⑴ 制药工程专业知识技能有哪些
1、掌握化学制药、生物制药、中药制药、药物制剂技术与工程的基本理论、基本知识;
2、掌握药物生产装置工艺与设备设计方法;
3、具有对药品新资源、新产品、新剂型进行研究、开发和设计的初步能力;
4、熟悉国家关于化工与制药生产、设计、研究与开发、环境保护等方面的方针、政策和法规;
5、了解制药工程与制剂方面的理论前沿,了解新工艺、新技术与新设备的发展动态;
6、具有创新意识和独立获取新知识的能力。
⑵ 制药设备名词解释:单元操作
单元操作(unit operations)是指化学工业和其他过程工业中进行的物料粉碎、输送、加热、冷却、混合和分离等一系列使物料发生预期的物理变化的基本操作的总称。
⑶ 生物制药技术包括哪些方法
生物药物是指运用生物学、医学、生物化学等的研究成果,综合利用物理学、化学、生物化学、生物技术和药学等学科的原理和方法,利用生物体、生物组织、细胞、体液等制造的一类用于预防、治疗和诊断的制品。生物药物,包括生物技术药物和原生物制药。
指包括生物制品在内的生物体的初级和次级代谢产物或生物体的某一组成部分,甚至整个生物体用作诊断和治疗的医药品本专业培养具备扎实的生物技术和药学基础理论、基本知识,熟练掌握现代生物技术和制药技术的常用实验流程,初步了解生物技术制药企业生产和销售环节的流程,能够胜任现代生物技术实验室和生物技术制药企业岗位基本要求的德、智、体、美全面发展的技术应用型高级实用人才。
本专业学生应掌握生物化学、生化分离分析技术、生物技术及工业药剂学等方面的基本理论知识和专业技能,受到生物制药研究和生产技术的基本训练,毕业后能从事生物药物的资源开发、产品研制、生产、技术管理、质量控制等工作。
⑷ 药厂生产的单元操作有哪些
这个要看情况的,推荐你一本书,很详细。可以网上搜,也可以去买。化工单元操作(供制药、精细化工专业用)出版:化学工业出版社它的目录如下:全文目录化工单元操作
绪论
第一章 流体流动
第一节 流体静力学基本方程
1—1流体的密度、比容和相对密度
1—2流体的压力(压强)
1—3流体静力学基本方程
1—4静压力的测量
第二节 流体流动的基本方程
1—5流量与流速
1—6稳定流动与不稳定流动
1—7流体稳定流动的物料衡算——连续性方程
1—8流体稳定流动的能量衡算——柏努利方程
1—9柏努利方程应用举例
第三节 流体在管内的流动阻力
1—10流动阻力的表现——压力降
1—11产生流动阻力的原因及其影响因素
1—12粘度
1—13流体流动的类型
1—14阻力计算的通式
1—15流体在直管中作层流流动时的阻力
1—16流体力学相似
1—17流体在圆形直管中流动时的阻力关系曲线
1—18局部阻力的计算
1—19管路计算
第四节 流速与流量的测量
1—20测速管(毕托管)
1—21孔板流量计
1—22转子流量计
第二章 流体输送机械
第一节 离心泵
2—1离心泵的结构和作用原理
2—2离心泵的主要性能参数
2—3离心泵的特性曲线
2—4离心泵的安装高度
2—5离心泵的操作、组合及安装
2—6药厂常用离心泵的类型和选用
第二节 其它类型泵
2—7正位移泵
2—8旋涡泵
2—9流体作用泵
第三节 各类泵的比较
第四节 气体输送与压缩机械
2—10通风机
2—11鼓风机
2—12压缩机
2—13真空泵
第三章 非均一系的分离
第一节 气相非均一系的分离
3—1沉降分离
3—2气体的过滤净制
3—3湿法除尘
3—4电除尘器
第二节 液相非均一系的分离
3—5过滤机理
3—6过滤设备
3—7离心分离设备
3—8离心沉降设备
第四章 液体搅拌
第一节 搅拌设备
4—1搅拌设备的组成
4—2搅拌器的作用原理
4—3搅拌器的分类
第二节 搅拌器的性能
4—4旋桨式搅拌器
4—5涡轮式搅拌器
4—6桨式搅拌器
4—7搅拌器的强化措施
4—8搅拌器的选型
