导航:首页 > 信息技术 > 新型飞机都有什么新技术

新型飞机都有什么新技术

发布时间:2023-02-05 18:31:52

❶ 新型“空天飞机”有几大特点

人类的航天时代才开始30多年,就出现了宇宙飞船、航天飞机等先进的交通运输工具,使人类登临了月球。但是,科学技术的进步是无止境的,人类在憧憬着:有朝一日,能不能像乘飞机航班那样进行太空旅游呢?完全有可能,但这要借助于新一代的更先进的交通工具——空天飞机。

空天飞机是在航天飞机基础上发展起来的。顾名思义,它是一种航空航天飞机。即能像普通飞机那样水平起飞,水平降落,又能像航天飞机那样方便地进入太空轨道。

科学家们已经为未来的空天飞机勾画了它的几大特点:

一是研制和使用费用低。空天飞机是单级结构,地面操纵简单,维护时间短。

二是可以重复使用。预计空天飞机的使用次数可达几千次,比航天飞机百次左右的使用寿命要高得多,故其发射费用低。

三是无人驾驶,完全由计算机控制。空天飞机可以自主地进行制导、导航和控制,可以相应减少地面控制中心的规模。

四是发射回收程序简单,空天飞机可以像普通飞机那样起飞、着陆、加注燃料和检修,因此可以使现在航天发射场的规模大为减小。

五是空天飞机能在升空的任何时间立即降落,它可以进行无动力飞行,例如当燃料系统和控制系统发生故障的情况下利用空气动力特性来进行控制,返回地面。

六是空天飞机两次飞行之间的检修像普通飞机那样简单,因而检修时间很短。

美国已经提出了代号为X-30的国家空天飞机的方案:准备制造两架试验机,进行模拟高超音速飞机的飞行,速度将为音速的5~10倍;要在像爱德华空军基地那样的普通飞机场使用,进行地面服务和加油,起飞与降落,并验证X-30空天飞机以很陡的角度起飞能否防止超音速产生的音爆对地面的危害。音爆是什么?如果你参观过超音速军用飞机的飞行,就有可能遇到音爆。音爆是飞机在超音速飞行时所产生的强压力波,传到地面上形成如同雷鸣般的爆炸声。一声巨响,或许房屋的玻璃都会被震碎。影响音爆的因素很多,但也是有规律可寻的,空天飞机要完成起飞、降落,必须设法防止音爆的产生、否则对环境的危害会影响它的使用。

X-30空天飞机将采用超音速燃烧冲压发动机,它的动力相当于核动力火箭,燃料是液氢,飞机机体要用先进的钛合金制造。因为X-30在飞行时任何一点的温度都会超过649.9℃。X-30空天飞机如果进行改型作为民航客机使用的话,它的高超音速性能将会使国际航线的飞行时间大为缩短。例如,目前从东京飞到纽约需要14个小时,而使用X-30的改型飞机则缩短为2个小时。

英国的“霍托”空天飞机方案也是采用水平起飞和水平着陆的,它也是使用液氢燃料的发动机。它主要是将卫星送入轨道,也能执行建造和维护空间站的任务。

“霍托”空天飞机的外形与英法合作研制的“协和”号超音速客机很相像。尖尖的机身,三角形的机翼置于机身后部。与飞机不同的是,它没有水平尾翼和垂直尾翼,靠前翼来进行航向操纵及维持安定性。4台发动机并列装于飞机的尾部。“霍托”的起飞方式与一般飞机有别,虽然也是水平起飞,但却是靠地面发射车背着它助跑的方式,着陆则与普通飞机的方式相同。研制“霍托”旨在大幅度地降低发射成本,预计比常规的火箭发射和航天飞机发射费用降低80%。

英国反应发动机公司新提出了设计新款的“斯凯朗”空天飞机方案:这种空天飞机呈细长形,最大直径6.25米,长82米,翼展27米,总重275吨,与现在最新型的波音777飞机的重量差不多。

“斯凯朗”空天飞机使用的发动机是“协同式空气喷气-火箭发动机”,它以空气喷气发动机和火箭发动机两种形式工作,基本上共用一套硬件。其工作程序是:当用火箭辅助发射装置完成起动后,立即转换使用“协同式空气喷气—火箭发动机”,首先以空气喷气发动机方式工作。当空天飞机上升至26千米高度,飞行速度达到5倍音速时则转换为火箭发动机方式工作。在约80千米高度进入转移轨道。

