A. 目前流行的基因编辑技术有哪些
目前流行的基因编辑技术有:锌指核酸酶ZFN,TALEN,CRISPR-Cas技术。
CRISPR-Cas技术包括Cas9,Cas12,Cas13,dCas9-Fok1,CasX,Cas3,还有primeeditor,还有各种各样的单孝唤碱基编辑技术(有的也是基于Cas9改造而来)。
当然这些工具有的已经广泛使用,有的还在巧链凯实验室阶段。所有这些技术不唤老过才经历了五六年,发现速度太快了,以后会有更多。
B. 基因编辑技术是什么
"公众对转基因担心的并不是基因技术,关键是转基因的“转”,现在通过基因测序研究已发展出基因编辑技术,可根据需要对原来的基因进行重新编辑,它可以不转任何新的基因,也能产生很好效果。中国今后将在进一步开展转基因研究的同时,积极推动基因编辑技术研究"。大妈连基因编辑都知道,真是厉害啊。既然提到这个,我就来科普一下啦。这个技术被Science期刊列为2013年十大突破中的第二位。导引RNA-Cas9系统是目前最简单有效的基因编辑方法。这个系统本身最初是受细菌抵抗噬菌体的启发。理论上你可以合成跟任何基因的DNA互补的导引RNA,这个RNA通过DNA-RNA序列互补(碱基配对),把核酸酶Cas9定位到目标基因,然后Cas9利用它的核酸酶活性把目标基因在特定的部位切断。之后,细胞自身的DNA损伤修复机制可以被用来改变目标基因Cas9切割点附近的DNA序列。这个系统可以用来选择性剔除某个基因,控制目标基因的转录活性,甚至有可能用来纠正导致遗传性疾病的突变基因。可是说到底,这个系统还是需要导入外源蛋白Cas9(最常用的是来自链球菌的Cas9)。另外,基因编辑只是对内源(原有)基因的修饰,而作物之所以需要转基因,常常是因为它们的内源基因里面没有包括编码某些有益性状的基因。如果要把内源的某个基因就地变成一个新的基因,即使技术上可以做到,带来的坏处也很可能超过好处(当然在特定条件下可能有例外),因为这个基因就会失去了原来该有的功能。当然,在有的情况下,可以利用基因编辑技术改变基因组里面某些基因的表达水平,就可以加强某些有益的性状和减弱某些有害性状。总之反转跟信教一样,是一种思维定式,基本上无解,不是技术手段可以解决的问题。
C. 基因编辑技术是什么它是如何在医学领域应用的
6 基因疗法基因编辑技术可以准确地改造人类基因,达到基因治疗效果。中国科学院生物化学与细胞生物学研究所李劲松研究组通过在小鼠胚胎中注射CRISPR/Cas9纠正白内障小鼠模型中的遗传缺陷,所产生的后代是可育的并能将修正后的等位基因传递给它们的后代。杜氏肌营养不良(DMD)是一种罕见的肌肉萎缩症,也是最常见的致命性遗传病之一,是由肌营养不良蛋白dystrophin基因突变引起。杜克大学Charles Gersbach研究组应用CRISPR/Cas9在DMD小鼠中将dystrophin基因突变的23外显子剪切,而合成了一个截短的但功能很强的抗肌萎缩蛋白,这是生物学家“首次成功地利用CRISPR基因编辑技术治愈了一只成年活体哺乳动物的遗传疾病”。
►CAR-T治疗简图,图片来自onclive.com
基因编辑技术联合免疫疗法在肿瘤及HIV/AIDS治疗具有广泛的应用前景。嵌合抗原受体T细胞(Chimeric Antigen Receptor T cell,CAR-T)细胞治疗是非常有前景的肿瘤治疗方法。CAR-T细胞疗法在B细胞恶性血液肿瘤治疗中已经取得硕果。中科院动物研究所王皓毅研究组利用CRISPR/Cas9技术在CAR-T细胞中进行双基因(TCRα subunit constant 和beta-2 microglobulin)或三基因(TRAC,B2M及programmed death-1)敲除。美国斯隆凯特林癌症纪念中心Michel Sadelain研究组发现CRISPR/Cas9技术将CAR基因特异性靶向插入到细胞的TRAC基因座位点,极大增强了T细胞效力,编辑的细胞大大优于传统在急性淋巴细胞白血病小鼠模型中产生CAR-T细胞。
