导航:首页 > 信息技术 > 什么是立体光刻成型技术

什么是立体光刻成型技术

发布时间:2023-03-22 20:27:50

1. 光固化3d打印机基本原理是什么

1 .什么是SLA光固化3d打印机?
光固化3d打印机采用SLA技术,SLA技术是世界上最早实现商品快速成型的技术。 这主要基于液态感光性树脂的光聚合原理,简称立体光刻法。 正如文字所示,感光性树脂是对光敏感的树脂材料,受到光后会迅速固化。 其次,感光性树脂是光引发剂、单体聚合物和预聚物的混合物,可以在特定波长的紫外光焦点固化。 SLA/DLP模型一般采用感光性树脂材料。 用感光性树脂材料印刷的产品表面光滑,成镇凳型质量高。
2、SLA光固化3d打印机的成型原理:
我们通常可以利用CAD软件设计三维实体模型。 是用数控装置控缓局制的扫描仪,按照设计的扫描路径,用激光束照射液态感光性树脂的表面,使表面特定区域的树脂层固化后,在加工第一层时,生成零件的一部分; 然后,在距离3d打印机升降平台一定距离的固化层上覆盖另一种液态树脂,在扫描第二层的同时扰旅让,将第二层固化层牢牢地贴在第一层固化层上。 原型从树脂中取出后,最终固化,然后研磨、电镀、涂装或着色,得到所需的产品。

2. 主流3D打印技术简介 什么是FDM,SLA,3DP,SLS

1、FDM技术也叫“熔融沉积”技术。

工作原理:加热头把热熔性材料(ABS树脂、尼龙、蜡等)加热到临界状态,呈现半流体性质,在计算机控制下,沿CAD确定的二维几何信息运动轨迹,喷头将半流动状态的材料挤压出来,凝固形成轮廓形状的薄层。

2、SLA技术也叫“立体光固化成型”技术。

工作原理:激光光束通过数控装置控制的扫描器,按设计的扫描路径照射到液态光敏树脂表面,使表面特定区域内的一层固化后(激光束照射树脂后会形成固态),然后制作平台下降一定的距离(0.05-0.025mm之间),再让固化层覆盖上另一层液态树脂,以此循环往复,直到最终模型的完成。

3、3DP技术

工作原理就像一台过去的桌面2D打印机。其过程与选择性激光烧结(SLS)技术有点类似,但是它并不用激光来烧结材料,而是使用一个喷墨打印头在石膏粉末上面喷射液体粘合剂。喷一层,然后再铺上一层薄薄的石膏粉末,如此反复,直到产品制作完成。

4、SLS 技术

SLS工艺使用的是红外激光束,材料则由光敏树脂变成了塑料、蜡、陶瓷、金属或其复合物的粉末。先将一层很薄(亚毫米级)的原料粉未铺在工作台上,接着在电脑控制下的激光束通过3D扫描器以一定的速度和能量密度,按分层面的二维数据扫描。激光扫描过的粉末就烧结成一定厚度的实体片层,未扫描的地方仍然保持松散的粉末状。

(2)什么是立体光刻成型技术扩展阅读:

1、3D打印(3DP)即快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。

2、3D打印通常是采用数字技术材料打印机来实现的。常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件。

3、该技术在珠宝、鞋类、工业设计、建筑、工程和施工(AEC)、汽车,航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支以及其他领域都有所应用。

3. 最近要写关于先进制造论文, 谁能给一点有关快速成形技术的介绍 这是种什么技术, 有什么优势

你这个选题很好.

快速成形, 英文是Rapid Prototyping, 是当代先进制造技术的一种. 快速成形技术是计算机辅助设计及制造技术、逆向工程技术、分层制造技术(SFF)、材料去除成形(MPR)材料增加成形(MAP)技术以及它们的集成. 通俗一点说, 快速成形就是利用在三维造型软件中已经设计的数字三维模型, 通过快速成型设备(快速成形机), 制造实体的三维模型的技术.

快速成形技术有以下特点:
(1) 制造原型所用的材料不限,各种金属和非金属材料均可使用
(2) 原型的复制性、互换性高
(3) 制造工艺与制造原型的几何形状无关,在加工复杂曲面时更显优越
(4) 加工周期短,成本低,成本与产品复杂程度无关,一般与传统加工模型的工艺相比, 快速成形在制造费用上可以降低80%,加工周期可以节约70%以上
(5) 高度技术集成,可实现了设计制造一体化

曾经和目前仍然为主流的快速成形技术有以下几种:

1、立体光刻技术 (SL/SLA)
SLA的工作原理是以液态光敏树脂 (例如一种特殊的环氧树脂)为造型材料,采用紫外激光器为能源:一种是氦一福激光器 (波长 325nm,功率15~50MW),另一种是氨离子激光器(波长351~365nm,功率 100~500MW ),激光束光斑大小为0.05~3mm。由CAD设计出三维模型后将模型进行水平切片,分成为成千上万个薄层,生成分层工艺信息,按计算机所确定的轨迹,控制激光束的扫描轨迹,使被扫描区域内的液态光敏树脂固化,形成一层薄固体截面后,升降机构带动工作台下降一层高度,其上复盖另一层液态光敏树脂,接着进行第二层激光扫描固化,新固化的一层牢固地粘在前一层上,就这样逐层叠加直到完成整个模型的制作。一般每个薄层的厚度0.07~0.4mm,模型从树脂中取出后,进行最终硬化处理加以打光、电镀、喷漆或着色等即可。

发展趋势:稳步发展. SL/SLA技术的缺点在于材料成本和设备樱液维护成本十分高昂。因为紫外激光器的使用寿命只能维持在1年左右, 同时作为成形材料的光敏树脂也需要每年更换, 仅此两项便需要每年50万人民币以上的维护成本. 此外, SL/SLA快速成形设备结构复杂, 零件众多, 日常的维护保养也十分不易. 但是, 由于SL/SLA技术的成形精度非常高, 可以制造十分细小的模型或表面特征, 这一项优势似的SL/SLA技术仍然具有十分广阔的应用前景.

2. 薄材叠层成形技术 (LOM)
薄材叠层成形技术是通过对原料纸进行激光切割与粘合的方式来形成零件的。其工艺是先将单面涂有热熔胶的纸通过加热辊加压粘结在一起,此时位于其上方的激光器按照分层CAD模型所获得的数据,将一层纸切割成所制零件的内外轮廓,然后新的一层纸再叠加在上面,通过热压装置,将下面已经切割的层粘合在一起,激光再次进行切割。切割时工作台连续下降,切割掉的纸片仍留在原处,起支撑和固化作用,纸片的一般厚度为0.07~0.1mm。该方法特点是成形速率高,成本低廉。

发展趋势:已经淘汰. LOM技脊码物术是快速成形技术发展过程中曾今为了寻找成本相对低廉, 精度相对合理的解决方案的一种尝试性探索. 客观而言, LOM设备的成形精度适中, 可以制造一些具有表面纹路的模型, 同时, 成形速度也相对较快. 但是, 由于LOM技术的材料利用率很低(10%-20%), 使得实际的材料成本并不便宜. 此外, LOM设备的稳定性和安全性也存在严重隐患, 在实际运行过程中, 纸质、木质和PVC材料在激光照射极易着火, 引起事故. 因此, 目前LOM技术在全世界范围内已经几乎停止使用.

3. 选区激光粉末烧结技术 (SLS)
选择性激光烧结 (SLS)的成形方法是。在层面制造与逐层堆积的过程中,用激光束有选择地将可熔化粘结的金属粉末或非金属粉末 (如石蜡、塑料、树脂沙、尼龙等)一层层地扫描加热,使其达到烧结温度并烧结成形;当一层烧结完后,工作台降下一层的高度,铺下一层的粉末,再进行第二层的扫描,新烧结的一层牢固地粘结在前一层上,如此重复,最后烧结出与CAD模型对应的三维实体。选择性激光烧结 (SLS)突出的优点在于它是以粉末作为成形材料,所使用的成形材模启料十分广泛,从理论上来说,任何被激光加热后能够在粉粒间形成原子间连接的粉末材料都可以作为SLS的成形材料。

发展趋势:停滞不前.

4、熔融沉积成形技术 (MEM)
MEM的基本原理是:加热喷头在计算机的控制下,根据截面轮廓信息作X--Y平面运动和高度Z方向的运动,丝材 (如塑料丝、石腊质丝等)由供丝机构送至喷头,在喷头中加热、熔化,然后选择性地涂覆在工作台上,快速冷却后形成一层截面轮廓,层层叠加最终成为快速原型。用此法可以制作精密铸造用蜡模、铸造用母模等。

发展趋势:快速发展. MEM是在相对近期发展处的快速成形技术, 其有点在于安全性高, 设备稳定性高, 成形精度高而运行成本低. 因为含有特殊配方的ABS工程塑料本身的物理和化学性质, 使得MEM技术制作的模型具有很好的强度和韧度, 可以经受锻造、钻孔、打磨等高强度的测试. 加之ABS丝材成本相对低廉, 设备设计简洁, 维护方便等优势, 使得MEM技术目前后来居上, 成本工人的应用最广泛的快速成形技术.