“桑格尔”空天飞机是德国提出的研究方案。它是用于航空的飞机与航天的轨道飞行器分开又结合在一起的方案。在地面起飞时,载机背负着轨道飞行器水平起飞,使用涡轮冲压发动机燃后轨道飞行器与载机分离,轨道飞行器依靠自身的火箭发动机升入太空,载机即返回地面以备再用。而轨道飞机器完成太空飞行返回大气层后,能像航天飞机那样水平着陆。实际上,“桑格尔”空天飞机就是载机加航天飞机而组成,载机的作用就是背着航天飞机水平起飞而已。

预计到21世纪下半叶,空天飞机的使用会像今天的民航客机那样简便,每天可能有数百架的空天飞机从赤道附近的几个发射场起飞,来往于天地,把旅客送上天空,把开发的空间产品和资源运回地球。航天发射地也许会像今天的大型国际机场那样繁忙。

❷ C919有那些技术亮点

从2007年国家对大飞机项目立项到2008年C919名称发布,从设计图纸到2015年底的总装下线,这架飞机从无到有,承载了亿万国人对中国航空事业的期待。


先进材料首次在国产民机大规模应用:C919采用铝锂合金、复合材料等先进材料实现飞机减重、增加使用寿命的目标。C919的第三代铝锂合金材料用量达到8.8%,先进复合材料用量达到12%。

C919装配先进的机载系统和发动机:C919采用了先进的机载系统和发动机,比如高度模块化和综合化的航电系统、带包线保护功能的全数字电传飞控系统等,全新的LEAP-1C高涵道比发动机采用了一体化推进系统设计方式,经济性能更好。

❸ 最新型飞机隐身技术是什么

等离子体隐身现在还没试验成功——这是已知最牛的
当代战机如FUCK-22,歼-10B,F-35,歼-11B,T-50等所做到的就是尽最大可能减少雷达反射面积,红外隐身
1在设计之初全方位考虑隐身效果(部分牺牲在所难免,YF-23就是隐身超牛但忽略了机动性结果被淘汰)也就是在机身外形,气动布局上下狠功夫,如FUCK-22,B-2的机身外形,后来的闪电,丝带,茅屋,小鬼子的心神,南棒的真宗都在很大程度上沿用了22的设计(省事了)
2采用复合材料机身,
3减少机体外部的零部件凸起
4涂装吸波涂料(实际上只能吸收部分波段内的雷达波)
5保持无线电静默
6融合翼面设计,机身与翼面融合为一体,先例是FUCK-16
红外隐身,B-2的尾喷口在机翼上方,22的是矩形埋入式喷口,最新的降低红外特征的隐身方式有20的喷口(网传看不到尾焰,陶瓷复合材料~~~咱也不懂这东西),自己查一下好了

❹ 大飞机的关键技术都有哪些

按照设计目标和要求,为保持飞机竞争力。采用IPS吊挂、航电系统高度模块化和综合化技术、先进综合显示技术、先进外部通讯技术、带包线保护功能的全数字电传飞控系统、放宽静稳定性主动控制技术,开展飞机发动机一体化设计、显示控制及合成视景系统研究、空地无线宽带技术研究、电传飞控系统控制律设计与主动控制技术研究、电传飞控系统综合设计与验证等关键技术攻关。
围绕突破型号研制的技术瓶颈,解决机体结构制造中新材料零件制造及装配、自动化装配和检测等难题,将开展复合材料整体结构制造技术、整体壁板喷丸成形技术、大部件自动对接技术、自动化集成测试技术等新工艺攻关。

❺ C919大飞机取得重大突破,即将取证交付,这款飞机有哪些黑科技

3D打印技术、选择性激光熔化、电子束熔化、直接金属激光烧结、应用激光立体成形技术等黑科技。

❻ 北航自主研发了扑翼飞行器,飞行续航时间破了世界纪录,都应用了哪些技术

首先是应用了仿生学原理设计制造技术。扑翼是一种新型飞行器的重要结构,它模仿鸟类和昆虫的飞行,与固定翼和旋翼相比,扑翼的主要特点是将升力、悬停和推进功能集成在一个扑翼系统中,可以用很少的能量进行长距离飞行,机动性强。这种飞行器如果研制成功,与固定翼和旋翼飞行相比,将具有独特的优势,如原地或小范围起飞、飞行机动性和悬停性能优异、飞行成本低等。