继诺华的Kymriah以及Gilead (kite Pharma)的Yescarta接连上市,CRISPR Therapeutics公司也在应用CRISPR/Cas9基因编辑技术开发同种异体CAR-T候选产品。2016年10月,四川大学华西医院的肿瘤医生卢铀领导的一个团队首次在人体中开展CRISPR试验,从晚期非小细胞肺癌患者体内提取出免疫细胞,再利用CRISPR/Cas9技术剔除细胞中的PD-1基因更有助于激活T细胞去攻击肿瘤细胞,最后将基因编辑过的细胞重新注入患者体内。
7 致病菌及抗病毒研究微生物种群与人体医学,自然环境息息相关。北卡罗来纳大学Rodolphe Barrangou与Chase L. Beisel合作通过使用基因组靶向CRISPR/Cas9系统可靶向并区分高度密切相关的微生物,并程序性去除细菌菌株,意味着CRISPR/Cas9系统可开发成精细微生物治疗体系来剔除有害致病菌,人类将有可能精确控制微生物群体的组成。以色列特拉维夫大学Udi Qimron将CRISPR系统导入温和噬菌体中在侵染具有抗生素抗性的细菌以消灭此类细菌,CRISPR系统已具有成为新一类抗生素的潜力。Locus BioSciences公司也在开发在噬菌体中开发CRISPR系统以达消灭难辨梭菌的目的。
弗吉尼亚理工大学Zhijian Tu研究组在雄蚊子中进行M因子基因编辑,可以导致雌雄蚊之间的转化或雌蚊的杀戮,从而实现有效的性别分离和有效减少蚊子的数量,也将减少寨卡病毒及疟疾等传播。
基于CRISPR治疗不仅可以应用于根除共生菌或有益菌群的病原体,也可应用于靶向人类病毒,包括HIV-1,疱疹病毒,乳头瘤病毒及乙型肝炎病毒等。具有纯合的32-bp缺失(Δ32)的CC趋化因子受体5型(CCR5)基因的患者对HIV感染具有抗性。因此加利福尼亚大学Yuet Wai Kan在诱导多能干细胞iPSC中利用CRISPR系统引入纯合CCR5Δ32突变后,诱导分化后的单核细胞和巨噬细胞对HIV感染具有抗性。天普大学Kamel Khalili 课题组应用CRISPR/Cas9系统在宿主细胞基因组中精确编辑HIV-1 LTR U3区,从而在将艾滋病病毒从基因组中剔除。
8 核酸诊断及细胞事件记录Cas12a (Cpf1)属于CRISPR家族另一核酸内切酶,它也可被gRNA引导并剪切DNA。但是,它不仅可以切割相结合的单链或双链DNA,也剪切其他的DNA。近日,加州大学伯克利分校Jennifer Doudna研究组开发了基于CRISPR的一项新技能——基因侦探(DNA Endonuclease Targeted CRISPR Trans Reporter (DETECTR))。利用单链DNA将荧光分子和淬灭分子连接构建成一个报告系统,当CRISPR-Cas12a在gRNA引导下结合到目标DNA并发挥剪切作用时,报告系统中的DNA也被剪切,荧光分子将被解除抑制。此系统在致癌性HPV的人的DNA样品检测HPV16和HPV18变现极佳。
布罗德研究所Feng Zhang研究组开发的基于CRISPR的2代SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing),原理是利用Cas13a被激活后,可以切割除靶序列外其他的RNA的特征,引入了解除荧光分子的抑制。此工具可实现一次性多重核酸检测,可同时检测4种靶标分子,额外添加的Csm6使得这种工具比它的前身具有更高的灵敏度,并将它开发成微型试纸条检测方法,简单明了易操作,已被研究人员成功应用于RNA病毒,如登革热病毒和寨卡病毒,及人体液样本检测。
Broad研究所David R. Liu研究组利用CRISPR/Cas9开发了一种被称为CAMERA(CRISPR-mediated analog multi-event recording apparatus)的记录细胞事件的“黑匣子”他们利用这个系统开发出两种细胞记录系统,在第一种被称为“CAMERA 1”的细胞记录系统中,研究人员利用细菌中质粒的自我复制但又严格控制其自身数量的特征,