4. 大家知道立体光造型技术是什么吗

激光快速成型(LaserRapidPrototyping:LRP)是将CAD、CAM、CNC、激光、精密伺服驱动和新材料等先进技术集成的一种全衫皮新制造技术。与传统制造方或神差法相比具有:原型的复制性、互换性高;制造工艺与制造原型的几何形状无关;加工周期短、成本低,一般制造费用降低50%,加工周期缩短70%以上;高度技术集成,实现设计制造一体化。SLA技术又称光固化快速成形技术,其原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫描,被扫描区域的树脂薄层(约十分之几毫米)产生光聚合反应而瞎芹固化,形成零件的一个薄层。工作台下移一个层厚的距离,以便固化好的树脂表面再敷上一层新的液态树脂,进行下一层的扫描加工,如此反复,直到整个原型制造完毕。由于光聚合反应是基于光的作用而不是基于热的作用,故在工作时只需功率较低的激光源。

5. SLA光固化3D打印技术

近几年来,随着3D打印行业的发展,SLA光固化3D打印机和光敏树脂的价格逐渐下降,成为制作工业原型、显示模型、动画手办等应用的最佳选择之一。今天,纵维立方你去档雀凯普及SLA光固化3D打印技术。有兴趣的朋友不妨看看!SLA(立体光刻设备技术),用特定波长和强度的紫外光聚焦在光学树脂材料表面,照射过程从点到线,线到面,逐层固化,直到印刷产品完成,平台升起。

2.鞋类制造:3D打印鞋模,尺寸70x180x130mm,采用SLA生产工艺简单,打印速度很快,一双鞋不到11小时,成品表面很光滑。

3.电子行业:3D打印电子产品外壳。该模型采用光敏树脂材料印刷,层厚0.05毫米。整个印刷过程非常顺利,只需20小时即可完成印刷。并且成品印刷精度高,后期打磨上色,整体效果更显着。

6. 什么是3D打印,它最早出现于什么时候

3D打印(3DP)即快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。

3D打印通常是采用数字技术材料打印机来实现的。常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件。

该技术在珠宝、鞋类、工业设计、建筑、工程和施工(AEC)、汽车,航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支以及其他领域都有所应用。

2019年1月14日,美国加州大学圣迭戈分校首次利用快速3D打印技术,制造出模仿中枢神经系统结构的脊髓支架,成功帮助大鼠恢复了运动功能。

3D打印技术出现在20世纪90年代中期。

(6)什么是立体光刻成型技术扩展阅读

3D打印技术出现在20世纪90年代中期,实际上是利用光固化和纸层叠等技术的最新快速成型装置。它与普通打印工作原理基本相同,打印机内装有液体或粉末等“打印材料”,与电脑连接后,通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。这打印技术称为3D立体打印技术。

1986年,美国科学家Charles Hull开发了第一台商业3D印刷机。

1993年,麻省理工学院获3D印刷技术专利。

1995年,美国ZCorp公司从麻省理工学院获得唯一授权并开始开发3D打印机。

2005年,市场上首个高清晰彩色3D打印机Spectrum Z510由ZCorp公司研制成功。

2010年11月,美国Jim Kor团队打造出世界上第一辆由3D打印机打印而成的汽车Urbee问世。

2011年6月6日,发布了全球第一款3D打印的比基尼。

2011年7月,英国研究人员开发出世界上第一台3D巧克力打印机。

2011年8月,南安普敦大学的工程师们开发出世界上第一架3D打印的飞机。

2012年11月,苏格兰科学家利用人体细胞首次用3D打印机打印出人造肝脏组织。

2013年10月,全球首次成功拍卖一款名为“ONO之神”的3D打印艺术品。

2013年11月,美国德克萨斯州奥斯汀的3D打印公司“固体概念”(SolidConcepts)设计制造出3D打印金属手枪。

2018年8月1日起,3D打印枪支将在美国合法,3D打印手枪的设计图也将可以在互联网上自由下载。

2018年12月10日,俄罗斯宇航员利用国际空间站上的3D生物打印机,设法在零重力下打印出了实验鼠的甲状腺。

2019年1月14日,美国加州大学圣迭戈分校在《自然·医学》杂志发表论文,首次利用快速3D打印技术,制造出模仿中枢神经系统结构的脊髓支架,在装载神经干细胞后被植入脊髓严重受损的大鼠脊柱内,成功帮助大鼠恢复了运动功能。

该支架模仿中枢神经系统结构设计,呈圆形,厚度仅有两毫米,支架中间为H型结构,周围则是数十个直径200微米左右的微小通道,用于引导植入的神经干细胞和轴突沿着脊髓损伤部位生长。

