导航:首页 > 信息技术 > race技术由哪里发明的

race技术由哪里发明的

发布时间:2023-03-27 07:23:52

‘壹’ 已知部分基因序列,如何获得全长基因

基因是遗传物质基本的功能单位,分离和克隆目的基因是研究基因结构、揭示基因功能及表达的基础,因此,克隆某个功能基因是生物工程及分子生物学研究的一个重点。经典克隆未知基因的方法比如通过筛选文库等有个共同的弊病, 即实验操作繁琐, 周期较长、工作量繁重,且不易得到全长序列。又由于在不同植物中目的基因mRNA丰度不同,所以获得目的基因的难易程度又不一样,特别是对于丰度比较低的目的基因即使使用不用的方法也不一定能获得成功。近年来随着PCR技术的快速发展和成熟.已经有多种方法可以获得基因的全长序列, 比如经典的RACE技术,染色体步移法和同源克隆法等,本文主要综述几种重要的克隆方法的原理和老笑困运用,并且比较分析这几种方法的优缺点,为你的实验节约时间和成本。
1. RACE技术
1985年由美国PE-Cetus公司的科学家Mulis等[1]发明的PCR技术使生命科学得到了飞跃性的发展。1988年Frohman等[2] 在PCR技术的基础上发明了一项新技术, 即cDNA末端快速扩增技术( rapid amplification of cDNA ends, RACE), 其实质是长距PCR( long distance, PCR)。通过PCR由已知的部分cDNA 序列, 获得5′端和3′端完整的cDNA, 该方法也被称为锚定PCR ( anchored PCR) [3] 和单边PCR( one-sidePCR) [4]。RACE技术又分为3’RACE和5’端RACE。3′RACE 的原理是利用mRNA 的3′端天然的poly(A) 尾巴作为一个引物结合位点进行PCR, 以Oligo( dT) 和一个接头组成的接头引物( adaptor primer, AP)反转录mRNA得到加接头的第一链cDNA。然后用一个正向的基因特异性引物( gene-specific primer, GSP) 和一个升缓含有接头序列的引物分别与已知序列区和poly(A) 尾区退火, 经PCR扩增位于侍念已知序列区域和poly( A) 尾区之间的未知序列,若为了防止非特异性条带的产生, 可采用巢式引物( nested primer) 进行第二轮扩增, 即巢式PCR( nested PCR) [5,6]。5’RACE跟3’RACE原理基本一样,但是相对于3’RACE来说难度较大。
5'-RACE受到诸多因素的影响而常常不能获取全长,因此研究者都着手改进它。这些措施主要是通过逆转录酶、5'接头引物等的改变来实现的,因此出现了包括基于“模板跳转反转录”的SMART RACE技术( switching mechanism at 5′ end of RNA transcript) [7] , 基于5′脱帽和RNA酶连接技术的RLM-RACE技术(RNA ligase mediated RACE)[8], 利用RNA连接酶为cDNA第一链接上寡聚核苷酸接头的SLC RACE技术(single strand ligation to single-stranded cDNA)[9] , 以及以内部环化的cDNA第一链为模板进行扩增的自连接或环化RACE技术(self-ligation RACE or circular RACE)[10],和通过末端脱氧核苷酸转移酶( TdT)加尾后引入锚定引物的锚定RACE技术( anchored RACE)[11]。
1.1基于‘模板跳转’的SMART RACE技术
SMART-RACE技术的最大特点是5′ RACE过程中的“模板跳转”现象,即当反转录进行到mRNA模板的5′末端时,反转录酶表现出末端转移酶活性,在第一链cDNA的3′端加上3-5 个残基(主要是dC) ,随后第一链cDNA与3′端含几个dG的寡核苷酸引物退火,使反转录反应发生跳移,以引物中寡核苷酸为模板继续进行,最终反转录所得产物必然包含完整的mRNA5′末端序列及引物序列,可直接用于RACE-PCR获得完整地5′ cDNA末端。由于上述过程无需接头连接,而且直接以第一链cDNA作为模板进行RACE-PCR ,因此更加简便、快捷。另外,SMART -RACE还采用了降落PCR、抑制PCR、LD - PCR 等先进扩增技术,提高了PCR扩增的敏感性和真实性,降低了非特异的产物背景,因此该技术已被广泛应用于cDNA末端快速扩增,尤其是5’端的克隆。
1.2末端脱氧核苷酸转移酶( TdT)加尾技术
传统的5′RACE反应是以TdT对第一链cDNA进行同聚物加尾来引发第二链cDNA的合成[12] ,这种方法经常会导致RACE反应失败或产生一些副产品。其主要原因是同聚物加尾反应难以控制,TdT 加尾时不能区分cDNA是否是全长,非全长cDNA分子被加尾后将在随后的PCR反应中得到优先扩增,从而产生大量的非特异性产物背景,并且TDT的加尾效率比较低[13]。目前许多研究这对其进行了改进。
