突发错误的纠错能力较差,而通过交织技术可以使信道中的错误随机化,因此,经常采用编码与交织技术相结合的办法来获得良好的纠错性能。在跳频系统中常用的纠错编码技术有汉明码、BCH码、trellis 码、RS码、Golay码、卷积码和硬判决译码、软判决译码等。1993年提出了TURBO码,其信噪比接近于Shannon极限,引起了人们的极大兴趣。与RS码等常用的跳频编码相比, TURBO 码在跳频系统中显示了极大的应用潜能。此外,还可以把不同的编码方法结合在一起,取长补短,进行联合编码。在快跳频方式下,还可以运用重发大数判决来克服跳频频段内的快衰落。
跳频电台在实际应用中通常要组成跳频通信网,以实现网中的任何两个通信终端均能够做到点到点的正常通信。组网除了要避免近端对远端的干扰、码间干扰、电磁干扰等其它干扰以及由系统引起的热噪声等噪声干扰以外,还要注意避免由组网引起的同道干扰、邻道干扰、互调干扰、阻塞干扰等。采用跳频的多址通信网具有很多优点:抗干扰能力强,低截获概率,低检测概率,对频率选择性衰落有很好的抑制作用等等。但是,与常用的DS/CDMA系统相比,跳频网的最大用户数相对较小。
跳频通信网可以分为同步通信网和异步通信网。跳频通信网有多种组网方式,如分频段跳频组网方式、全频段正交跳频组网方式等。在分频段跳频组网方式中,系统把整个频段分成若干个子频段,不同的通信链路采用不同的子频段进行通信,从而有效地防止同一通信网间的干扰。全频段正交跳频组网方式仅用于同步跳频通信网中,也就是说整个通信网中只有一个基准时钟,通过设计在某一相同时刻t 的N 个相互正交的跳频频率序列来进行组网,这样尽管各个终端间的通信均使用相同频段,但是由于瞬时的跳频频率点不相同,因此可保证它们之间不会出现同频道干扰。自适应跳频通信系统中,由于在通信过程中会去除那些通信条件恶劣的信道,因此频率更新后可能会出现同频道干扰现象,故必须设计一种良好的频点更新算法,保证更新后的跳频序列之间依然是正交的,否则可能会使各通信节点之间频繁出现频率碰撞,导致无法正常通信。实际应用中也可以把以上两种组网方式结合进行。例如英国Recal-Tacticom 公司的Jaguar 系列电台在组网中就同时采用了这两种组网方式,可组网数目达到200—300 个。
除了以上这些关键技术以外,调制解调方法在跳频系统中也很重要,可以采用FSK、QAM、QPSK、QASK、DPSK、QPR、数字chirp 调制等多种调制方式。自适应跳频系统是在常规跳频系统的基础上,实时地去除固定或半固定干扰,从而自适应地自动选择优良信道集,进行跳频通信,使通信系统保持良好的通信状态。也就是说,它除了要实现常规跳频系统的功能之外,还要实现实时的自适应频率控制和自适应功率控制功能,因此就需要一个反向信道以传输频率控制和功率控制信息。
通过可靠的信道质量评估算法,发现了干扰频点后,应当在收发双方的频率表中将其删除,并以好的频点对它们进行替换,以维持频率表的固定大小。这种检测和替换是实时进行的。为增加跳频信号的隐蔽性和抗破译能力,跳频图案除具有很好的伪随机性、长周期外,各频率出现次数在长时间内应具有很好的均匀性。在引入自适应频率替换算法对频率表进行实时更新后,为保障系统性能,仍然要求跳频图案具有很好的均匀性,所以应当依次用不同的质量较好的频点来分别替换被干扰的频点。收端频率表的更新会导致收发频率表的不一致性。为了使收发频率表同步更新,必须通过反馈信道将收端的频率更新信息通知发方。这种信息的相互交换是一种闭环控制过程,需要制定相应的信息交换协议来保证频表可靠的同步更新。衡量协议有效性的另一个重要指标便是频点去除的速度。在检测出干扰频点后,干扰频点去除的速度越快,对通信的影响越小。
信道质量评估的另一个作用是进行自适应功率控制。功率控制就是要把有限的发送功率最好地分配给各个跳频信道,使得各个信道都能够以最小发射机功率实现正常通信,从而提高跳频信号的隐蔽性和抗截获能力。在自适应跳频系统中,系统检测每个信道的通信状况,并通过信道质量评估单元中的功率控制算法对每个跳频信道单独进行功率控制。
功率控制算法可以基于两种原则:一是比特误码率最小原则,算法为各个跳频信道选择适当的功率,使得接收方收到的数据比特误码率达到预定的误码门限;二是等信干比原则,此算法调整各个跳频信道的平均功率,使得各个跳频信道上的信干比相同,这里的信干比是指各个跳频信道上的信号功率/(对应信道上的干扰功率 + 传输损耗功率)。这两种算法的性能差不多。