要知道的是尾翼是微型扑翼飞行器飞行控制中不可缺少的重要组成部分。微型扑翼飞行器完全依靠尾翼来保证其稳定性和机动性。本文研究了微型扑翼飞行器尾翼的特点,尾翼对稳定性和操纵性的影响,以及尾翼的设计理论和方法,得到了气动力和力矩随飞行攻角、来流速度和扑翼频率的变化规律,为尾翼功能和气动特性的研究奠定了良好的基础。

❼ 微型飞机的技术归纳

第一条,就是低雷诺数的空气学问题。
第二条,高推重比的微型动力系统,
第三条,大容积重量比的结构设计技术。
第四条,飞行稳定性操纵性与控制技术。
第五条,弱功率信号下的超视距遥控导航信息传递技术。
第六条,多学科设计优化技术。
第七条,基于微机电的加工与制造技术,微机电就是我们经常提到的MEMS技术。
那么,这7条关键技术是我们归纳和总结出来的研究和发展微型飞机所必须解决的问题,也就是说是我们面临的挑战。那么为了对这些问题有一个进一步的认识,我们下面做一些比较详细的介绍。
空气学问题
首先我们来看看低雷诺数的空气动力学问题,为了让大家对低雷诺数空气动力学问题有一个更加清楚了解,我们首先来看一看雷诺数的定义。雷诺数是这样定义的,在对流动空气的控制方程进行无量纲和的时候,方程中出现相似参数,而雷诺数就是其中最重要的相似参数。这里所说的控制方程,那么就是我们说的空气在流动过程中,它应该遵守的能量守恒的方程和动量守恒的方程,雷诺数的表达数可以写成这样一个式子,ρ(读音:柔),VL/μ(读音:谬),其中ρ(读音:柔)表示气体的密度,它是一个在正常空气条件下是不变的,V代表气流和飞行器的相对速度,L代表飞行器的长度,μ(读音:谬)表示气体的粘性常数,雷诺数它的物理意义是什么呢?实际上它反映了空气动力中,惯性力和粘性力的相对大小。什么是惯性力呢?就是M乘A,M就是流动空气的质量,A就是它的加速度,什么是粘性力呢?就是飞行器在空气中飞行的过程里面所受到的阻力,雷诺数很小是,粘性的效应很突出,而雷诺数很大的时候,粘性效应可以忽略不记。
因此,我们通常所研究的大雷诺数的空气动力学问题和我们在设计微型飞机的时候,所用到的低雷诺数的动力学问题有本质的区别。那么,在对大飞机而言,我们知道,大飞机的飞行速度一般都是非常高的,一般我们达到超音速的状态,特征尺寸也是非常大的,因此,雷诺数的数值也是非常高的。而对于微型飞机来讲,因为它的飞行速度是比较慢,另外它也非常小,所以它的雷诺数的数值是非常小的。那么,这两种空气动力学问题它的机理和它的研究方法都有本质性的差别,需要我们进一步深入地研究。
那么,下面我们来看一看,雷诺数与飞机大小的关系,以便大家留下一个直观的印象,因为,雷诺数的数值是非常大的通常以百万作为单位,以Mill作为单位,对于波音737这样的大型飞机它的雷诺数大约在100个百万左右,对于正常的无人机而言,常规的无人机而言它的雷诺数大约在一个百万到10个百万之间,而对于像老鹰这样的飞行物,它雷诺数大概在10万到百万之间,而,像我们所关心的MAV,也就是微型飞机它的雷诺数大概在10的四次方,到10的5次方之间。对于像蝴蝶这样的飞行物,它的雷诺数大约在10的3次方到10的4次方之间。我们从这个图上可以看出,波音737这样的大型飞机,它的雷诺数和我们所关心的微型飞机这样的雷诺数它的量级差别是很大的。因此,在空气的流动机理和它的研究方法上面,有本质性的差别,那么,如何解决这一问题呢?它的解决方法跟常规的大型飞机的空气动力学解决方法,思路是相同的。也就是说无外乎是数值模拟的办法和气动实验的办法。那么我们所看到这幅图实际上是用数值模拟的办法,模拟微型飞机在低于雷诺数空气中,流动的情况。那么,对一个发展到对一个简单物体,像球,圆柱这样一些物体,我们可以很好地用数值方法来模拟它们在低雷诺数空气中的流动的情况。而对于像微型飞机飞行器这样具有复杂外形的几何体,我们需要研究它在低雷诺数空气中的流动的机理和它的数值模拟方法。
下面我们来看看,研究和发展低雷诺数空气动力学第二个基本途径,也就是风洞及实验技术。那么,对于微型飞机而言,我们要发展和研究微型飞机,就需要进行风洞实验,这时,我们需要特种的风洞来支持这个实验,这种特种的风洞需要具有两个特点。第一个就是它的低雷诺数要求,这点是大家很容易理解的,为什么呢?微型飞机是在低雷诺数空气中飞行的,另外一个要求就是它的低湍流度要求,那么为什么有低于湍流度要求呢?主要是要求微型飞机所受到空气动力和它的力矩它的量值是非常小的。如果说,风洞中的流动品质不是很好,那么,空气流动的扰动,所产生的力和力矩它的量级足以和正常飞行情况下真正在微型飞机上产生的真正的升力和它的力矩,它的量级是差不多的,这样就会影响到我们整个测量的精度,因此,我们要求这种特种风洞具有低湍流度,同时满足这两个条件的风洞在世界上也不是很多见的,也是比较少见另外,有关微型飞机所受的空气动力和它的力矩都非常小因此在正常的风洞里面所产生的风洞的控制系统,它的测力系统和它的包括模型的悬挂系统,那么都需要重新地设计和改进,这样才能满足微型飞机设计的要求。