夏瑞等[11]提出了一种改良的TDT加尾克隆基因5’端的方法。其首先用1个15 bp左右的特异反转录引物代替通用反转录引物Olig( dT) n对模板cDNA进行初步筛选,使合成的cDNA更靠近目的基因的5′端。其次, 两个上游引物采取巢式策略取代一般的poly( dG)n或poly ( dC)n,从而控制第二轮PCR的退火温度, 保证扩增的特异性。并且在PCR过程中采用了如锚定PCR、巢式PCR、降落PCR等方法增加扩展产物的特异性。这些新的改进使得到目的条带的概论增加,并且反转录引物不需要磷酸化, 从而大大节约实验成本。
2.染色体步移法
染色体步行(chromosome walking)是指由生物基因组或基因组文库中的已知序列出发逐步探知其旁邻的未知序列或与已知序列呈线性关系的目的序列核苷酸组成的方法和过程14]。对于基因组测序已经完成的少数物种(水稻、拟南芥等)来说,可以轻松地从数据库中找到已知序列的侧翼序列。但是这毕竟只是研究少数模式植物时的情况,对于自然界中种类繁多的其植物而言,在不知道它们的基因组DNA序列以前,想要知道一个已知区域两侧的DNA序列,只能采用染色体步移技术。因而,染色体步移技术在现代分子生物学研究中占有举足轻重的地位,是结构基因组研究以及功能基因组研究的基础。
目前,分离侧翼序列的染色体步移方法主要有两种,一是结合基因组文库为主要手段的染色体步移技术,构建基因组文库进行染色体步移尽管步骤比较繁琐,但是适于长距离步移,可以获得代表某一特定染色体的较长连续区段的重叠基因组克隆群。随着亚克隆文库条件构建条件的优化及测序技术的进步,这种方法也将更加快捷,准确。另一个是基于PCR扩增为主要手段的染色体步移技术。基于PCR扩增为主要手段的染色体步移技术步移距离相对较短,但是操作比较简单,尤其适合于已知一段核苷酸序列的情况下进行的染色体步移。反向PCR、外源接头介导PCR和热不对称交错PCR(TAIl-PCR)等就是建立在PCR技术基础上的染色体步行技术,为扩增已知序列旁侧的未知DNA片段提供了捷径.这些方法的建立可以不必经过烦琐的建库和筛选过程而获得全长基因序列.
2.1连接介导PCR
连接介导聚合酶链反应是以连接反应为基础的单侧PCR技术,首先通过基因组DNA酶切,在酶切后的DNA片段的一端连接上一个公共连接子,而后用这个连接子为引物与另一个基因特异引物进行扩增,得到了包含连接子在内的基因序列。连接介导PCR又分为连接载体的PCR、连接单链接头的PCR和连接双链接头PCR。此方法原理简单,操作方便。
2.1.1连接载体的PCR
连接载体的PCR是利用已知基因组DNA序列设计的特异引物和载体通用引物进行扩增获得目的片段的一项PCR技术。操作方法是首先用内切酶酶切基因组DNA和载体质粒DNA,得到小片段DNA和线形字体序列,然后用T4连接酶把载体序列与DNA小片段相连接,以连接产物为模板,以一个基因特异引物和载体引物进行扩展,通过克隆测序得到未知的侧翼序列。
2.1.2连接单链接头的PCR
连接单链接头的PCR又叫锅柄PCR,是连接单链接头PCR的典型代表,因其以一个类似锅柄结构的DNA分子为模板而得名[18]。其基本原理是:将基因组总DNA 用能产生5' 端突出末端的内切酶切割;接着连上一条单链的寡核苷酸,其具有两个特点,其一是5'端和限制性片段的突出末端互补,其二是除此以外的序列必须和已知序列中一段完全同源;在PCR 的复性阶段,外源接头就会和其链内同源序列配对而成一个末端部分封闭的分子内环状结构,在TaqDNA 聚合酶的作用下,沿着3' 端将单链部分完全补平后而形成一个锅柄结构,因此这种方法也被称为锅柄PCR。由于其末端是一个反向重复序列,故最后只需一条引物即可完成对目标区段的扩增。
2.1.3连接双链接头PCR
双链接头法也称为adapter介导的PCR法[ 19,20]。其主要过程为首先用能够产生粘性末端的限制性内切酶消化基因组DNA,然后将末端配对的接头和限制性片段连接,以其作模板,用接头引物和已知序列特异引物进行PCR扩增,即可获得包含侧翼序列的目标片段。显然,这类方法存在一个问题:即如何抑制接头到接头的非目标扩增。因此许多研究者由对其进行了改进,出现了抑制PCR,多功能接头PCR和T接头PCR[21]。
2.2热不对称交错PCR(TAIl-PCR)
热不对称性PCR (thermal asymmetric interlaced PCR, TAIL-PCR)就是建立在PCR技术基础上的染色体步移技术,为扩增已知序列旁侧的未知DNA 片段提供了捷径。该技术由Liu和Whitter于1995年首先研究并报道[22]。以基因组DNA为模板,使用高退火温度的长特异引物和短的低退火温度的简并引物,通过特殊的热不对称(高严谨性PCR和低严谨性PCR交替)循环程序,有效扩增特异产物。该技术具有简单快速、特异性高、分离出的DNA 序列可以用于图位克隆、遗传图谱绘制和直接测序等优点,近年来,被分子生物学研究者广泛应用,成为分子生物学研究中非常实用的基因侧翼序列克隆技术,同时在植物基因克隆方面也取得了很大进展。
