❶ 氢能源的发展前景
发展前景:
作为一种来源广泛、清洁低碳、应用场景丰富的二次能源,氢能有利于推动传统化石能源清洁高效利用和支撑可再生能源大规模发展。近年来,氢能及氢燃料电池产业逐步成为全球能源技术革命和未来能源绿色转型发展的重要方向。
【拓展资料】
特点:
氢能是公认的清洁能源,作为低碳和零碳能源正在脱颖而出。21世纪,我国和美国、日本、加拿大、欧盟等都制定了氢能发展规划,并且我国已在氢能领域取得了多方面的进展,在不久的将来有望成为氢能技术和应用领先的国家之一,也被国际公认为最有可能率先实现氢燃料电池和氢能汽车产业化的国家。
当今世界开发新能源迫在眉睫,原因是所用的能源如石油、天然气、煤,石油气均属不可再生资源,地球上存量有限,而人类生存又时刻离不开能源,所以必须寻找新的能源。随着化石燃料耗量的日益增加,其储量日益减少,终有一天这些资源、能源将要枯竭,这就迫切需要寻找一种不依赖化石燃料的储量丰富的新的含能体能源。氢正是这样的二次能源。氢位于元素周期表之首,原子序数为1,常温常压下为气态,超低温高压下为液态。作为一种理想的新的含能体能源,它具有以下特点:
1.重量最轻:标准状态下,密度为0.0899g/L,-252.7℃时,可成为液体,若将压力增大到数百个大气压,液氢可变为金属氢。
3.导热性最好:比大多数气体的导热系数高出10倍。
4.储量丰富:据估计它构成了宇宙质量的75%,它主要以化合物的形态贮存于水中,而水是地球上最广泛的物质。据推算,如把海水中的氢全部提取出来,它所产生的总热量比地球上所有化石燃料放出的热量还大9000倍。
5.回收利用:利用氢能源的汽车排出的废物只是水,所以可以再次分解氢,再次回收利用。
6.理想的发热值:除核燃料外氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的,为142351kJ/kg,是汽油发热值的3倍。
7.燃烧性能好:点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快。
8.环保:与其他燃料相比氢燃烧时最清洁,除生成水和少量氮化氢外不会产生诸如一氧化碳、二氧化碳、碳氢化合物、铅化物和粉尘颗粒等对环境有害的污染物质,少量的氨气经过适当处理也不会污染环境,氢取代化石燃料能最大限度地减弱温室效应。
9.利用形式多:既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。
10.多种形态:以气态、液态或固态的金属氢化物出现,能适应贮运及各种应用环境的不同要求。
11.耗损少:可以取消远距离高压输电,代以远近距离管道输氢,安全性相对提高,能源无效损耗减小。
12.利用率高:氢取消了内燃机噪声源和能源污染隐患,利用率高。
13.运输方便:氢可以减轻燃料自重,可以增加运载工具有效载荷,这样可以降低运输成本从全程效益考虑社会总效益优于其他能源。
❷ 制氢的研究现状和发展前景
化石燃料有限的储量使人类正面临着前所未有的能源危机。同时其燃烧产物被排放到大气中加速了温室效应。氢气具有含量丰富、燃烧热值高、能量密度大、热效率高、清洁无污染以及输送成本低以及用途广泛等优点川,被认为最有可能成为化石燃料的替代能源。 氢气是一种理想的能源,具有转化率高、可再生和无污染等优点。与传统制氢方法相比,生物制氢技术的能耗低,对环境无害,其中的厌氧发酵生物制氢已经越来越受到人们的重视。主要介绍了厌氧发酵生物制氢技术的方法和机理,分析了生物制氢的可行性,结合国内外研究现状提出了未来的发展方向。 全球石油储量不断减少。最新研究表明:按目前全球消费趋势,球上可采集石油资源最多能使用到21世纪末。石化、燃煤能源使用,还带来严重大气环境污染,人们日益感觉到开发绿色可再生能源急迫性,研究和开发新能源被提到紧迫议事日程。2000年7—8月美国《未来学家》杂志刊登了美国乔治·华盛顿大学专家对21世纪前10年内十大科技发展趋势预测,其中第二条是燃料电池汽车问世,福特和丰田公司实验性燃料电池汽车将2004年上市。第九条是替代能源挑战石油能源,风能、太阳能、热、生物能和水力发电将占到全部能源需求30%。这两条实际上都是新型能源开发利用。我国“十五”国家重点开发技术项目中也将新型能源开发利用放极为重要位置。目前,人们对风能、太阳能开发已经有了相当研究,并已到了进行加以直接使用阶段,生物能研究也取了重要进展,如何将所获能量储存起来,如何将能量转化为交通工具可利用清洁高效能源,是一亟待解决重要课题。 内容摘要
2生物制氮技术研究进展
2.1传统制氢工艺方法
传统制氢工艺方法有:电解水;烃类水蒸汽重整制氢方法及重油(或渣油)部分氧化重整制氢方法。电解水方法制氢是目前应用较广且比较成熟方法之一。水为原料制氢工程是氢与氧燃烧生成水逆过程,提供一定形式一定能量,则可使水分解成氢气和氧气。提供电能使水分解制氢气效率一般75%-85%。其中工艺过程简单,无污染,但消耗电量大,其应用受到一定限制。目前电解水工艺、设备均不断改进,但电解水制氢能耗仍然很高。烃类水蒸汽重整制氢反应是强吸热反应,反应时需外部供热。热效率较低,反应温度较高,反应过程中水大量过量,能耗较高,造成资源浪费。重油氧化制氢重整方法,反应温度较高,制氢纯度低,利于能源综合利用。