我们在研究和发展微型飞机的时候,所碰到第二个关键技术就是高推重比的微型动力系统。我们知道,动力是飞机的心脏,那么,高推重比的微型动力系统,我们对于高推重比的微型动力系统而言,有三个问题需要解决,第一个问题就是需要解决高效率的螺旋桨的设计技术,为什么提出这样一个问题?因为我们从下面的介绍可以看出,世界上所研制的微型飞机大多数都是用电动机来带动螺旋桨,使飞机飞行的,那么,微型飞机的尺寸非常小,当然它的螺旋桨也将非常小,如何提高微型螺旋桨的效率,就是我们要解决的,关键问题之一。我们所面临的第二个问题,在这方面所面临的第二个问题就是高能量密度电池,及节能微型电机的研究。
那么,为什么要研究这个问题呢从前面的讲解我们可以看到,我们世界上研究的最新式的,最先进的微型飞机像黑寡妇和卫星这样的微型飞机,它的续航时间,也仅仅只有20分钟。而的DARPA的要求是两小时,这个差距是非常大的。那么,怎么缩短这个距离呢?那么,主要要提高它的电能供给。那么,研究高能量密度电池和节能微型电机就是解决这一类问题的一种途径。另外一种方式就是要求微型的喷气发动机美国国防部预研计划据,也就是DARPA,正在资助麻省理工学院研制由硅制成的氢燃料,纽扣式的微型喷气发动机。这种发动机它的直径只有1个厘米,也就是说像我们正常的比一般人民币的直径还要小一点,厚度是三个毫米,其推力在0.05-0.1牛顿之间,每小时约耗10克的氢,也就是说它要飞行两个小时的话,它耗20克的氢,它的氢燃料这个燃料的重量是非常小的,这种微型飞机发动机计划在2001年生产出可以用于飞行的样机,届时可使微型飞机的速度达到每小时57到114公里。飞行距离达到60到111公里,可以说,微型喷气发动机技术是解决目前微型飞机短航时和短航程这一缺点的最根本的出路。
我们看这幅图,就是麻省理就学院研制的由硅制成的氢燃料,微型喷气发动机的原理图,它的直径是1个厘米,厚度是三个毫米,虽然像一个纽扣式的一个微型喷气发动机,但也是麻雀虽小,五脏俱全。它有进气口,有排气口,有燃烧室,有火焰稳定器。有各种各样的转子叶片,像压气机的转子叶片,压气机的扩压器叶片,涡轮转子叶片,涡轮导向器叶片等等。也就是说它具有正常的发动机大型发动机所应当具备的全部的主要部件和系统。
我们在研究和发展微型飞机的过程里面,我们碰到的第三个关键技术就是大容积重量比的结构设计技术。我们知道,微型飞机它面对的最大矛盾就是它的小尺寸和轻重量,另外呢它又要装载基本上像大飞机一样全部的主要的机载设备,当然它的机载设备的尺寸跟大飞机相比是小型的。但也是应该主要的系统,都要装载在飞机里面,因此为了解决这一矛盾,研究新型的结构布局形势就成了关键,我们前面所看到的圆盘式布局,双飞翼布局,像图所示的双翼布局,等等都是新型结构布局的探索。
另外,解决这一问题的另外一种途径,就是将电池与结构复合起来也就是电池与结构的复合技术,也就是说我们把结构做成电池,电池也是结构。当然可以是全部,也可以是部分。一方面它可以大大减轻微型飞机的重量,另外一方面可以提供比较充足的电能。据悉,美国正在研究将微型飞机的固定翼用薄膜电池来制作这样一种新型的技术。
在研究和发展微型飞机的过程里,我们所碰到需要解决的第四个关键技术就是飞行的稳定性,操纵性与控制技术,微型飞机它的尺寸非常小,它的空气流动的粘性又非常大,因此,采用传统的舵面,控制方式就是比较困难的这个时候我们可以利用,微机电技术中控制流动控制的方式,来代替传统舵面方式。同样可以实行飞机姿态的稳定和控制,为了说明这个概念,我们来看这样一个图,这个左边这幅图是一架飞机的三角翼,是一个三角翼,它的机翼的左前缘由微激励器分布了一排分布式气囊,右机翼的前沿是正常的机翼前缘。那么,由于分布式微气囊的作用,使机翼左右两个前缘所产生的流动就是不对称的流动,因此,左右两边就有一个升力差,这种升力差就能够产生一个使机翼滚转的力矩。那么,为了对这个问题有一个更加清楚的描述,我们来看看这两组图。
我们先看看左边这组图,它表示了微气囊在机翼前缘的位置,分别在下部,下前部,上前部和上部。而,右边这组图代表了左右两机翼前缘它的气流分布形成漩涡的情况。对于右前缘,由于没有分布式气囊,因此在任何情况下它的流动都是相同的,而对于左前缘,由于有不同位置的分布气囊,因此它的流动大小它的流动形成的涡就是不相同的,因此它就产生了不同力矩。