将两种彼此之间略有不同的质粒以稳定的比例转化到细菌中,随后在接触到外来药物刺激时,利用CRISPR/Cas9对这两种质粒中的一种进行切割,通过对质粒进行测序并记录两种质粒比例的变化来记录细菌接触外来刺激的时间。另一种细胞记录系统被称为“CAMERA 2”,它利用基于CRISPR/Cas9的碱基编辑系统实现在细胞内特定信号发生时改变遗传序列中的单个碱基,以此实现对诸如感染病毒、接触营养物等刺激的记录。这套技术的出现将很大程度的帮助人们进一步了解细胞的各类生命活动的发生发展规律。
9 人类胚胎基因组编辑2015 年 4 月,中山大学的黄军利用CRISPR/Cas9介导的基因编辑技术,同源重组修复了胚胎中一个引发地中海贫血β-globin gene (HBB)的突变。
►图片来自kurzgesagt.org
2016年,广州医科大学的范勇团队在三原核受精卵中,应用基因编辑技术CRISPR受精卵中的基因CCR5进行编辑引入CCR5Δ32纯合突变由于当时脱靶效率问题突出,产生了镶嵌式的受精卵。
2017年8月2日,俄勒冈健康与科学大学胚胎细胞和基因治疗中心Shoukhrat Mitalipov研究组公布了其应用CRISPR在人类胚胎中进行DNA编辑的结果,纠正了突变的MYBPC3基因,其突变会引起心肌肥厚并将年轻运动员猝死。
D. 什么是CRISPR
CRISPR技术是一种简单而强大的基因组编辑工具。它使研究人员能够很容易地改变DNA序列和修改基因功能。它的许多潜在应用包括纠正遗传缺陷、治疗和防止疾病传播以及改良作物。然而,它的承诺也引起了伦理问题。
在流行用法中,“CRISPR”(发音为“crisper”)是“CRISPR-Cas9”的缩写。CRISPRs是DNA的特殊延伸。蛋白质Cas9(或“CRISPR相关”)是一种类似于一对分子剪刀的酶,能够切割DNA链。
CRISPR技术是根据细菌和古细菌(单细胞微生物领域)的自然防御机制改编而成的。这些生物体利用CRISPR衍生的RNA和各种Cas蛋白(包括Cas9)来抵御病毒和其他异物的攻击。他们这样做主要是通过切割和破坏外国侵略者的DNA。当这些成分被转移到其他更复杂的有机体中时,它允许对基因进行操作或“编辑”。
直到2017年,没有人真正知道这个过程是什么样子的。在2017年11月10日发表在《自然通讯》杂志上的一篇论文中,由金泽大学的Shibata Mikihiro和东京大学的Hiroshi Nishimasu领导的一个研究小组展示了CRISPR第一次运行时的样子。[一个惊人的新GIF显示CRISPR咀嚼DNA]
CRISPR-Cas9:关键玩家CRISPRs:“CRISPR”代表“有规律间隔的短回文重复序列簇”。它是DNA的一个特殊区域,具有两个明显的特征:核苷酸重复序列和间隔序列的存在。核苷酸的重复序列——DNA的组成部分——分布在CRISPR区域。间隔序列是散布在这些重复序列中的DNA片段。
对于细菌来说,间隔序列是从先前攻击有机体的病毒中提取的。它们作为一个记忆库,使细菌能够识别病毒并抵御未来的攻击。
这是由食品配料公司Danisco的Rodolphe Barrangou和一组研究人员首次通过实验证明的。在2007年发表在《科学》杂志上的一篇论文中,研究人员以酸奶和其他乳制品培养物中常见的嗜热链球菌为模型。他们观察到,病毒攻击后,新的间隔蛋白被整合到CRISPR区域。此外,这些间隔区的DNA序列与病毒基因组的部分序列相同。他们还通过取出或核腔派放入新的病毒DNA序列来操纵间隔区。通过这种方式,他们能够改变细菌对特定病毒攻击的抵抗力。因此,研究人员证实了CRISPR在调节细菌免疫中的作用。
CRISPR RNA(crRNA):一旦一个间隔基被结合并且病毒再次攻击,CRISPR的一部分被转录并加工成crisprrna或“crRNA”。CRISPR的核苷酸序列作为模板产生互补的单链RNA序列。根据Jennifer Doudna和Emmanuelle Charpentier在2014年发表在《科学》杂志上的一篇评论,每个crRNA由一个核苷酸重复序列和一个间隔部分组成。
Cas9:Cas9蛋白是一种切割外来DNA的酶。
该蛋白通常与两个RNA分子结合:crRNA和另一个称为tracrRNA(或“反式激活crRNA”)。两人随后将Cas9引导至目标地点,在那里进行切割。这片DNA是对crRNA的20个核苷酸延伸的补充。