TAIL-PCR技术的基本原理是利用目标序列旁的已知序列设计3个嵌套的特异性引物(special prime ,简称sp1 ,sp2 ,sp3 ,约20 bp) ,用它们分别和1个具有低Tm值的短的(14 bp) 随机简并引物(Arbitrary degenerate prime 简称AD)相组合,以基因组DNA作为模板,根据引物的长短和特异性的差异设计不对称的温度循环,通过分级反应来扩增特异引物。
TAIL-PCR包括3轮PCR反应。第1轮PCR反应包括5次高严谨性反应、1次低严谨性反应、10次较低严谨性反应和12次热不对称的超级循环。首先5次高严谨性的反应,使长的高退火温度的特异引物SPl与已知的序列退火并延伸,目标序列扩增成直线性型上升,由AD引物结合产生的非特异性产物的浓度则较低。而后进行1次低退火温度的反应,目的是使简并引物结合到较多的目标序列上,接下来10次较低严谨性的反应可以使两种引物均能与模板退火,从而使原来由高严谨性循环所产生的单链靶DNA复制成双链DNA,为下一轮线性扩增模板做准备。最后是进行12次热不对称的TAIL循环(超级循环即高特异性和低特异性循环交替),目的片段得以指数性地扩增,扩增的量大大超过了非目标片段。经过上述一系列的反应得到了不同浓度的3种类型产物:TAIL-PCR中间会出现3 种类型的产物。类型1是特异引物和任意引物之间扩增的产物(即目标产物;类型2是单独由特异引物扩增的产物;类型3是单独由任意引物引发的产物。该方法由3步连续的PCR扩增过程构成。经过第一阶段的PCR扩增后,类型2产物的分子数目在3种产物中最多,类型1产物稍低。在第二阶段的扩增中,类型1产物的分子数逐渐升至最高,类型2分子数目基本保持不变,而类型3的分子数目仍然保持很低。在第三阶段结束后,基本上只有类型1产物,即目的产物。
TAIL-PCR的技术难点,首先是引物设计,和一般的PCR反应相比,TAIL-PCR反应对引物的要求较高,引物的设计很是重要。特异性引物和简并引物的选择直接影响扩增的效果。特异引物设计:3个嵌套的特异性引物长度一般在20~30 bp之间,Tm 值一般设为58~68℃。SP1、SP2 和SP3之间最好相距100 bp以上以便在电泳时更容易区分3轮PCR产物。简并引物是按照物种普遍存在的蛋白质的保守氨基酸序列设计的,相对较短,长度一般是14 bp左右,Tm值介于30~48℃之间。AD引物是否最佳与它的简并度、引物长度和核苷酸序列组成有很大关系。
目前一些研究这又对TAIL-PCR进行了该进,比如省去了10个中等严谨度的PCR循环,3次PCR循环中的变性时间由5 s延长到了30 s,更有利于DNA彻底解链,第3次循环增加了热不对称交织PCR,更有利于特异目的片段的富集,把较低特异性反应的温度从44℃降到29℃等,以利于更好的扩增目的片段。
3 .RACE技术与染色体步移方的比较
3.1 SMART-RACE与末端脱氧核苷酸转移酶( TdT)加尾技术的比较
SMART-RACE技术是目前一种比较成熟的技术,它能够最大限度地提高在反转录反应中获取全长cDNA的可能,成功率高,可以节约时间并且操作程序简单,但是于价格过于昂贵, 试验成本增加, 而且对RNA质量要求很高。TdT加尾扩增法的优化改良, 成功率和稳定性都得到较大的提高,改良的TdT末端加尾扩增法综合了多项PCR扩增方法如锚定PCR、巢式PCR、降落PCR等, 原理简单易懂, 操作性强,能够满足一般基因克隆的要求。
3.2连接介导PCR与TAIL-PCR的比较
连接介导PCR原理简单,但其需要DNA内酶切酶切,而内酶切又比较昂贵,增加实验的成本。并且酶切的好坏,接头处理方法是否得当而影响接头与DNA小片段的连接效率,从而导致失败。TAIL-PCR不需要进行DNA酶切而直接用DNA做模板进行扩增,仅仅只需要三轮PCR扩增,就可以得到目的条带。简单、特异性高、高灵敏度、快速、不涉及连接反应这就是TAIL-PCR的优点,但是TAIL-PCR也有缺点,主要是TAIL-PCR 反应需要较多的引物组合。此外,由于AD引物存在有限的结合位点,对于个别的侧翼序列,即使使用不同的简并引物也难以扩增到阳性结果。目前已经有学者提出用RAPD的引物替代AD引物的观点,由于RAPD引物数量很多,所以可以解决AD引物存在有限的结合位点的不足。
4.总结
RACE是一种快速、有效的克隆基因全长cDNA的有效方法。基因的3’端通过RACE技术非常容易得到,但是5’端却比较难,即使用比较昂贵的5’端RACE试剂盒也不一定能得结果。而基于PCR扩增的染色体步移法,却有得天独厚的优势,它不仅仅能用于基因全长的获得而且还可以得到基因5’端的启动子序列。模板仅仅只要基因组DNA就行,原理简单易懂,操作方法也简单易行,并且非常的廉价,适用于不同水平和不同层次的研究者。笔者通过TAIL-PCR技术成功得到了芒果LFY基因的全长及其启动子序列。