7. 立体光造型(SLA)是怎么做成的

光固化立体技术以光敏树脂为原料,将计算机控制下的紫外激光,以预定零件各分层截面的轮廓为轨迹,对液态树脂逐点扫描,由点到线到面,使被扫描区的树脂薄层产生聚合反应,从而形成零件的一个薄层截面。新固化的一层牢固地粘合在前一层上,如此重复直到整个零件原型制造完毕,其工作原理如图l所示。SLA法是第一个投入商业应用的RPM技术,其方法特点是精度高、表面质量好、原材料利用率将近100%可以制造形状特。其原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫描,被扫描区域的树脂薄层(约十分之几毫米)产生光聚合反 应而固化,形成零件的一个薄层。由于光聚合反应是基于光的作用而不是基于热的作用,故在工作时只需功率较低的激光源。此外,因为没有热扩散,加上链式反应能够很好地控制,能保 证聚合反应不发生在激光点之外,因而加工精度高,表面质量好,原材料的利用率接近100%,能制造形状复杂、精细的零件,效率高。SLA光固化立体造型(SLA-Stereolithography Apparatus)也称光造型或立体光刻 该技术以光敏树脂为原料,计算机控制下的紫外 激光按预定零件各分层截面的轮廓为轨迹逐点 扫描在光固化立体造型技术中,激光的扫描方式及扫描策略对原型的精度影响很大,而原型精度的丧失主要表现在由层间收缩力所引起的翘曲变形。

8. SLA和SLS快速成型的区别是什么

SLA和SLS两种激光快速成型的区别SLA 的优势
1. 光固化成型法是最早出现的快速原型制造工艺,成熟度高,经过时间的检衫搭验。
2. 由CAD数字模型直接制成原型,加工速度快,产品生产周液塌亏期短,无需切削工具与模具。
3.可以加工结构外形复杂或使用传统手段难于成型的原型和模具。
4. 使CAD数字模型直观化,降低错误修复的成本。
5. 为实验提供试样,可以对计算机仿真计算的结果进行验证与校核。
6. 可联机操作,可远程控制,利于生产的自动化。
SLA 的缺憾
1. SLA系统造价高昂,使用和维护成本过高。
2. SLA系统是要对液体进行操作的精密设备,对工作环境要求苛刻。
3. 成闹神型件多为树脂类,强度、刚度、耐热性有限,不利于长时间保存。
4. 预处理软件与驱动软件运算量大,与加工效果关联性太高。
5. 软件系统操作复杂,入门困难,使用的文件格式不为广大设计人员熟悉。
6. 立体光固化成型技术被单一垄断。

9. 可以通过哪些方法降低光刻机投影最小图像的尺寸

可毕袭以降低光源波长、.离轴照明、.光学临近修正方法降低光刻机信誉投影最小图像的尺寸。
降低光源波长,从436纳米,到365,再降低就到了极紫外准分子激光器的范围咯,然后是248,然后是目前工业界占绝对统治地位的ArF193nm。离轴照明,即使入射光不再是垂直的入射,而是呈一定角度,提高分辨率,但会牺牲光强,进而降低产能。.光学临近修正,光的衍射会使得图形有误差,通过软件反向计算,加一个修正,这样通过衍射之后,反而会得到一个正方形。
立体光刻滑数段技术最初被认为是一种快速成型技术。快速原型是指一系列技术,这些技术可用于直接从计算机辅助设计(cad)r以更快的速度创建生产部件的真实比例模型。立体光刻技术已极大地帮助工程师可视化复杂的三维零件几何形状,检测原型示意图中的错误,测试关键部件以及以相对较低的成本和更快的时间范围验证理论设计。

阅读全文

与什么是立体光刻成型技术相关的资料

热点内容
huawei如何关闭程序 浏览:85
汉正服装批发市场为什么便宜 浏览:151
自己买的产品如何上市 浏览:340
千牛红包发放数据在哪里看 浏览:805
研究一个小程序的主要思路是什么 浏览:258
电子信息传输过程中怎么加密 浏览:684
谷歌为什么程序不稳定 浏览:881
苹果数据线供电是哪个引脚 浏览:964
打官司代理人负什么责 浏览:950
表示园艺产品的新鲜度的是什么 浏览:153
下宁波应有哪些职业技术学院 浏览:748
濮阳家居二手市场是哪个 浏览:264
生态板材代理有哪些 浏览:371
检验科有哪些技术 浏览:77
长春城市学院大数据专业怎么样 浏览:543
股票最真实数据有哪些 浏览:407
vivo原装数据线多少a 浏览:928
网上发布招工信息在哪里 浏览:831
sql最多存放多少数据 浏览:229
养发产品怎么管理 浏览:271