Ⅰ 5G无线通信与4G的典型区别有哪些用了哪些新技术
5G 是 4G 的延伸,是第五代移动通信标准,也称第五代移动通信技术。5G具有高速率、低时延、大容量等特征。
在高速率方面,5G 的网络速度是4G 的10倍以上。在5G网络环境比较好的情况下,1G的电影1-3秒就能下完,基本上不会超过10秒。
在低时延方面,人类眨眼的时间为 100 毫秒,而 5G 的时延已达到毫秒级别,仅为4G的十分之一,您在网络购票、抢红包时都能比普通4G客户更快一步,视频通话时也会有更好的交互体验。
在大容量方面,5G 网络连接容量更大,即使50个客户在一个地方同时上网,也能有100Mbps以上的速率体验。
Ⅱ 提升5g链路可靠性的关键技术有哪些
提升5g链路可靠性的关键技术有五个,具体如下:
1、同时同频全双工技术
所谓的同时同频全双工技术,简单一点来说,就是指将以往通信双工节点中存在的干扰屏蔽,然后在利用信号机发射信号的同时接受信号,通过同时的操作来提高频谱效率。此技术和传统技术相比较更加的先进,而且工作效率也更高。
2、密集网络技术
此技术包含以下两方面内容:1、在宏基站的外部设置很多的天线,这样就可以进一步的拓宽室外空间。2、需要在室外布置很多的密集网络,这些密集网络所能产生的信噪比增益将会更加的客观。
3、多天线传输技术
所谓的多天线传输技术,就是指在使用有源天线来进行列阵,然后与毫米波联系起来,之后就可以有效提高天线的覆盖面积以及性能。
4、新型网络架构技术
新型网络架构技术就是未来可能产生的业务需要所出现的技术。此技术在应用中具有低时延以及低成本等多项优点。
5、智能化技术
在5G移动通信网络中,云计算是其中不可缺少的网络之一。这些数据进行及时的处理。而且因为基站的规模比较大,数量十分可观,所以在能够开展将频段进行划分,然后开展不同的业务。
Ⅲ 5G技术的关键
关键技术1:高频段传输
移动通信传统工作频段主要集中在 3GHz 以下,这使得频谱资源十分拥挤,而在高频段(如毫米波、厘米波频段)可用频谱资源丰富,能够有效缓解频谱资源紧张的现状,可以实现极高速短距离通信,支持 5G 容量和传输速率等方面的需求。
高频段在移动通信中的应用是未来的发展趋势,业界对此高度关注。足够量的可用带宽、小型化的天线和设备、较高的天线增益是高频段毫米波移动通信的主要优点,但也存在传输距离短、穿透和绕射能力差、容易受气候环境影响等缺点。
射频器件、系统设计等方面的问题也有待进一步研究和解决。
监测中心目前正在积极开展高频段需求研究以及潜在候选频段的遴选工作。高频段资源虽然目前较为丰富,但是仍需要进行科学规划,统筹兼顾,从而使宝贵的频谱资源得到最优配置。
关键技术2:新型多天线传输
多天线技术经历了从无源到有源,从二维(2D)到三维(3D),从高阶 MIMO 到大规模阵列的发展,将有望实现频谱效率提升数十倍甚至更高,是目前 5G 技术重要的研究方向之一。
由于引入了有源天线阵列,基站侧可支持的协作天线数量将达到128根。
此外,原来的 2D 天线阵列拓展成为 3D 天线阵列,形成新颖的 3D-MIMO 技术,支持多用户波束智能赋型,减少用户间干扰,结合高频段毫米波技术,将进一步改善无线信号覆盖性能。
目前研究人员正在针对大规模天线信道测量与建模、阵列设计与校准、导频信道、码本及反馈机制等问题进行研究,未来将支持更多的用户空分多址(SDMA),显着降低发射功率,实现绿色节能,提升覆盖能力。
关键技术3:同时同频全双工
最近几年,同时同频全双工技术吸引了业界的注意力。利用该技术,在相同的频谱上,通信的收发双方同时发射和接收信号,与传统的 TDD 和 FDD 双工方式相比,从理论上可使空口频谱效率提高1倍。
全双工技术能够突破 FDD 和 TDD 方式的频谱资源使用限制,使得频谱资源的使用更加灵活。然而,全双工技术需要具备极高的干扰消除能力,这对干扰消除技术提出了极大的挑战,同时还存在相邻小区同频干扰问题。
在多天线及组网场景下,全双工技术的应用难度更大。
关键技术4:D2D