随着跳频技术的不断发展,其应用也越来越广泛。战术电台中采用跳频技术的主要目的是提高通信的抗干扰能力。早在70 年代,就开始了对跳频系统的研究,现已开发了跳频在VHF 波段(30—300MHz)的低端30—88MHz、UHF波段(300MHz 以上)以及HF 波段(1.5—30MHz)的应用。随着研究的不断深入,跳频速率和数据数率也越来越高,现在美国Sanders 公司的CHESS 高速短波跳频电台已经实现了5000跳/秒的跳频速率,最高数据数率可达到19200bps。此外,CHESS跳频电台与一般的跳频电台还有所不同,它以DSP 为基础,采用了差动跳频(DFH)技术。通过现代数字处理技术,CHESS跳频电台较好解决了短波系统带宽有限(导致数据速率低的原因)、信号间相互干扰、存在多径衰落等的问题。同时,它的瞬时信号带宽很窄,对其它信号的影响很小。可以看到,实现更高跳速、更高数据速率的跳频电台正是跳频通信系统的未来发展方向,软件无线电的概念也已逐渐应用到新型的跳频电台中。短波自适应跳频电台已经在当前的军事通信中占有了很重要的一部分。与VHF/UHF频段不同,短波信道有许多固有特点,例如,受多径时延、幅度衰落、天气变化等因素的影响,信道条件变化莫测。但是随着各种新技术的出现,短波通信的可靠性得到了技术上的保证,而自适应跳频技术就是这些新技术中的一种。它通过分析波段上的频率占用率,自动搜索无干扰或未被占用的跳频信道进行跳频,不仅避免了自然干扰,也不会受到短波频谱大量占用的影响。它会根据需要自动地改变跳频序列,有效的适应恶劣环境。它在海湾战争中体现出的优越性引起了各国的高度重视。
在现有的DS/CDMA 系统中,远近效应是一个很大的问题。由于大功率信号只在某个频率上产生远近效应,当载波频率跳变到另一个频率时则不受影响,因此跳频系统没有明显的远近效应,这使得它在移动通信中易于得到应用和发展。在数字蜂窝移动通信系统中,如果链路间采用相互正交的跳频图案同步跳频,或者采用低互相关的跳频图案异步跳频,可以使得链路间的干扰完全消除或基本消除,对提高系统的容量具有重要意义。此外,跳频是瞬时窄带系统,其频率分配具有很大的灵活性,在现有频率资源十分拥挤的条件下,这一点具有重要意义。
跳频的多址性能对于组网有很重要的意义。加拿大Laval 大学提出了在光纤网络中应用快跳频技术。该系统利用Bragg 光栅替代传统跳频系统中的频率合成器,跳速达到10G数量级。系统在30个用户,比特误码率为10-9的条件下,数据速率为500Mb/s。与采用非相干DS/CDMA 技术的光纤网络相比,同时有相同数量的用户使用时,FFH/CDMA系统的比特误码率明显优于DS/CDMA 系统。
此外,跳频技术在GSM、无线局域网、室内无线通信、卫星通信、水下通信、雷达、微波等多个领域也得到了广泛的应用。
由于跳频系统本身也存在着一些缺点和局限,如信号隐蔽性差,抗多频干扰以及跟踪式干扰能力有限等,而扩频的另一种方式直接序列扩频却有较好的隐蔽性和抗多频干扰的能力。把这两种扩频技术结合起来,就构成了直接序列/跳频扩展频谱技术。它在直接序列扩展频谱系统的基础上增加载波频率跳变的功能,直扩系统所用的伪随机序列和跳频系统用的伪随机跳频图案由同一个伪随机码发生器生成,所以它们在时间上是相互关联的,使用同一个时钟进行时序控制。意大利Telettra 公司的Hydra V 电台是采用了直接序列/跳频混合扩频技术的第一代战术电台。由于采用了直接序列扩频DBPSK 调制方式,比单独采用跳频技术多获得9dB 的处理增益,从而提高了电台的抗干扰性能。
㈧ 跳频技术是什么
调频就是指调cpu之类的频率,达到它最高的性能
㈨ 什么是无线跳频
跳频技术(Frequency-Hopping Spread Spectrum),简称为FHSS,在同步、且同时的情况下,接收器两端以特定形式的窄频载波来传送讯号,对于一个非特定的接收器,FHSS所产生的跳动讯号对它而言,也只算是脉冲噪声。
FHSS所展开的讯号可依特别设计来规避噪声或One-to-Many的非重复的信道,并且这些跳频讯号必须遵守FCC的要求,使用75个以上的跳频讯号、且跳频至下一个频率的最大时间间隔(Dwell Time)为400ms。
跳频技术与直序扩频技术完全不同,是另外一种意义上的扩频。跳频的载频受一个伪随机码的控制,在其工作带宽范围内,其频率合成器按PN码的随机规律不断改变频率。在接收端,接收机的频率合成器受伪随机码的控制,并保持与发射端的变化规律一致。
跳频是载波频率在一定范围内不断跳变意义上的扩频,而不是对被传送信息进行扩谱,不会得到直序扩频的处理增益。跳频相当于瞬时的窄带通信系统,基本等同于常规通信系统,由于无抗多径能力,同时发射效率低,同样发射功率的跳频系统在有效传输距离内小于直扩系统。跳频的优点是抗干扰,定频干扰只会干扰部分频点。用于语音信息的传输,当定频干扰只占一小部分时不会对语音通信造成很大的影响。
跳频的高低直接反映跳频系统的性能,跳频越高抗干扰的性能越好,军用的跳频系统可以达到每秒上万跳。实际上移动通信GSM系统也是跳频系统,其规定的跳频为每秒217跳。出于成本的考虑,商用跳频系统跳速都较慢,一般在50跳/秒以下。由于慢跳跳频系统实现简单,因此低速无线局域网产品常常采用这种技术。