㈠ 生物传感技术专业是做什么的
基本上就是检测电路类的 自动化最好不要考了 因为会扯到信号的来源——生物信号 要懂得一些化学和细胞学
㈡ 传感技术原理是什么
SD传感技术是新一代智能化的传感。但它的原理基础依然来源于最初的传感技术。固体传感器,这种传感器由半导体、电介质、磁性材料等固体元件构成,是利用材料某些特性制成的。如:利用热电效应、霍尔效应、光敏效应,分别制成热电偶传感器、霍尔传感器、光敏传感器等。只是现代化的传感集合了微电子,集成电路,数据存储,分析,优化。
㈢ 传感技术 关键是什么
传感技术 关键是传感器,然后是模-数转换器。
比如,你要测量、控制温度,需要一个温度传感器,要求灵敏、准确、寿命长、适用。
㈣ 传感技术是什么能说的通俗一些不
就是传感器的技术,可以感知周围环境或者特殊物质,比如气体感知、光线感知、温湿度感知、人体感知等等,把模拟信号转化成数字信号,给中央处理器处理。最终结果形成气体浓度参数、光线强度参数、范围内是否有人探测、温度湿度数据等等,显示出来。
㈤ 什么是生物医学传感技术
生物医学传感技术是有关生物医学信息获取的技术,也是生物医学工程技术中的一个先导和核心技术,它与生物力学、生物材料、人体生理、生物医学电子与医疗仪器、信号与图像处理等其他生物医学工程技术直接相关.并是这些技术领域研究中共性的基础和应用研究内容。生物医学传感技术的创新和应用的进展直接关系到医疗器械,尤其是新型诊断及治疗仪器的水平,因此,国际上将该技术的研究与推动放在非常重要的地位。
生物医学传感技术是电子信息技术与生物医学交叉的产物,具有非常旺盛的生命力。医疗保健高层次的追求、早期诊断、快速诊断、床边监护、在体监测等对传感技术的需求,生命科学深层次的研究,分子识别、基因探针、神经递质与神经调质的监控等对高新传感技术的依赖,为生物医学传感技术的发展提供了客观条件。微电子技术与光电子技术、分子生物学、生化技术等新学科、新技术的发展为生物医学传感技术的进步奠定了技术基础。在这些背景条件下,生物医学传感技术在国际上得到了快速的发展并取得了明显的进步。
生物医学传感技术的基础研究是阐明传感器的分子识别机理与掌握多种器件与材料界面反应过程的细节,前者是提高信噪比的依据,后者是缩短响应时间的关键。此外,传感技术又是一门技术科学,要把基础研究的成果变成产品必须重视工艺革新,各种加工工艺包括精密机械加工、半导体工艺、化学腐蚀以及生物技术等新技术的应用,特别是多学科的交叉与融合。
㈥ 现在有哪些传感技术
一、传感器的定义
信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。
最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。
二、传感器的分类
可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。
※ 根据传感器工作原理,可分为物理传感器和化学传感器二大类:
传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。
化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。
有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。
※ 按照其用途,传感器可分类为:
力敏传感器 �位置传感器
液面传感器 �能耗传感器
速度传感器 �热敏传感器
振动传感器� 湿敏传感器
磁敏传感器� 气敏传感器
真空度传感器� 生物传感器等
加速度传感器 �射线辐射传感器
※以其输出信号为标准可将传感器分为:
模拟传感器——将被测量的非电学量转换成模拟电信号。�
数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。�
膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。
开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。
※在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。从所应用的材料观点出发可将传感器分成下列几类:
(1)按照其所用材料的类别分:金属� 聚合物� 陶瓷� 混合物
(2)按材料的物理性质分: 导体� 绝缘体� 半导体� 磁性材料
(3)按材料的晶体结构分: 单晶� 多晶� 非晶材料�
与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向:�
(1)在已知的材料中探索新的现象、效应和反应,然后使它们能在传感器技术中得到实际使用。�
(2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。�
(3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。�
现代传感器制造业的进展取决于用于传感器技术的新材料和敏感元件的开发强度。传感器开发的基本趋势是和半导体以及介质材料的应用密切关联的。
※ 按照其制造工艺,可以将传感器区分为:
集成传感器�薄膜传感器�厚膜传感器�陶瓷传感器
集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。
薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。
厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。
陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶-凝胶等)生产。
㈦ 传感技术的概念和组成
传感技术是指高精度、高效率、高可靠性地采集各种形式信息,并对之进行处理(变换)和识别的一门多学科交叉的现代科学与工程技术,它涉及传感器、信息处理和识别的规划设计、开发、制/建造、测试、应用及评价改进等活动。 传感技术同计算机技术、通信一起被称为信息技术的三大支柱。
获取信息靠各类传感器,它们有各种物理量、化学量或生物量的传感器。按照信息论的凸性定理,传感器的功能与品质决定了传感系统获取自然信息的信息量和信息质量,是高品质传感技术系统的构造第一个关键。信息处理包括信号的预处理、后置处理、特征提取与选择等。识别的主要任务是对经过处理信息进行辨识与分类。它利用被识别(或诊断)对象与特征信息间的关联关系模型对输入的特征信息集进行辨识、比较、分类和判断。因此,传感技术是遵循信息论和系统论的。它包含了众多的高新技术、被众多的产业广泛采用。它也是现代科学技术发展的基础条件,应该受到足够地重视。
为了提高制造企业的生产率(或降低运行时间)和产品质量、降低产品成本,工业界对传感技术的基本要求,是能可靠地应用于现场,完成规定的功能。
㈧ 传感技术的用途是什么
传感技术:获取信息靠各类传感器,它们有各种物理量、化学量或生物量的传感器。按照信息论的凸性定理,传感器的功能与品质决定了传感系统获取自然信息的信息量和信息质量,是高品质传感技术系统的构造第一个关键。信息处理包括信号的预处理、后置处理、特征提取与选择等。识别的主要任务是对经过处理信息进行辨识与分类。它利用被识别(或诊断)对象与特征信息间的关联关系模型对输入的特征信息集进行辨识、比较、分类和判断。因此,传感技术是遵循信息论和系统论的。它包含了众多的高新技术、被众多的产业广泛采用。它也是现代科学技术发展的基础条件,应该受到足够地重视。
为了提高制造企业的生产率(或降低运行时间)和产品质量、降低产品成本,工业界对传感技术的基本要求,是能可靠地应用于现场,完成规定的功能。