第三节 搅拌功率
4—9功率关联式
4—10功率曲线
第四节 搅拌器的放大
4—11搅拌器放大的概念
4—12搅拌器的放大
第五章 传热
第一节 传热的基本概念
5—1传热的基本方式
5—2常用的传热设备
5—3稳定传热和不稳定传热
第二节 热传导
5—4热传导的基本概念和傅立叶定律
5—5导热系数
5—6平壁的热传导
5—7圆筒壁的热传导
第三节 对流传热
5—8对流传热的分析
5—9对流传热速率方程(牛顿冷却定律)
5—10影响对流传热系数的因素
5—11热相似
第四节 对流传热系数关联式
5—12流体无相变化时的对流传热系数
5—13流体有相变化时的对流传热系数
第五节 热辐射
5—14热辐射的基本概念
5—15热辐射的基本定律
5—16两固体间的相互辐射
5—17对流和辐射的联合传热
第六节 传热计算
5—18能量衡算
5—19总传热速率方程
5—20传热温度差与流体流向的选择
5—21流体流向的选择
5—22总传热系数
第七节 换热器
5—23常用换热器
5—24高效换热器
5—25强化传热过程的途径
第八节 列管换热器的设计
5—26列管换热器设计的基本原则
5—27列管换热器设计的基本步骤和举例
第九节 常用的加热、冷却与冷凝的方法
5—28加热方法
5—29冷却与冷凝方法
第六章 蒸发与结晶
第一节 蒸发
6—1蒸发过程的基本概念
6—2蒸发器
6—3蒸发器的辅助设备
6—4单效蒸发的计算
6—5蒸汽的利用率、蒸发器的生产强度及多效蒸发
6—6蒸发过程常用的节能措施
第二节 结晶
6—7结晶原理
6—8结晶的工业方法及常用的结晶设备
6—9结晶的工艺计算
第七章 冷冻
第一节 冷冻过程的基本原理
7—1理想冷冻循环
7—2冷冻系数与冷冻能力
7—3温熵图(T——S图)
7—4实际冷冻循环
第二节 冷冻剂与载冷体
7—5冷冻剂
7—6载冷体
第三节 压缩蒸气冷冻装置及选用
7—7压缩蒸气冷冻装置
7—8冷冻机的功率消耗与选用
第四节 其它型式冷冻装置
7—9蒸汽喷射式汽化冷冻装置
7—10吸收冷冻装置
第八章 气体吸收
第一节 吸收操作的基本原理
8—1吸收中的相平衡
8—2扩散原理
8—3吸收速率
第二节 填料吸收塔的结构
8—4填料的类型及特性
8—5填料塔的附属结构
第三节 填料吸收塔的工艺设计
8—6吸收操作的流程
8—7物料衡算及吸收操作线方程
8—8吸收剂的选择及用量
8—9填料塔的直径
8—10填料层的阻力
8—11填料层高度
8—12传质系数及传质单元高度的计算
第四节 解吸及其它类型吸收简介
8—13解吸
8—14其它类型吸收
第五节 其它吸收设备
8—15吸收操作的强化
8—16其它吸收设备
第九章 液体蒸馏
第一节 蒸馏中的气液平衡关系
9—1气液平衡与蒸馏操作
9—2双组分理想溶液的相图
9—3双组分非理想溶液的相图
9—4挥发度与相对挥发度
第二节 蒸馏方法和总物料衡算
9—5简单蒸馏和平衡蒸馏
9—6精馏的原理
9—7精馏的流程
9—8蒸馏操作的物料衡算
第三节 双组分混合液连续精馏的计算
9—9恒摩尔流量假定
9—10精馏塔的操作线方程
9—11进料热状况对操作线的影响
9—12理论板数的图解法
9—13回流比的选择
9—14理论板数的简捷算法
9—15塔板效率与实际塔板数
9—16填料精馏塔的填料层高度
9—17影响精馏分离效果的因素
第四节 微分蒸馏和间歇精馏的计算
9—18微分蒸馏的计算
9—19间歇精馏的计算
第五节 多组分精馏的计算
9—20多组分精馏计算的概念
9—21相平衡常数和相平衡计算
9—22产品组成的计算
9—23最小回流比和实际回流比下的塔板数
第六节 蒸馏设备
9—24塔板的类型
9—25塔板的主要尺寸与负荷性能
9—26板式塔塔径和其他尺寸的计算
9—27填料精馏塔
9—28蒸馏釜和其他传热设备