‘贰’ 生物实验中的RACE是什么技术

RACE 是通过PCR进行cDNA末端快速克隆的技术,通卜态雹型帆过往两端延伸扩增,获得闭链cDNA完整的3'端或5'端

‘叁’ 生物实验中的RACE是什么技术

RACE (rapid-amplification of cDNA ends) 是通过PCR进行cDNA末端颂李快速宏尘克隆的技术,通过往两端延伸扩增,获得cDNA完整的3'端或5'端野绝迟.http://ke..com/link?url=-o...

‘肆’ 跨栏跑和奥运会110米栏冠军成绩演变

中国选手刘翔在男子110米栏决赛中以12秒91获得金牌!悉乱他创造了中国乃至亚洲的历史,成为第一睁樱档个获得奥运田径短跑项目世界冠军的黄种人,这个成绩打破了奥运会纪录,并且颂毁平了世界纪录!

‘伍’ RACE技术的技术原理

SMARTTM 3'-RACE原颤弯雀理
利用mRNA的3' 末端的poly(A)尾巴作为一个引物结合位点,以连有SMART寡核苷酸序列通用接头引物的Oligo(dT)30MN作为锁定引物反转茄早录合成标准第一链cDNA。然后用一个基因特异引物GSP1(gene specific primer,GSP)作为上游引物,用一个含有部分接头序列的通用引物UPM(universal primer,UPM)作为下游引物,以cDNA第一链为模板,进行PCR循环,把目闹档的基因3' 末端的DNA片段扩增出来。(见下图)

SMARTTM 5'-RACE原理
先利用mRNA的3'末端的poly(A)尾巴作为一个引物结合位点,以Oligo(dT)30MN作为锁定引物在反转录酶MMLV作用下,反转录合成标准第一链cDNA。利用该反转录酶具有的末端转移酶活性,在反转录达到第一链的5' 末端时自动加上3-5个(dC)残基,退火后(dC)残基与含有SMART寡核苷酸序列Oligo(dG)通用接头引物配对后,转换为以SMART序列为模板继续延伸而连上通用接头(见下图)。然后用一个含有部分接头序列的通用引物UPM(universal primer,UPM)作为上游引物,用一个基因特异引物2(GSP 2 genespecific primer,GSP)作为下游引物,以SMART第一链cDNA为模板,进行PCR循环,把目的基因5'末端的cDNA片段扩增出来。

最终,从2个有相互重叠序列的3'/ 5'-RACE产物中获得全长cDNA,或者通过分析RACE产物的3'和5'端序列,合成相应引物扩增出全长cDNA。

‘陆’ 急求RACE-PCR原理!!!

多是多了点,这样好有一个全面的认识
第一 RACE的简介

目前,全长基因的获得是生物工程及分子生物学研究的一个重点。尽管已经有多种方法可以获得基因的全长序列,但在很多生物研究中,由于所研究的目的基因丰度较低,从而使得由低丰度mRNA通过转录获得全长cDNA很困难。近年来发展成熟的cDNA末端快速扩增(RACE)技术为从低丰度转录快速纤仔获得全长 cDNA提供了一个便捷的途径。

cDNA 末端快速扩增 (rapid amplification of cDNA ends,RACE)技术是一种基于mRNA反转录和 PCR技术建立起来的、以部分的已知区域序列为起点,扩增基因转录本的未知区域,从而获得mRNA(cDNA)完整序列的方法。简单的说就是一种从低丰度转录本中快速增长cDNA5’和cDNA3’末端,进而获得获得全长cDNA简单而有效的方法,该方法具有快捷、方便、高效等优点,可同时获得多个转录本。因此近年来RACE技术已逐渐取代了经典的cDNA文库筛选技术,成为克隆全长cDNA序列的常用手段。

第二 RACE的原理

RACE 是采用PCR 技术由已知的部分cDNA 顺序来扩增出完整cDNA5’和3’末端,是一种简便而有效的方法, 又被称为锚定 PCR (anchoredPCR)和单边PCR(one2side PCR)。

3’RACE的原理

一)加入oligo(dT)17和反转录酶对mRNA进行反转录得到(-)cDNA;

二)以oligo(dT)l7和一个35bp的接头(dT17-adaptor)为引物,其中在引物的接头中有一在基因组DNA中罕见的限制酶的酶切位点。这样就在未知cDNA末端接上了一段特殊的接头序列。再用一个基因特异性引物(3 amp)与少量第一链(-)cDNA退火并延伸,产生互补的第二链(+)cDNA。

三)利用3amp和接头引物进行PCR循环即可扩增得到cDNA双链。扩增的特异性取决于3amp的碱基只与目的cDNA分子互补.而用接头引物来取代dT17一adaptor则可阻止长(dT)碱基引起的错配。