2.2新型生物制氢工艺发展
氢气用途日益广泛,其需求量也迅速增加。传统制氢方法均需消耗大量不可再生能源,不适应社会发展需求。生物制氢技术作为一种符合可持续发展战略课题,已世界上引起了广泛重视。如德国、以色列、日本、葡萄牙、俄罗斯、瑞典、英国、美国都投入了大量人力物力对该项技术进行研究开发。近几年,美国每年生物制氢技术研究费用平均为几百万美元,而日本这研究领域每年投资则是美国5倍左右,,日本和美国等一些国家为此还成立了专门机构,并建立了生物制氢发展规划,以期对生物制氢技术基础和应用研究,使21世纪中叶使该技术实现商业化生产。日本,由能源部主持氢行动计划,确立最终目标是建立一个世界范围能源网络,以实现对可再生能源--氢有效生产,运输和利用。该计划从1993年到2020年横跨了28年。
生物制氢课题最先由Lewis于1966年提出,20世纪70年代能源危机引起了人们对生物制氢广泛关注,并开始进行研究。生物质资源丰富,是重要可再生能源。生物质可气化和微生物催化脱氢方法制氢。生理代谢过程中产生分子氢,可分为两个主要类群:
l、包括藻类和光合细菌内光合生物;Rhodbacter8604,R.monas2613,R.capsulatusZ1,R.sphaeroides等光合生物研究已经开展并取了一定成果。
2、诸如兼性厌氧和专性厌氧发酵产氢细菌。目前以葡萄糖,污水,纤维素为底物并不断改进操作条件和工艺流程研究较多。中国此方面研究也取了一些进展,任南形琪等1990年就开始开展生物制氢技术研究,并于1994年提出了以厌氧活性污泥为氢气原料有机废水发酵法制氢技术,利用碳水化合物为原料发酵法生物制氢技术。该技术突破了生物制氢技术必须采用纯菌种和固定技术局限,开创了利用非固定化菌种生产氢气新途径,并首次实现了中试规模连续流长期生产持续产氢。此基础上,他们又先后发现了产氢能力很高乙醇发酵类型发明了连续流生物制氢技术反应器,初步建立了生物产氢发酵理论,提出了最佳工程控制对策。该项技术和理论成果中试研究中到了充分验证:中试产氢能力达5.7m3H2/m3.d,制氢规模可达500-1000m3/m3,且生产成本明显低于目前广泛采用水电解法制氢成本。
生物制氢过程可以分为5类:
(1)利用藻类青蓝菌生物光解水法;
(2)有机化合物光合细菌(PSB)光分解法;
(3)有机化合物发酵制氢;
(4)光合细菌和发酵细菌耦合法制氢;
(5)酶催化法制氢。
目前发酵细菌产氢速率较高,对条件要求较低,具有直接应用前景。但PSB光合产氢速率比藻类快,能量利用率比发酵细菌高,且能将产氢与光能利用、有机物去除有机耦合一起,相关研究也最多,也是最具有潜应用前景方法之一。生物制氢全过程中,氢气纯化与储存也是一个很关键问题。生物法制氢气含量通常为60%-90%(体积分数),气体中可能混有CO2、O2和水蒸气等。可以采用传统化工方法来,如50%(质量分数)KOH溶液、苯三酚碱溶液和干燥器或冷却器。氢气几种储存方法(压缩、液化、金属氢化物和吸附)中,纳米材料吸附储氢是目前被认为最有前景。
2.3目前研究中存问题纵观生物技术研究各阶段,比较而言,对藻类及光合细菌研究要远多于对发酵产氢细菌研究。传统观点认为,微生物体内产氢系统(主氢化酶)很不稳定,进行细胞固定化才可能实现持续产氢。,迄今为止,生物制氢研究中大多采用纯菌种固定化技术。
,该技术中也有不可忽视不足。首先,细菌包埋技术是一种很复杂工艺,且要求有与之相适应菌种生产及菌体固定化材料加工工艺,这使制氢成本大幅度增加;第二,细胞固定化形成颗粒内部传质阻力较大,使细胞代谢产物颗粒内部积累而对生物产生反馈抑制和阻遏作用,使生物产氢能力降低;第三,包埋剂或其它基质使用,势必会占据大量有效空间,使生物反应器生物持有量受到限制,限制了产氢率和总产量提高。现有研究大多为实验室内进行小型试验,采用批式培养方法居多,利用连续流培养产氢报道较少。试验数据亦为短期试验结果,连续稳定运行期超过40天研究实例少见报道。即便是瞬时产氢率较高,长期连续运行能否获较高产氢量尚待探讨。,生物技术欲达到工业化生产水平尚需多年努力。
3、展望氢是高效、洁净、可再生二次能源,其用途越来越广泛,氢能应用将势不可当进人社会生活各个领域。氢能应用日益广泛,氢需求量日益增加,开发新制氢工艺势必行,从氢能应用长远规划来看开发生物制氢技术是历史发展必然趋势。
开发中国生物制氢技术需要做到以下政策和软件支持:
(1)励大宣传。人是生物能源生产主体和消费主体,有必要舆论宣传加强人们对生物能源认识;
(2)加大政府投资和扶持。新生物能源初始商业化阶段要进行减免税等优惠政策;
(3)借鉴国外经验。充分调动方和工业界积极性八
(4)加强高校对生物能源教育及研究。人们对生物能源认识不断加深,政府扶持力度加大和研究深人,生物制氢绿色能源生产技术将会展现出它更大开发潜力和应用价值。
本文出自:广州灵龙电子技术有限公司,制氢、氢燃料电池(www.liongon.com)