第七节 添加组分的蒸馏
9—29水蒸汽蒸馏
9—30恒沸精馏
9—31萃取精馏
第十章 溶剂萃取
第一节 基本概念
10—1萃取过程
10—2液——液相平衡
10—3液——液萃取中常见的物系和萃取流程
10—4溶剂(萃取剂)的选择
第二节 液——液萃取的计算
10—5萃取剂与原溶剂不互溶物系萃取过程的计算
10—6一对部分互溶三元系萃取过程的计算
10—7复杂物系连续逆流萃取实验
10—8萃取过程的速度
第三节 液——液萃取设备
10—9液——液萃取设备概述
10—10萃取设备的主要类型
10—11液——液萃取设备的选择
10—12萃取塔计算简述
第四节 固——液萃取
10—13固——液萃取概述
10—14影响固——液萃取的诸因素
10—15固——液萃取方法及设备
第十一章 固体干燥
第一节 湿空气的性质及焓湿图
11—1湿空气的性质
11—2湿空气的焓湿图及其应用
第二节 干燥器的物料和热量衡算
11—3物料衡算
11—4热量衡算
11—5干燥器出口空气状态的确定
11—6干燥器的热效率
第三节 干燥速率和干燥时间
11—7物料中所含水分的性质
11—8干燥速率及影响因素
11—9恒定干燥条件下干燥时间的计算
第四节 干燥器
11—10气流干燥器
11—11流化床干燥器
11—12喷雾干燥器
11—13厢式干燥器
11—14耙式真空干燥器
11—15双锥回转真空干燥器
11—16滚筒干燥器
11—17冷冻干燥器
11—18红外干燥器
11—19微波干燥
11—20干燥器的选型
第五节 干燥器的计算
11—21气流干燥器的计算
11—22卧式多室流化床干燥器的计算
11—23干燥器的设计程序
附录
附录一单位换算表
1.长度
2.面积
3.容积,体积
4.质量
5.力
6.温度
7.密度
8.体积流量
9.压力
10.能量,热,功
11.功率
12.动力粘度
13.运动粘度,扩散系数
14.导热系数
15.总传热系数,对流传热系数
16.比热容
17.表面张力
18.传质系数
19.重力加速度
20.通用气体常数
附录二各种重要数据
1.某些液体的重要物理性质
2.干空气的重要物理性质
3.某些气体的重要物理性质
4.水的重要物理性质
5.水在不同温度下的粘度
6.水的饱和蒸汽压(-20~100℃)
7.饱和水蒸汽的物理性质(以温度为准)
8.饱和水蒸汽的物理性质(以压力为准)
9.液体粘度共线图
10.气体粘度共线图
11.液体比热容共线图
12.气体比热容共线图(常压下用)
13.液体汽化潜热共线图
14.某些液体的导热系数λW/(m·K)
15.某些水溶液的导热系数
16.某些液体的汽化潜热kJ/kg
17.液体表面张力共线图
18.某些水溶液的表面张力N/m×10〓
19.有机高温载热体的物理性质
20.(T0=273K、P0=101.3kPa)下气体与蒸气在空气中的扩散系数
21.298K,101.3kPa下气体与蒸气在空气中的扩散系数
22.293K时,扩散入液体中的扩散系数
23.管内各种流体常用流速
24.有缝钢管(即水、煤气管)规格(摘自YB23463)
25.标准筛目
⑸ 国际上处理制药废水的技术都有哪些
一. 制药废水处理技术
制药废水的处理技术可归纳为以下几种:生物处理法、化学处理法、物理化学处理法、物理处理法等四种,各种处理方法具有各自的优势及不足。
1. 生物处理技术
生物处理技术是一般有机废水处理系统中最重要的过程之一,是利用微生物,主要是细菌的代谢作用,氧化、分解、吸附废水中可溶性的有机物及部分不溶性有机物,并使其转化为无害的稳定物质从而使水得到净化的技术。在现代的生物技术处理过程中,主要有好氧生物氧化、兼氧生物降解及厌氧消化降解被广泛应用,生物处理技术由于经济可行、无二次污染等特点,已越来越引起重视。
2. 化学处理技术
