‘壹’ 电力电子技术的应用实例有哪些、、、
1、UPS(不间断电源)应用
光伏逆变及其并网等等,再掌握一些控制算法(PID控制,模糊控制,状态反馈控制等等各种吧)的数字实现(DSP),那么就基本掌握一些很实用的强电和弱电相关技能了。
2、直流-直流(DC/DC)变换器
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。
(1)计时电流技术有哪些应用扩展阅读
电力电子技术应用
1、一般工业
交直流电机、电化学工业、冶金工业
交通运输:
电气化铁道、电动汽车、航空、航天、航海
2、交通运输
电气化铁道、电动汽车、航空、航天、航海
3、电力系统:
高压直流输电、柔性交流输电、无功补偿
‘贰’ 计时电流法电压的选取规则
计时电流法电压的选取规则实氧化电位到峰电压范围内选取。
1、计时电流法测试一般选取EORCV测试中稳定后的曲。
2、正扫方向,电压范围从其实氧化电位到峰电压范围内选取。
‘叁’ 计时电流法和电流时间法有什么区别
计时电流法:是一种控制电位的分析方法,电位是控制的对象,电流是被测定的对象,记录的是i-t曲线.被控制的电位是有规律变化的.
计时电流法是一大的类别,具体的分析方法包括:线形扫描,循环伏安法等等.
电流 -时间曲线是一具体的分析方法,如果要将其分类,应该是分在恒电位分析中,在实验过程中在电极上施加一恒定的电压,采集电流随时间变化的结果.他们有着本质的区别.
‘肆’ 计时电流法的产生历史
一种研究电极过程动力学的电化学分析法和技术。在电解池上突然施加一个恒电位,足够使溶液中某种电活性物质(或称去极剂)发生氧化或还原反应,记录电流与时间的变化,得到电流-时间曲线,故称计时电流法.
1922年J.海洛夫斯基在发明极谱法的同时重新强调了计时电流法,它可以采用极谱仪的基本线路。但要连接快速记录仪或示波器,不用滴汞电极,而用静止的悬汞、汞池或铂、金、石墨等电极,也不搅动溶液。在大量惰性电解质存在下,传质过程主要是扩散。
1902年美国F.G.科特雷耳根据扩散定律和拉普拉斯变换,对一个平面电极上的线性扩散作了数学推导,得到科特雷耳方程:公式:
计时电流法常用于电化学研究,即电子转移动力学研究。近年来还有采用两次电位突跃的方法,称为双电位阶的计时电流法。第一次突然加一电位,使发生电极反应,经很短时间的电解,又跃回到原来的电位或另一电位处,此时原先的电极反应产物又转变为它的原始状态,从而可以在i-t曲线上更好地观察动力学的反应过程;并从科特雷耳方程出发,考虑反应速率,进行数学推导和作图,求出反应速率常数。
参考自网络:http://ke..com/view/691289.htm
‘伍’ 问一下,时钟电路的原理及应用
实时时钟电路的原理及应用
[日期:2006-11-16] 来源:互联网 作者:未知 [字体:大 中 小]
1 引言
现在流行的串行时钟电路很多,如DS1302、DS1307、PCF8485等。这些电路的接口简单、价格低廉、使用方便,被广泛地采用。本文介绍的实时时钟电路DS1302是DALLAS公司的一种具有涓细电流充电能力的电路,主要特点是采用串行数据传输,可为掉电保护电源提供可编程的充电功能,并且可以关闭充电功能。采用普通32.768kHz晶振。
2 DS1302的结构及工作原理
DS1302是美国DALLAS公司推出的一种高性能、低功耗、带RAM的实时时钟电路,它可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能,工作电压为2.5V~5.5V。采用三线接口与CPU进行同步通信,并可采用突发方式一次传送多个字节的时钟信号或RAM数据。DS1302内部有一个31×8的用于临时性存放数据的RAM寄存器。DS1302是DS1202的升级产品,与DS1202兼容,但增加了主电源/后背电源双电源引脚,同时提供了对后背电源进行涓细电流充电的能力。
2.1 引脚功能及结构