传统的蜂窝通信系统的组网方式是以基站为中心实现小区覆盖,而基站及中继站无法移动,其网络结构在灵活度上有一定的限制。
随着无线多媒体业务不断增多,传统的以基站为中心的业务提供方式已无法满足海量用户在不同环境下的业务需求。
D2D 技术无需借助基站的帮助就能够实现通信终端之间的直接通信,拓展网络连接和接入方式。
由于短距离直接通信,信道质量高,D2D 能够实现较高的数据速率、较低的时延和较低的功耗;通过广泛分布的终端,能够改善覆盖,实现频谱资源的高效利用;支持更灵活的网络架构和连接方法,提升链路灵活性和网络可靠性。
目前,D2D 采用广播、组播和单播技术方案,未来将发展其增强技术,包括基于D2D的中继技术、多天线技术和联合编码技术等。
Ⅳ 5G关键技术到底有哪些
非正交多址接入技术(Non-Orthogonal Multiple Access,NOMA):
我们知道3G采用直接序列码分多址(Direct Sequence CDMA ,DS-CDMA)技术,手机接收端使用Rake接收器,由于其非正交特性,就得使用快速功率控制(Fast transmission power control ,TPC)来解决手机和小区之间的远-近问题;而4G网络则采用正交频分多址(OFDM)技术,OFDM不但可以克服多径干扰问题,而且和MIMO技术配合,极大的提高了数据速率。由于多用户正交,手机和小区之间就不存在远-近问题,快速功率控制就被舍弃,而采用AMC(自适应编码)的方法来实现链路自适应;NOMA希望实现的是,重拾3G时代的非正交多用户复用原理,并将之融合于现在的4G OFDM技术之中。从2G,3G到4G,多用户复用技术无非就是在时域、频域、码域上做文章,而NOMA在OFDM的基础上增加了一个维度——功率域;新增这个功率域的目的是,利用每个用户不同的路径损耗来实现多用户复用。
Ⅳ 5g的关键技术有哪些
关键技术1:高频段传输。
移动通信传统工作频段主要集中在 3GHz 以下,这使得频谱资源十分拥挤,而在高频段(如毫米波、厘米波频段)可用频谱资源丰富,能够有效缓解频谱资源紧张的现状,可以实现极高速短距离通信,支持 5G 容量和传输速率等方面的需求。
关键技术2:新型多天线传输。
多天线技术经历了从无源到有源,从二维(2D)到三维(3D),从高阶 MIMO 到大规模阵列的发展,将有望实现频谱效率提升数十倍甚至更高,是目前 5G 技术重要的研究方向之一。
关键技术3:同时同频全双工。
最近几年,同时同频全双工技术吸引了业界的注意力。利用该技术,在相同的频谱上,通信的收发双方同时发射和接收信号,与传统的 TDD 和 FDD 双工方式相比,从理论上可使空口频谱效率提高1倍。
关键技术4:D2D。
传统的蜂窝通信系统的组网方式是以基站为中心实现小区覆盖,而基站及中继站无法移动,其网络结构在灵活度上有一定的限制。
关键技术5:密集网络。
在未来的 5G 通信中,无线通信网络正朝着网络多元化、宽带化、综合化、智能化的方向演进。随着各种智能终端的普及,数据流量将出现井喷式的增长。
关键技术6:新型网络架构。
目前,LTE 接入网采用网络扁平化架构,减小了系统时延,降低了建网成本和维护成本。未来5G 可能采用 C-RAN 接入网架构。
Ⅵ 5G技术是什么
我们国家工信部下发通知,明确了我国的5G初始中频频段:
3.3-3.6GHz、4.8-5GHz两个频段
同时,24.75-27.5GHz、37-42.5GHz高频频段正在征集意见。
目前,国际上主要使用28GHz进行试验(这个频段也有可能成为5G最先商用的频段)。
如果按28GHz来算,根据前文我们提到的公式:
好啦,这个就是5G的第一个技术特点——
毫米波
继续,继续。。。
既然,频率高这么好,你一定会问:“为什么以前我们不用高频率呢?”
原因很简单——不是不想用。。。是用不起。。。
电磁波的一个显着特点:频率越高(波长越短),就越趋近于直线传播(绕射能力越差)。。。
而且,频率越高,传播过程中的衰减也越大。。。