使用两个独立的区域,或其结构上的“域”,Cas9切割DNA双螺旋的两条链,使所谓的“双链断裂”,根据2014年的科学文章。
有一个内置的安全机制,它确保Cas9不会在基因组中的任何地方被切断。已知短DNA序列s-PAMs(“邻近原间隔基序”)作为标记,与目标DNA序列相邻。如果Cas9复合物的目标DNA序列旁边没有PAM,它就不会被切割。根据《自然生物技术》(Nature Biotechnology)2014年发表的一篇评论圆握,这可能是Cas9从未攻击细菌CRISPR区的一个原因。
CRISPR-Cas9作为基因组编辑工具不同生物体的基因组在其DNA序列中编码一系列信息和指令。基因组编辑包括改变这些序列,从而改变信息。这可以通过在改贺DNA中插入一个切口或一个断裂,并诱骗细胞的自然DNA修复机制来引入人们想要的改变来实现。CRISPR-Cas9提供了一种方法。
在2012年,两篇关键的研究论文发表在《科学》和《国家科学院学报》上,这两篇论文帮助细菌CRISPR-Cas9转化为一个简单的、可编程的基因组编辑工具。
这项研究由不同的小组进行,结论:Cas9可以直接切割DNA的任何区域。这可以通过简单地改变crRNA的核苷酸序列来实现,crRNA与互补的DNA靶点结合。在2012年的《科学》文章中,Martin Jinek和他的同事们进一步简化了这个系统,将crRNA和tracrRNA融合在一起形成一个单一的“导向RNA”。因此,基因组编辑只需要两个组成部分:导向RNA和Cas9蛋白。
,哈佛医学院遗传学教授乔治·丘奇说:“你设计了一段20个核苷酸碱基对,它们与你想要编辑的基因相匹配。”。构建了与这20对碱基互补的RNA分子。丘奇强调了确保核苷酸序列只在目标基因中发现,而在基因组中没有其他发现的重要性。”然后,RNA加上蛋白质[Cas9]会像剪刀一样在那个位置切割DNA,理想情况下是在别的地方,“他解释道,”一旦DNA被切割,细胞的自然修复机制就会启动,并将突变或其他变化引入基因组。这有两种可能发生的方式。根据斯坦福大学的亨廷顿外展项目,一种修复方法是将两个切口粘在一起。这种被称为“非同源末端连接”的方法容易引入错误。核苷酸意外插入或删除,导致突变,从而破坏基因。在第二种方法中,通过用核苷酸序列填充间隙来固定断裂。为了做到这一点,细胞使用短链DNA作为模板。科学家可以提供他们选择的DNA模板,从而写入他们想要的任何基因,或纠正突变。
实用性和局限性
CRISPR-Cas9近年来变得流行起来。Church指出,这项技术易于使用,其效率大约是之前最好的基因组编辑工具(称为TALENS)的四倍,美国麻省理工学院和哈佛大学博德研究所的丘奇和张峰实验室的研究人员首次发表了在实验环境中使用CRISPR-Cas9编辑人体细胞的报告。利用人类疾病的体外(实验室)和动物模型进行的研究表明,该技术可以有效地纠正遗传缺陷。根据《自然生物技术》杂志2016年发表的一篇评论文章,此类疾病的例子包括囊性纤维化、白内障和范科尼贫血。这些研究为人类的治疗应用铺平了道路。
“我认为公众对CRISPR的认识非常集中于临床上使用基因编辑治疗疾病的想法,”纽约基因组中心的内维尔·桑贾纳和纽约大学生物、神经科学和生理学助理教授说这无疑是一个令人兴奋的可能性,但这只是一小部分。
CRISPR技术也被应用于食品和农业工业,以设计益生菌培养物和疫苗食用工业培养物(例如酸奶)以防病毒。它还被用于提高作物的产量、耐旱性和营养特性。
另一个潜在的应用是创造基因驱动。这些是遗传系统,它增加了一个特殊的性状从父母传给后代的机会。最终,根据Wyss研究所的研究,这种特性会在几代人中传播到整个群体。根据2016年《自然生物技术》的文章,基因驱动可以通过增强疾病载体(雌性冈比亚按蚊)的不育性来帮助控制疟疾等疾病的传播。此外,根据Kenh Oye及其同事在2014年发表在《科学》杂志上的一篇文章,基因驱动也可用于根除入侵物种,逆转对杀虫剂和除草剂的抗性,Church告诉Live Science:“CRISPR-Cas9并非没有缺点,