图1示出DS1302的引脚排列,其中Vcc1为后备电源,VCC2为主电源。在主电源关闭的情况下,也能保持时钟的连续运行。DS1302由Vcc1或Vcc2两者中的较大者供电。当Vcc2大于Vcc1+0.2V时,Vcc2给DS1302供电。当Vcc2小于Vcc1时,DS1302由Vcc1供电。X1和X2是振荡源,外接32.768kHz晶振。RST是复位/片选线,通过把RST输入驱动置高电平来启动所有的数据传送。RST输入有两种功能:首先,RST接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST提供终止单字节或多字节数据的传送手段。当RST为高电平时,所有的数据传送被初始化,允许对DS1302进行操作。如果在传送过程中RST置为低电平,则会终止此次数据传送,I/O引脚变为高阻态。上电运行时,在Vcc≥2.5V之前,RST必须保持低电平。只有在SCLK为低电平时,才能将RST置为高电平。I/O为串行数据输入输出端(双向),后面有详细说明。SCLK始终是输入端。
2.2 DS1302的控制字节
DS1302的控制字如图2所示。控制字节的最高有效位(位7)必须是逻辑1,如果它为0,则不能把数据写入DS1302中,位6如果为0,则表示存取日历时钟数据,为1表示存取RAM数据;位5至位1指示操作单元的地址;最低有效位(位0)如为0表示要进行写操作,为1表示进行读操作,控制字节总是从最低位开始输出。
2.3 数据输入输出(I/O)
在控制指令字输入后的下一个SCLK时钟的上升沿时,数据被写入DS1302,数据输入从低位即位0开始。同样,在紧跟8位的控制指令字后的下一个SCLK脉冲的下降沿读出DS1302的数据,读出数据时从低位0位到高位7。
2.4 DS1302的寄存器
DS1302有12个寄存器,其中有7个寄存器与日历、时钟相关,存放的数据位为BCD码形式,其日历、时间寄存器及其控制字见表1。
此外,DS1302还有年份寄存器、控制寄存器、充电寄存器、时钟突发寄存器及与RAM相关的寄存器等。时钟突发寄存器可一次性顺序读写除充电寄存器外的所有寄存器内容。DS1302与RAM相关的寄存器分为两类:一类是单个RAM单元,共31个,每个单元组态为一个8位的字节,其命令控制字为C0H~FDH,其中奇数为读操作,偶数为写操作;另一类为突发方式下的RAM寄存器,此方式下可一次性读写所有的RAM的31个字节,命令控制字为FEH(写)、FFH(读)。
3 DS1302实时显示时间的软硬件
DS1302与CPU的连接需要三条线,即SCLK(7)、I/O(6)、RST(5)。图3示出DS1302与89C2051的连接图,其中,时钟的显示用LCD。
3.1 DS1302与CPU的连接
实际上,在调试程序时可以不加电容器,只加一个32.768kHz的晶振即可。只是选择晶振时,不同的晶振,误差也较大。另外,还可以在上面的电路中加入DS18B20,同时显示实时温度。只要占用CPU一个口线即可。LCD还可以换成LED,还可以使用北京卫信杰科技发展有限公司生产的10位多功能8段液晶显示模块LCM101,内含看门狗(WDT)/时钟发生器及两种频率的蜂鸣器驱动电路,并有内置显示RAM,可显示任意字段笔划,具有3-4线串行接口,可与任何单片机、IC接口。功耗低,显示状态时电流为2μA(典型值),省电模式时小于1μA,工作电压为2.4V~3.3V,显示清晰。
3.2 DS1302实时时间流程
图4示出DS1302的实时时间流程。根据此流程框图,不难采集实时时间。下面结合流程图对DS1302的基本操作进行编程:
根据本人在调试中遇到的问题,特作如下说明:
DS1302与微处理器进行数据交换时,首先由微处理器向电路发送命令字节,命令字节最高位MSB(D7)必须为逻辑1,如果D7=0,则禁止写DS1302,即写保护;D6=0,指定时钟数据,D6=1,指定RAM数据;D5~D1指定输入或输出的特定寄存器;最低位LSB(D0)为逻辑0,指定写操作(输入),D0=1,指定读操作(输出)。
在DS1302的时钟日历或RAM进行数据传送时,DS1302必须首先发送命令字节。若进行单字节传送,8位命令字节传送结束之后,在下2个SCLK周期的上升沿输入数据字节,或在下8个SCLK周期的下降沿输出数据字节。
DS1302与RAM相关的寄存器分为两类:一类是单个RAM单元,共31个,每个单元组态为一个8位的字节,其命令控制字为C0H~FDH,其中奇数为读操作,偶数为写操作;再一类为突发方式下的RAM寄存器,在此方式下可一次性读、写所有的RAM的31个字节。