那么这幅图就更加清楚地说明这个概念,这幅图的横坐标是气囊的位置,它用角度(读音:cita)来表示,纵坐标表示由于不对称流所产生的滚转力矩的大小,我们可以看出来,随着气囊位置的变化,滚转力矩的大小是变化的,这就说明,我们可以采用流动控制的方式取代传统的飞机舵面,那我们又产生了两个新的问题,第一个问题就是如何产生这种微气囊,我们在真实的飞机上,如何产生这种微气囊这就是我们遇到一个新的问题,实际上这个必须借助于MEMS技术来解决。另外一个我们怎么样来分布气囊在整个机翼表面怎么样分布气囊,并且实现气囊的控制,这个是我们要解决的问题。
我们在研究和发展微型飞机时候碰到第五个关键技术就是弱功率信号下的遥控导航和信息传递技术。实用性微型飞机它的航程要求在10公里以上,而由于微型飞机严格的重量限制,不允许有较大尺寸的机载接收机和发射机,微型飞机往往必须在微弱信号下实现长距离的遥控或导航,因此,开展弱功率信号下的超视距遥控导航信息传递关键技术与设备的研究势在必行。可以这样讲,弱功率信号下的超视距遥控导航信息传递技术是把微型飞机从实验室投入到实际使用的关键性的技术,我们在研究和发展微型飞机的时候,所碰到第六个关键技术是多学科设计优化技术,我们看到这幅图实际上是以三个学科分别是Aerodynamics空气动力学学科,Structure结构学科,Propulsion,就是推进系统,这三个学科为例来说明多学科设计优化的一个整个过程。一个优化算子,将设计变量在各个学科内部,也就是说分别在Aerodynamics,Structure和Propulsion这三个学科内部进行优化,并且在学科之间进行优化,最后,得到满足约束条件和最佳性能要求的设计。这就是一个多学科的设计优化的一个整个思路,那么对于多学科设计优化而言它可以用在大型飞机上,也可以用在其他的飞行器设计里面,甚至可以用在任何一种工业产品的设计上,那么,对于微型飞机而言,它就显得更加迫切,为什么?就是我们前面经常提到的微型飞机的小尺寸和轻重量的要求,所造成的,那么,美国国防部预研计划局DARPA目前正在资助该方面的研究,而且在长度为6英寸,约15厘米的可执行侦查任务的微型飞机设计中取得成功。该多学科优化设计系统中,所涉及学科主要有微型推进系统的性能参数,低雷诺数空气动力学,飞行力学与品质,飞行控制及结构布局与细节设计等,涉及这些学科的模块用一个叫NEWSUMT-1型的软件包联合起来,形成实用的多学科设计优化平台,这里面有一个SUMT这个词,那么它实际上是优化设计方面一种比较先进的技术,叫序列无约束规划技术。那么,NEW就是它的发展型,ONE就是它的第一个版本。那么用这样一个NEWSUMT-1型的软件包形成了实用的多学科设计优化平台。
那么在研究和发展微型飞机的过程里面,我们所碰到第七个需要解决的关键技术就是基于微机电的加工与制造技术。也就是说基于MEMS的加工与制造技术。向着微型化,高度化,集成化方向发展,MEMS正是伴随着这一趋势诞生和发展的。自从80年代末,美国首次出现直径为100个U(读音:谬)M的微电机以来,MEMS研究得到了迅猛发展,各种微执行器,微控制器,以及微机器人相继问世,且各种机构趋于高度集成。形成完备的微机械电子系统。整个系统的尺寸缩小到几毫米,甚至几百微米,并开始了基于MEMS的微型器械研究,同时,MEMS研究已从单一的加工技术向设计向设计和制造一体化系统方向发展,出现了许多集成设计与制造工具技术。如微电子机械,计算机辅助设计,MEMCAD系统,先进微系统计算机辅助原型,CAPAM系统等等。还出现了实用的CAD系统和MEMS仿真工具等。
那么,为什么说基于MEMS技术的加工和制造技术是研究和发展微型飞机的关键技术呢?我们看看这两幅图就不难找到答案,我们的左上图是一架微型飞机,它的尺寸要求小于15厘米,重量,要求限制在100克。如此小和如此轻的微型飞机,又要装载正常飞机所应当具备的主要的机电设备,当然这种机电设备它的尺寸也是微型化的。那么,如果不依靠MEMS制造技术的话这种微型飞机实际上是制造不出来的。
我们看看这两幅图,这两幅图分别是我们在微型飞机上所采用的机载设备,左边上面图,是将这些机载设备和我们正常大小的3.5寸软盘它的尺寸进行比较,这是一个3.5寸的软盘,下面两个是在微型飞机上所用的机载设备,这种机载设备它的原件高度地集中化,集成化,它的尺寸又非常小,因此,必须采用MEMS技术,才能加工出这种机载设备来。下面一幅图也是同样的,在微型飞机上所用机载设备的它和正常长度的钢笔比较起来它的尺寸也是非常小的另外它又是高度集成化的,因此我们也必须采用MEMS技术才能加工和制造出这种机载设备来,因此我们说,基于MEMS的制造和加工技术是解决微型飞机研制的一个关键问题。