”“我认为CRISPR最大的局限是它没有百分之百的效率。”。此外,基因组编辑效率可能会有所不同。根据Doudna和Charpentier在2014年发表的一篇科学文章,在一项在水稻上进行的研究中,接受Cas9 RNA复合物的细胞中,近50%发生了基因编辑。然而,其他的分析表明,根据目标,编辑效率可以达到80%或更高。
也有“目标外效应”的现象,即DNA在目标以外的位置被切割。这可能导致意外突变的引入。此外,丘奇还指出,即使系统按目标进行了削减,也有可能得不到精确的编辑。他称之为“基因组破坏”。
设定了CRISPR技术的许多潜在应用提出了关于篡改基因组的伦理价值和后果的问题。
在2014年的科学文章中,Oye和同事们指出了使用基因驱动器的潜在生态影响。一个引进的性状可以通过杂交从目标群体传播到其他有机体。基因驱动也会降低目标群体的遗传多样性。
对人类胚胎和生殖细胞(如 *** 和卵子)进行基因修饰被称为生殖系编辑。由于这些细胞的变化可以遗传给下一代,使用CRISPR技术进行生殖系编辑已经引起了许多伦理问题。
的可变功效、偏离目标的效果和不精确的编辑都会带来安全风险。此外,还有许多科学界尚不清楚的问题。在2015年发表在《科学》杂志上的一篇文章中,大卫巴尔的摩和一组科学家、伦理学家和法律专家指出,生殖系编辑增加了对后代产生意外后果的可能性,“因为我们对人类遗传学、基因与环境相互作用的知识有限,以及疾病的途径(包括一种疾病与同一病人的其他情况或疾病之间的相互作用)。
其他伦理问题更为微妙。我们是否应该在未经后代同意的情况下,做出可能从根本上影响后代的改变?如果使用生殖系编辑从一种治疗工具转变为一种增强工具,以适应各种人类特征,会怎么样?
为了解决这些问题,国家科学、工程和医学院编写了一份全面的报告,其中包括基因组编辑的指导方针和建议。
尽管国家科学院敦促谨慎从事生殖系编辑,他们强调“谨慎并不意味着禁止”,他们建议只在导致严重疾病的基因上进行生殖系编辑,并且只有在没有其他合理的治疗方法的情况下才进行。在其他标准中,他们强调需要有关于健康风险和益处的数据,以及在临床试验期间需要持续监督。他们也推荐
最近的研究最近有许多基于CRISPR的研究项目生物化学家和CRISPR专家萨姆·斯特恩伯格(Sam Sternberg)说:“由于CRISPR,基础研究发现的速度已经爆炸了。”他是加利福尼亚州伯克利市Caribou Biosciences Inc.的技术开发小组负责人,该公司正在开发基于CRISPR的医药、农业解决方案,以及生物研究。
这里是一些最新的发现:
在2017年4月,一个研究小组在《科学》杂志上发表了一项研究,他们编写了CRISPR分子程序,在血清、尿液和唾液中发现寨卡病毒株。2017年8月2日,科学家在《自然》杂志上披露,他们已经成功使用CRISPR去除了胚胎中的心脏病缺陷。2018年1月2日,研究人员宣布,他们可能能够阻止真菌和其他威胁巧克力生产的问题,使用CRISPR使植物更具抗病性。根据《生物新闻》(BioNews)杂志发表的研究报告,2018年4月16日,研究人员将CRISPR升级为一次编辑数千个基因。”“Live Science contributor Alina Bradford的附加报告”
附加资源
Broad Institute:CRISPR基因工程和生物技术关键工作的时间表新闻:CRISPR-Cas9被合成核苷酸Broad Institute改进了10000倍:关于CRISP的问题和答案
E. 第二代基因编辑技术指的是什么
第二代基因编辑技术是ZFN,TALEN技术。这两个技术的原理都是通过DNA核酸结合蛋白和核酸内局搭切酶结合在一起建立一个系统。因为这些蛋白可以识别一定的核苷酸序列,通过一定设计形成的系统可以桐轿拿对特定的基因进行基因敲除和基因突变。
第三代基因编辑技术就是最近非常火的CRISPR/Cas9 系统。它的原理就是利用核糖体结构来进行基因编辑。CRISPR/Cas9 系统经过一定的设计可以结合到靶基因上,然后对帆启这个靶基因进行敲除、定点突变或者引入新的外源基因,来进行基因编辑。
F. 基因编辑到底是什么
嗨~来看点更专业的回答吧 ♪(・ω・)ノ
CRISPR/Cas基因编辑系统