5’RACE的原理

5’RACE与3’ RACE略有不同。首先,引物多设计了一个用于逆转录的基因特异引物GSP-RT;其次,在酶促反应中增加返首了逆转录和加尾步骤,即先用GSP-RT逆转录 mRNA获得第一链(-)cDNA后, 用脱氧核糖核酸末端转移酶和dATP在cDNA5’ 端加poly(A)尾,再用锚定引物合成第二链(+)cDNA,接下来与3’ RACE过程相同。用接头引物和位于延伸引物上游的基因特异性引物(5amp)进行PCR扩增。

全长cDNA的获得

通过RACE方法获得的双链cDNA可用限漏竖数制性内切酶酶切和southem 印迹分析并克隆。通常的克隆方法是同时使用一个切点位于接头序列上的限制性内切酶和一个切点位于扩增区域内的内切酶。由于大多数非特异性扩增的cDNA产物不能被后一个限制性内切酶酶切,因而也就不会被克隆.从而增加了克隆的选择效率。还可以用在基因特异性引物的 5’端掺人一个限制性内切酶的酶切位点的方法来克隆。最后,从两个有相互重叠序列的3’和5’RACE产物中获得全长cDNA。或者通过分析RACE产物的3’和5’端序列,合成相应引物来扩增mRNA的反转录产物,从而获得全长cDNA。

第三 RACE的应用

RACE技术主要是应用于对全长cDNA序列的获得,但对该技术进行一定的修改后,也可在其它方面显示出极高的应用价值。

首先,RACE技术可用于cDNA文库的构建及筛选。Belyavaasky等(1989)用10个骨髓瘤细胞分离的总RNA,通过TdT加同聚尾、(dT)16引物反转录,接着用(dC)13和锚定引物扩增的方法建立了一个106克隆的cDNA 文库。同时,用该方法构建文库的优点是它们都只需要很少量的实验材料。建喜等(2001)利用RACE技术从已经构建的cDNA 文库中成功克隆了家兔精子膜蛋白基因。

其次,应用RACE克隆已知片段的旁侧内部序列(neighboring internal sequence)。Fritz等(1991)以及Struck等(1994)分别用该法获得了3’端和5’端的旁侧序列。Zhang (1996)应用LA-PCR方法获得了特异基因的5’末端非编码和编码序列,省去了构建及筛选基因组文库的麻烦。王东等(2003)利用RT-PCR和 RACE技术从玉米中获得一个长度为2469bp F2KP蛋白基因的cDNA克隆。此外,RACE技术还可用于克隆同源基因的同源片断,为寻找同基因提供了一种方法。

除此之外,Whitcomb等设计的随机引物/锚定PCR能对克隆质粒载体上的靶序列进行定点删除,采用(N)10锚随机引物和变性的质粒DNA进行杂交,然后通过T7聚合酶来延伸,这样单链DNA就可被一随机引物和一基因特异性引物扩增,一端可达到缺失删除,缺失的片段可达2Kb。Balavoine应用连接介导PCR从一种扁虫中克隆得到8个分别属于Hox,msh,NK-1和NK-2的含同源盒的片段,说明RACE可用于克隆同源基因的同源片段,为寻找同源基因提供了一种手段。

RACE技术与生物信息学,例如EST库相结合,具有快速,高效克隆新基因的特点,为快速钓取基因家族候选新成员提供新思路,如果一个基因是多基因家族的一个成员,用基因特异引物(GSP)可能同时扩增几个高度同源的Cdna.李红等利用一条cDNA作为探针,通过BLASTN从GenBank中整合出了7条更长的EST,通过设计引物,利用RACE扩增,得到了7条新基因.相比单纯寻找新基因的全长,此种方法的结合充分利用了信息巨大的基因资源库,得到了更多的信息,获得新基因速度更快*效果更高,属一种颇具规模化的方法,很有应用前景。

总之,随着RACE技术的不断改进和完善,优化PCR扩增的条件以提高扩增的效率和忠实性,RACE技术必将在基因克隆以及基因家族和基因表达变化等研究中发挥极大的作用。

第四 RACE的优点与局限性

RACE技术相对于其他方法克隆全长cDNA来说具有价廉、简单和快速等特点。用RACE获得cDNA克隆只需几天的时间,而且对丰度很低的起始反应物质,照样能迅速反馈是否有目的产物生成。因此,可根据不同的RNA制备来修订反转录条件,以满足全长cDNA的获得。同时,通过RACE技术获得5’端调控序列和多聚腺苷化信号序列的信息,有助于选择引物以用于转录模型非常复杂的基因中扩增cDNA的亚群。另外,RACE技术能产生大量独立克隆,这些克隆可用来证实核苷酸序列,并使得被选择性剪接或开始用于很少使用的启动子的特殊转录物的分离成为可能。