化学处理技术是应用化学原理和化学作用将废水中的污染物成分转化为无害物质,使废水得到净化的方法,其单元操作过程有中和、沉淀、氧化还原、催化氧化和焚烧等。
3. 物理化学处理技术
物理化学处理技术是指废水中的污染物在处理过程中通过相转移的变化而达到去除目的的处理技术,常用的单元操作有萃取、吸附、膜技术、离子交换等。
4. 物理处理技术
物理处理技术是指应用物理作用来分离废水中的溶解物质或乳浊物改变废水成分的处理方法,如格栅(筛网)、沉淀(沉砂)、过滤、微滤、气浮、离心(旋流)分离等单元操作,已成为废水处理流程的基础,目前已较为成熟。
⑹ 生物制药技术具体包括什么
生物药物是指运用微生物学、生物学、医学、生物化学等的研究成果,从生物体、生物组织、细胞、体液等,综合利用微生物学、化学、生物化学、生物技术、药学等科学的原理和方法制造的一类用于预防、治疗和诊断的制品。生物药物原料以天然的生物材料为主,包括微生物、人体、动物、植物、海洋生物等。随着生物技术的发展,有目的人工制得的生物原料成为当前生物制药原料的主要来源。如用免疫法制得的动物原料、改变基因结构制得的微生物或其它细胞原料等。生物药物的特点是药理活性高、毒副作用小,营养价值高。生物药物主要有蛋白质、核酸、糖类、脂类等。这些物质的组成单元为氨基酸、核苷酸、单糖、脂肪酸等,对人体不仅无害而且还是重要的营养物质。生物药物的阵营很庞大,发展也很快。
目前全世界的医药品已有一半是生物合成的,特别是合成分子结构复杂的药物时,它不仅比化学合成法简便,而且有更高的经济效益。
半个世纪以来微生物转化在药物研制中一系列突破性的应用给医药工业创造了巨大的医疗价值和经济效益。微生物制药工业生产的特点是利用某种微生物以“纯种状态”,也就是不仅“种子”要优而且只能是一种,如其它菌种进来即为杂菌。对固定产品来说,一定按工艺有它最合适的“饭”—培养基,来供它生长。培养基的成分不能随意更改,一个菌种在同样的发酵培养基中,因为只少了或多了某个成分,发酵的成品就完全不同。如金色链霉菌在含氯的培养基中可形成金霉素,而在没有氯化物或在培养基中加入抑制生成氯化的物质,就产生四环素。药物生产菌投入发酵罐生产,必须经过种子的扩大制备。从保存的菌种斜面移接到摇瓶培养,长好的摇瓶种子接入培养量大的种子罐中,生长好后可接入发酵罐中培养。不同的发酵规模亦有不同的发酵罐,如10吨、30吨、50吨、100吨,甚至更大的罐。这如同我们作饭时用的大小不同的锅。
我们吃的维生素、红霉素、洁霉素等,注射用的青霉素、链霉素、庆大霉素等就是用不同微生物发酵制得的。医药上已应用的抗生素绝大多数来自微生物,每个产品都有严格的生产标准。预测生物制药的研究进展,它将广泛用于治疗癌症、艾滋病、冠心病、贫血、发育不良、糖尿病等多种疾病。
⑺ 初步纯化与高度纯化有哪些单元操作方法
初步纯化的单元操作法是沉淀、吸附、萃取、超滤。高度纯化的单元操作法是层析(包括柱层析和薄层层析)、离子交换、亲和色谱、吸附色谱、电色谱。
⑻ 生化制药工艺有哪些单元操作
第一方面菌种的获得
分离思路新菌种的分离是要从混杂的各类微生物中依照生产的要求、菌种的特性,采用各种筛选方法,快速、准确地把所需要的菌种挑选出来。实验室或生产用菌种若不慎污染了杂菌,也必须重新进行分离纯化。具体分离操作从以下几个方面展开。
定方案:首先要查阅资料,了解所需菌种的生长培养特性。
采样:有针对性地采集样品。
增殖:人为地通过控制养分或培条件,使所需菌种增殖培养后,在数量上占优势。
分离:利用分离技术得到纯种。
发酵性能测定:进行生产性能测定。这些特性包括形态、培养特征、营养要求、生理生化特性、发酵周期、产品品种和产量、耐受最高温度、生长和发酵最适温度、最适pH值、提取工艺等。
第二方面高产菌株的选育
工业菌种育种的方法:诱变、基因转移、基因重组。