❽ 国产大飞机C919暗藏了哪些先进技术

国产C919大飞机可以说是中国产业升级带来的巨大收获,中国经济的发展刺激中国产业的发展,所以中国这些年才会出现如此多的新科技产品,而国产C919大飞机就是这些先进技术的一个集中点,国产C919大飞机暗藏的技术可是不少。


我们国家在国产C919大飞机的技术研发方面,采取先进的维修理论和技术以方法,这样可以很好的降低大飞机的维修成本,提高大飞机维修的效率。同时国产C919大飞机的采取客舱综合设计技术,可以给乘客带来舒适的感觉,这些技术都是中国大飞机的优势所在!

阅读全文

与新型飞机都有什么新技术相关的资料

热点内容
数据线灰蓝是什么意思 浏览:142
天猫产品如何查总销量 浏览:183
如何查询银行贵金属交易信息 浏览:709
地区代理商有什么条件 浏览:947
店铺交易税怎么减少 浏览:243
产品通孔什么意思 浏览:704
半永久纹绣怎么开拓市场 浏览:400
产品担当薪水如何 浏览:124
为什么注册商标要找代理公司 浏览:74
交易策略需要实盘多久才有效 浏览:544
公司跨省地址代理变更多少钱 浏览:204
产品保修怎么去 浏览:706
代理期间工资如何发放 浏览:906
学而思程序bug怎么反馈 浏览:766
怎么代理一个早餐店 浏览:504
信息存储技术的发展历程哪些 浏览:415
信息技术课怎么退出界面 浏览:815
市场法中参照物差异有哪些 浏览:94
宝鸡鸟市场在哪里 浏览:578
宁波三山村菜市场怎么样 浏览:511