要特别说明的是备用电源B1,可以用电池或者超级电容器(0.1F以上)。虽然DS1302在主电源掉电后的耗电很小,但是,如果要长时间保证时钟正常,最好选用小型充电电池。可以用老式电脑主板上的3.6V充电电池。如果断电时间较短(几小时或几天)时,就可以用漏电较小的普通电解电容器代替。100 μF就可以保证1小时的正常走时。DS1302在第一次加电后,必须进行初始化操作。初始化后就可以按正常方法调整时间。
4 结论
DS1302存在时钟精度不高,易受环境影响,出现时钟混乱等缺点。DS1302可以用于数据记录,特别是对某些具有特殊意义的数据点的记录,能实现数据与出现该数据的时间同时记录。这种记录对长时间的连续测控系统结果的分析及对异常数据出现的原因的查找具有重要意义。传统的数据记录方式是隔时采样或定时采样,没有具体的时间记录,因此,只能记录数据而无法准确记录其出现的时间;若采用单片机计时,一方面需要采用计数器,占用硬件资源,另一方面需要设置中断、查询等,同样耗费单片机的资源,而且,某些测控系统可能不允许。但是,如果在系统中采用时钟芯片DS1302,则能很好地解决这个问题
‘陆’ 打点计时器用什么电流
交流。
举例:
电磁打点计时器是一种使用交流电源的计时仪器,其工作电压小于6V,一般是4~6V,电源的频率是50Hz,它每隔0.02s打一次点。即一秒打50个点。电火花打点计时器是利用火花放电在纸带上打出墨迹而显示出点迹的计时仪器,使用220V交流电压,当频率为50Hz时,它每隔0.02s打一次点。
电火花计时器工作时,纸带运动所受到的阻力比较小,它比电磁打点计时器实验误差小。
电火花打点原理:交流电的电源电压大小会周期性改变,当电压值达到较大时(一般认为是最大时),就会放出电火花,于是电火花会周期性出现,由于纸张不导电,所以不能将电火花吸引在纸面上,而作为导体的碳膜就起到了“引雷”的作用.,将印记“打”在纸带上。
(6)计时电流技术有哪些应用扩展阅读:
打点计时器注意事项
1、实验前,应将打点计时器固定好,以免拉动纸带时晃动,并要先轻轻试拉纸带,应无明显的阻滞现象。
2、使用打点计时器,将打点计时器固定在实验台,应先接通电源,待打点计时器打点稳定后再放开纸带,使时间间隔更准确。
3、打点计时器使用的电源是交流电源,电磁打点计时器电压是4~6V;电火花打点计时器电压是220V。
4、小车离滑轮端不能太近,向前的余地太小,会使纸带上留下的计时点过少,给测量带来不便,产生较大的误差。
5、滑轮位置不能太低,会使砝码与小车之间的连线与木板相接触,且线的拉力方向与板面不平行,阻力大,误差大。
6、手拉动纸带时速度应快一些,以防点迹太密集。
7、使用电火花计时器时,应注意把纸带正确穿好,墨粉纸位于纸带下方;使用电磁打点计时器时,应让纸带通过限位孔,压在复写纸下面。
8、打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是小横线、重复点或点迹不清晰,应调整振针距复写纸片的高度,使之大一点。
9、复写纸不要装反,每打完一条纸带,应调整一下复写纸的位置,若点迹不够清晰,应考虑更换复写纸。
10、纸带应捋平,减小摩擦,从而起到减小误差的作用。
11、打点器不能长时间连续工作。每打完一条纸带后,应及时切断电源。待装好纸带后,再次接通电源并实验。
12、对纸带进行测量时,不要分段测量各段的位移,正确的做法是一次测量完毕(可先统一测量出各个测量点到起始点O之间的距离)读数时应该估读到毫米的下一位。
13、处理纸带数据时,密集点的位移差值测量起来误差大,应舍去;一般以五个点为一个计数点。
14、描点作图时,应把尽量多的点连在一条直线(或曲线)上不能连在线上的点应分居在线的两侧。误差过大的点可以舍去。
‘柒’ 什么是计时电流法如何应用于电化学传感器
计时电流法-施加于工作电极的电位固定,记录通过通路中的电流强度(or电流密度)大小随时间的变化曲线,就是计时电流法。它可以考察电极的稳定性。至于电化学传感器中的应用-我还不太清楚。‘捌’ 计时电流法的简介
计时电流法
拼音:jishidianliufa
英文名称:chronoamperometry
说明:该法一般使用固定面积的电极。适用于研究耦合化学反应的电极过程,特别是有机电化学的反应机理。