CRISPR/Cas(Clustered Regularly Interspaced Short Palindromic Repeats/Cas)系统是目前被广泛运用的基因编辑系统,其原理是由CRISPR转录产生的gRNA介导Cas核酸酶靶向目标序列,对序列进行切割。
CRISPR/Cas9基因编辑示意图
(图源:Wellcome Trust Sanger Institute,Sanger)
CRISPR/Cas基因敲除
CRISPR/Cas9系统中sgRNA(smallguideRNA)识别并结合目标基因的靶向序列,引导Cas9对结合位点进行剪切,产生DNA双链断裂(double-strandbreak,DSB),机体自身通过非同源重组(non-homologousendjoining,NHEJ)的方式修复DSB,参与修复的蛋白经常会在DNA末端插入或删除几个碱基,修复后的基因由于产生突变而导致功能丧失,从而实现机体内的基因敲除。
应用:基因敲除细胞系建立、基因敲除建立动物疾病模型。
技术优势:相较于在mRNA水平“敲低”目的基因的RNAi而言,CRISPR/Cas9系统造成基因序列的缺失,从而能完全沉默(即敲除)目的基因。
CRISPR/Cas基因敲入
CRISPR/Cas9系统中sgRNA(smallguideRNA)识别并结合目标基因的靶向序列,引导Cas9对结合位点进行剪切,产生DNA双链断裂(double-strandbreak,DSB),通过细胞内的同源重组(homologousrecombination,HR)修复方式,将外源供体DNA定点导入至基因组的靶位点中,从而实现基因敲入。
应用:基因片段敲入细胞系建立、基因单碱基突变细胞系建立、基因敲入建立动物疾病模型。
技术优势:操作简易、效率高、具有广谱性且提供BSL-1和BSL-2病毒注射及实验操作平台。
CRISPR/dCas9调控内源基因的转录激活与抑制
CRISPR-dCas9系统即是dCas9与转录激活因子(如VP64)或转录抑制因子(如KRAB)融合后,结合sgRNA能促进或抑制目的基因的表达。
应用:目的基因在内源环境中过表达、诱导iPSC、抑制表达等。
技术优势:操作简易、效率高、具有广谱性且提供BSL-1和BSL-2病毒注射及实验操作平台,同时可与RNAi联合作用。
==========================
如果您正在研究或者学习神经科学,生物病毒,基因治疗等方向,或是正在使用各类工具病毒做科研实验,可以网络搜索布林凯斯braincase,官网上有更详细的案例分析和专业解读哦~
G. 基因编辑技术原理
基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。
ZFN,TALEN,CRISPR/Cas 都是重要的基因编辑工具,均可以通过靶向目的基因,从而高效特异地改造基因组的序列,在生命科学、医学和农业植物育种等多个方面都有成功的应用。但3种编辑技术各的优势同时也存在一定局限。
H. 基因编辑技术的应用
基因编辑技术的应用如下:
动物基因的靶向修饰
基因编辑和牛体外胚胎培养等繁殖技术结合,允许使用合成的高度特异性的内切核酸酶直接在受精卵母细胞中进行基因组编辑。 CRISPR -Cas9进一步增加了基因编辑在动物基因靶向修饰的应用范围。CRISPR-Cas9允许通过细胞质直接注射从而实现对哺乳动物受精卵多个靶标的一次性同时敲除 。
单细胞基因表达分差链析已经解决了人类发育的转录路线图,从中发现了关键候选基因用于功能研究。使用全基因组转录组学数据指导实验,基于CRISPR的基因组编辑工具使得干扰或删除关键基因以阐明其功能成为可能 。
植物基因的靶向修饰
植物基因的靶向修饰是基因编辑应用最广泛的领域。首先可以通过修饰内源基因来帮助设计所需的植物性状。例如,可以通过基因编辑将重要的性状基因添加到主要农作物的特定位点,通过物理连接确保它们在育种过程中的共分离,这又称为“性状堆积”。
其次,可以产生耐除草剂历庆消作物。比如,使用ZFN辅助肢知的基因打靶,将两种除草剂抗性基因引入作物 。再次,可以用来防治各种病害如香蕉的条纹病毒 。
此外,基因编辑技术还被应用于改良农产品质量,比如改良豆油品质和增加马铃薯的储存潜力。