RACE技术从理论上来说是很简单的,但是实际操作中会面临许多技术上的难题。许多研究人员发现,利用RACE来获得全长基因并非如想象中那般成功,甚至经常会发生错误的扩增和克隆结果, 多数情况下,5’端的编码区经常会由于反转录过程的不彻底而丢掉,特别是由于有大的转录物或者存在复杂的二级结构的时候,而且连接反应通常是特异性差效率很低,这样PCR成功进行就不能保证.尤其在长片段扩增时,PCR就显得不那么有效.例如几个Kb片段的产物就需要优化改变扩增条件,而且扩增结果经常出现非特异性扩增条带,使得选择目的条带变得十分困难,而对于丰度较低,长度较长的基因RACE方法困难更大,这是困扰研究人员的一大难题。由于RACE扩增中经常出现由于引物的不匹配而导致的非特异性扩增,有时需要进行几轮巢式扩增来达到获得特异性扩增的目的,然而多轮扩增又容易提高PCR反应的错误发生率,由于这些原因,利用RACE技术通常不易获得所希望的结果。

尽管RACE技术在应用中取得了很大的成功.但在实际操作过程仍有不少局限性。一般来说导致失败的原因主要有二:第一,在逆转录、TdT加尾、PCR扩增这三个连接的酶促反应过程中,任何一步的失败都会导致前功尽弃;第二,即便是上述反应平稳顺利.但结果也通常会出现一些非特异性产物或非全长的产物。因此,要保证RACE技术的顺利进行,还需从不同方面进行改良优化。

‘柒’ Race是什么牌子

RACE技术的简介
cDNA完整序列的获得对基因结构、蛋白质表达、基因功能的研究至关重要。
完整的cDNA 序列可以通过文库的筛选和末端克隆技术获得。
末端克隆技术是20世纪80年代发展起来的。RACE(rapid-amplification of cDNA ends)是通过PCR进行cDNA末端快速克隆的技术。

RACE的优点
与筛库法相比较,有许多方面的优点
1)此方法是通过PCR技术实现的,无须建立cDNA文库,可以在很短的时间内获得有利用价值的信息。
2)节约了实验所花费的经费和时间。
3)只要引物设计正确,在初级产物的基础上可以获得大量的感兴趣基因的全长。

实验室现有的RACE试剂盒的简介
RACE是一种从一个相同的cDNA模板进行5‘和3‘末端快速克隆的方法。此方法会产生较少的错误条带。此过程中使用的酶混合物非常适合长链PCR。
使用此方法的要求是必须知道至少23-28个核苷酸序列信息,以此来设计5’末端和3‘末端RACE反应的基因特异性引物(GSPs)。

RACE引物的设计:
基因特异性引物(GSPs)应该是:
23-28nt
50-70%GC
Tm值≥65度,Tm值≥70度可以获得好的结果
需要实验者根据已有的基因序列设计5‘和3‘RACE反应的基因特异性引物(GSP1和GSP2).由于两个引物的存在,PCR的产物是特异性的。

反应中涉及到的一些事项
cDNA的合成起始于polyA RNA。如果使用其它的基因组DNA或总RNA,背景会很高。
RACE PCR的效率还取决于总的mRNA中目的mRNA的量和不同的引物有不同的退火和延伸温度。
在进行告埋5‘和3’RACE PCR的时候应该使用热启动。
表4中给出了所有引物的相互关系。重叠引物的设计会对全长的产生有帮助。另外,重叠的引物可以为PCR反应提供一个对照。并不是绝对的要利用设计的引物产生重叠片段。
引物GSP中的GC含量要在50-70%之间。这样可以使用降落PCR。避免使用自身互补性的引物序列,否则会产生回折和
如果要用重叠片段来检测设计的引物,GSp1和GSp2之间至少是100-200碱基。只有这样才可袜衫蚂以用扩增的产物塌好来鉴定设计的引物是否正确。
降落PCR可以明显的增加RACE PCR产物的特异性。在最开始的循环中,退火温度高于AP1引物的Tm值,可以增加对特异性条带的扩增。随后的退火和延伸的温度降回到AP1的温度,可以进行随后的PCR循环。
形成分子内氢键。另外,避免使用与AP1互补的引物,尤其是在3‘末端。

验证基因特异性引物的对照:
单个引物的阴性对照:只用一个引物GSP来进行阴性对照。这样不应该产生任何的条带。如果可以看到明显的产物,应该改变循环的参数,或重新设计原始引物。
利用两个GSPS进行阳性对照:(只有两个GSP可以产生重叠的时候才可以采用此步。)为了确定RNA样品中目的基因确实表达,利用两个GSP和接头连接的cDNA来产生阳性对照。可以产生两个引物之间的重叠大小的片段。如果没有这个片段,应该重复cDNA的合成,或者从一个不同的组织或细胞来源进行cDNA的合成。
制备和抽提polyA RNA
不要使用DEPC处理过的水。
纯化完mRNA之后,利用琼脂糖凝胶电泳检测mRNA的质量。哺乳动物的mRNA样品是0.5-12kb的拖带,在其中有4.5和1.9kb的rRNA的条带。非哺乳动物的mRNA应略小。

具体的实验步骤
cDNA第一条链的合成:
我们建议进行cDNA合成的对照反应,这样可以对样品的cDNA的合成进行鉴定。加入各种试剂之后,在气浴中42度保温一个小时。
注意: 在水浴或酒精浴中保温回减少反应体积,从而降低第一链的合成效率。
将管放于冰上,以终止第一链的合成反应。
直接进行第二链的合成。
cDNA第二链的合成:
第二链合成的酶混合物中,含有聚合酶、RNaseH和连接酶。T4 DNA聚合酶的功能是补平dscDNA的末端。我们建议做阳性对照,试剂盒中提供人类骨骼肌的mRNA。
建议进行阳性对照,cDNA的质量取决于制备的polyA RNA的质量。非哺乳动物样品的mRNA大约在0.5-3kb之间。
通过电泳检测cDNA的产量,与对照进行对比,这样可以有利于在以后的步骤中对cDNA进行稀释。

接头的连接及连接产物的稀释
按照程序进行连接反应。
如果没有对比样品和对照的产量,利用Tricine-EDTA buffer制备接头连接的ds cDNA的1/50和1/250的稀释物,用两种稀释物进行以下的RACE PCR反应,直到鉴定出哪一种稀释可以得到好的效果。

RACE-PCR扩增
进行5’和3’的RACE-PCR扩增。
利用以下的程序进行降落PCR反应:

注意:
我们建议使用降落PCR反应,这就要求GSP的Tm值≥70度。

当循环结束时,利用1.2%琼脂糖凝胶电泳分析每一个管中的产物5μl,使用适当的分子量marker。
可以根据你的基因的特异性来设计最理想的循环参数。如果看不到带或者只有微弱的带,在68度多加5个循环。最佳的延伸时间取决于扩增条带的长度。如果片断的长度在2-5kb的时候,经常使用4min,0.2-2kb的时候将延伸时间减到2-3min,对于5-10kb的条带,延伸时间增加到10min。

RACE产物的验证:
应该对RACE的片段进行验证,以此来确定是否已经扩增了理想的产物。如果得到的是多条带或者研究的是多基因家族的成员,验证是非常有用的。
有3种验证RACE产物的方法:
(1)比较由GSP和NGSP获得RACE产物。
(2)Southern blot
(3)克隆并测序
我们建议最好测得RACE产物的部分序列。有的时候需要嵌套引物的存在。

比较由GSP和NGSP获得RACE产物
对于5‘末端的RACE产物,比较由AP1和GSP1扩增出来的产物和由AP1和NGSP1扩增出来的产物。
对于3‘末端的RACE产物,比较由AP1和GSP2扩增出来的产物和由AP1和NGSP2扩增出来的产物。这对于鉴定多条带是否是上一个PCR的特异性产物是非常有用的。
如果条带是正确的,在嵌套PCR反应中的条带应该是略微小一些。基本PCR和嵌套PCR产物的迁移率的不同取决于cDNA结构中GSP1和嵌套引物的位置。

RACE产物的克隆和测序:
可以利用胶回收试剂盒来回收RACE产物,此试剂盒适合回收2.5kb以下的RACE产物;对于长的片段,可以通过电洗脱获得好的结果。如果你选择使用其他的纯化方法,最后用Tricine-EDTA buffer 30μl重新悬浮DNA样品。

电泳5μl回收的样品来鉴定回收的质量。
将回收的PCR产物直接克隆到/A型的PCR克隆载体中。另外还可以利用接头和/或cDNA合成引物中的Not1、Srf1、Xma1、ECOR1等酶切位点,将产物克隆到常规载体中.
对于5‘端的RACE产物,我们建议挑取至少8-10个不同的克隆以获得5‘端的最大可能性的序列。(反转录并不总是进行到mRNA模板的5’末端,尤其是长模板。另外,T4 DNA聚合酶会移走5‘末端的0-20个碱基。)
一旦鉴定了含有插入片断的克隆,应该获得多的序列信息。理想的是,可以对整个开放读码框进行测序。包括5‘和3‘的非翻译区。

全长cDNA的获得
通过部分或全部测序鉴定了RACE产物后,可以通过两种选择获得全长的cDNA。
通过PCR的方法获得全长cDNA:
扩增长的cDNA需要较长的延伸时间,但是如果延伸的时间过长,可以产生拖带,所以要慎重的设计引物。
根据从5‘和3‘RACE产物获得序列信息设计5’和3‘GSP引物。这些引物应该来自cDNA的3’或者5‘的末端,应该是23-28nt长。不应该在引物的末端加上限制性位点,这样会导致高背景。在某些时候可以设计3’和5‘的嵌套引物。但是还是应该先利用一对引物进行PCR反应。
进行如下的热循环:
94度 30秒
25个循环 94度 5秒
72度 2-15分钟
延伸的时间应该等于预期的cDNA长度加上2分钟。例如:预期得到6kb的条带,用6+2=8分钟的延伸时间。
注意:如果没有条带或者条带弱,增加5个循环;或者优化PCR的条件。
在1.2%的琼脂糖凝胶上分析5μl的样品。通常情况下,可以见到一条单一带,如果这样,利用胶来纯化全长的cDNA。
制备1.2%的TAE buffer制备琼脂糖凝胶。不使用TBE buffer,TBE的胶很难制备全长的cDNA。
将剩下的45μl反应物点样,选用适当的marker。
利用长波紫外观察cDNA(≥300nm)切下全长的cDNA。注意:应该尽量减少紫外对cDNA的照射。
利用胶回收试剂盒回收cDNA。此试剂盒适合回收2.5kb以下的RACE产物;对于长的片段,可以通过电洗脱获得好的结果。如果你选择使用其他的纯化方法,最后用Tricine-EDTA buffer 30μl重新悬浮DNA样品。
将全长的cDNA克隆到T/A型的 PCR克隆载体中。

通过克隆产生全长的cDNA:
如果你已经获得了含有重叠部分的5‘和3’RACE产物,同时在cDNA的重叠部分含有一个酶切位点的话,通过克隆技术可以获得全长的cDNA。
利用酶切获得的3‘和5’扩增产物,并且利用T4 DNA连接酶将它们连接起来。利用接头和cDNA合成引物中的内切酶将最终的全长cDNA克隆到载体中。
在哺乳动物基因组中,NOT1和Srf1酶切非常稀少,大约106bp才出现一次,因此在绝大多数的cDNA中是不出现的。

Appendix:cDNA接头和引物

接头在设计的时候可以使cDNA的扩增成功进行:
接头的5‘端在第一个循环中没有AP1引物的结合位点。AP1的结合位点只有通过GSP的扩增之后才能够产生。
这些特点中的每一个都可帮助减少cDNA片段扩增过程中出现的非特异性扩增。另外,它们允许从一个复杂的DNA片段的混合物中扩增出靶样品――所有的产物都有相同的末端结构,因为使用了单一的一套GSPs。

‘捌’ race什么意思

race 英[reɪs] 美[res]
n. 赛跑; 民世悉族; 人种; 竞争;
v. 参加比赛; 使比赛; 快速移动孙返搭; 剧烈跳动;
[例句]The women's race was won by the American, Patti Sue Plumer.
女子赛跑的冠军被美国人帕蒂·休·普卢默夺得。
[其他] 第三人称单数:races 复数:races 现在分词:racing 过去式:raced过去分词:则拿raced

‘玖’ 竞走起源于哪个国家

竞走(Race Walking)在旅行走路的基础上发展起来,是两腿交互迈步前进,与地面保持不间断的接触,山扒宏在任何时间都不得两脚同时离地的田径运动项目。
竞走运动起源于英此宏国。19世纪末,欧洲盛行从一个城市到另一个城市的城市间竞走活动,不久又从欧洲传到北美洲、大洋洲,以及其他地区的许多国家。初期,竞走采取普通走步或任意走的形式,对竞走技术没有严格的要求。1906年,国际奥委会会议首次将竞走列为比赛项目,当时设有1500米和3000米两个项目。从1956年奥运会开始,设20公里竞走和50公里竞走两个男子比赛项目。1992年,巴塞罗那奥运会将女子10公里竞走列入正式比赛项目。
世界竞走运动的最高组织机构是1912年成立的世界田径,该组织机构的主要职责是在全球开展田径运动,制定田径比赛的计时方法及建立世界纪录的标准等。
比赛规则:
(1)竞走比赛的两个核心规则:①竞走运动员逗册必须始终保持至少有一只脚与地面接触;②前腿从着地的一瞬间起直到垂直位置,必须始终伸直,膝关节不能弯曲。
(2)比赛中有6-9名专职的竞走裁判员监督运动员。按规则规定,他们不能借助任何设备帮助判断,只能依靠自己的眼睛来判断运动员是否犯规。
(3)当竞走裁判员看到竞走运动员的动作有违反竞走技术的迹象时,应予以黄牌警告,并在赛后报告给主裁判。
(4)当运动员的行进方式违反竞走技术的规定,表现出肉眼可见的腾空或膝关节弯曲时,竞走裁判员须将一张红卡送交竞走主裁判。
(5)当竞走主裁判收到针对同一名运动员的三张来自不同竞走裁判员的红卡时,该运动员即被取消比赛资格,并由主裁判或主裁判助理向其出示红牌。

阅读全文

与race技术由哪里发明的相关的资料

热点内容
长春城市学院大数据专业怎么样 浏览:541
股票最真实数据有哪些 浏览:405
vivo原装数据线多少a 浏览:926
网上发布招工信息在哪里 浏览:829
sql最多存放多少数据 浏览:226
养发产品怎么管理 浏览:269
梦想城镇小程序怎么没有 浏览:593
学程序开发的软件有什么 浏览:547
卖产品销售前准备工作有哪些 浏览:801
全权代理合同开庭怎么办 浏览:854
为什么有的人技术再好当不了领导 浏览:194
如何运行javaweb程序 浏览:823
怎么下载程序到单片机 浏览:965
什么酒代理商好 浏览:663
等待代理服务器什么意思 浏览:808
执业医师信息维护多久通过 浏览:11
跟单位要债怎么走法律程序 浏览:509
原油对农产品有什么影响 浏览:526
老板信息不回你代表什么 浏览:887
c程序的解决方案是哪个文件夹 浏览:304