育种过程包括下列3个步骤:(1)在不影响菌种活力的前提下,有益基因型的引入。(2)希望基因型的选出。(3)改良菌种的评价(包括实验规模和工业生产规模)。
第三部分菌种保藏技术
转接培养或斜面传代保藏;
超低温或在液氮中冷冻保藏;
土壤或陶瓷珠等载体干燥保藏。
第四部分发酵工艺条件的确定
微生物的营养来源
能源,自养菌:光;氢,硫胺;亚硝酸盐,亚铁盐。异养菌:碳水化合物等有机物,石油天然气和石油化工产品,如醋酸。
碳源,碳酸气;淀粉水解糖,糖蜜、亚硫酸盐纸浆废液等,石油、正构石蜡,天然气,醋酸、甲醇、乙醇等石油化工产品
氮源,豆饼或蚕蛹水解液,味精废液,玉米浆,酒糟水等有机氮,尿素,硫酸铵,氨水,硝酸盐等无机氮,气态氮
无机盐,磷酸盐,钾盐,镁盐,钙盐等其他矿盐,铁、锰、钴等微量元素等
特殊生长因子,硫胺素、生物素、对氨基苯甲酸、肌醇等
培养基的确定
(1)首先必须做好调查研究工作,了解菌种的来源、生活习惯、生理生化特性和一般的营养要求。工业生产主要应用细菌、放线菌、酵母菌和霉菌四大类微生物。它们对营养的要求既有共性,也有各自的特性,应根据不同类型微生物的生理特性考虑培养基的组成。
(2)其次,对生产菌种的培养条件,生物合成的代谢途径,代谢产物的化学性质、分子结构、一般提取方法和产品质量要求等也需要有所了解,以便在选择培养基时做到心中有数。
(3)最好先选择一种较好的化学合成培养基做基础,开始时先做一些摇瓶实验;然后进一步做小型发酵罐培养,摸索菌种对各种主要碳源和氮源的利用情况和产生代谢产物的能力。注意培养过程中的pH变化,观察适合于菌种生长繁殖和适合于代谢产物形成的两种不同pH,不断调整配比来适应上述各种情况。
(4)注意每次只限一个变动条件。有了初步结果以后,先确定一个培养基配比。
(5)有些发酵产物,如抗生素等,除了配制培养基以外,还要通过中间补料法,一面对碳及氮的代谢予以适当的控制,一面间歇添加各种养料和前体类物质,引导发酵走向合成产物的途径。
(6)根据经济效益选择培并基原料 。
培养工艺的确定:
培养条件:温度、pH值、氧、种龄、接种量、温度
工业微生物的培养法分为静置培养和通气培养两大类型。
深层培养基本操作的3个控制点
①灭菌:发酵工业要求纯培养,因此在发酵开始前必须对培养基进行加热灭菌。所以发酵罐具有蒸汽夹套,以便将培养基和发酵罐进行加热灭菌,或者将培养基由连续加热灭菌器灭菌,并连续地输送于发酵罐内。②温度控制:培养基灭菌后,冷却至培养温度进行发酵,由于随着微生物的增殖和发酵会发热、搅拌产热等,所以为维持温度恒定,须在夹套中以冷却水循环流过。③通气、搅拌:空气进入发酵罐前先经空气过滤器除去杂菌,制成无菌空气,而后由罐底部进人,再通过搅拌将空气分散成微小气泡。为了延长气泡滞留时间,可在罐内装挡板产生涡流。搅拌的目的除了溶解氧之外,可使培养液中微生物均匀地分散在发酵罐内,促进热传递,以及为调节pH而使加入的酸和碱均匀分散等。
第五部分发酵产物的分离提取
提取方法:
过滤
离心与沉降
细胞破碎
萃取
吸附与离子交换
色谱分离
沉析(盐析、有机溶剂沉析、等电点等)
膜分离
结晶
干燥
分离提取过程的几个注意的问题:
水质
热源去除(石棉板吸滤、活性碳吸附、过离子交换柱)
溶剂回收
废物处理
生物安全性
⑼ 哪位大神会 化工制药单元操作技术
1、化工单元操作一个化工产品的生产是通过若干个物理操作与若干个化学反应实现的。尽管化工产品千差万别,生产工艺多种多样,但这些产品的生产过程所包含的物理过程并不是很多,而且是相似的。比如,流体输送不论用来输送何种物料,其目的都是将流体从一个设备输送至另一个设备;加热与冷却的目的都是得到需要的操作温度;分离提纯的目的都是得到指定浓度的混合物等。因此把这些包含在不同化工产品生产过程中,发生同样物理变化,遵循共同的物理学规律,使用相似设备,具有相同功能的基本物理操作,称为单元操作。 2、单元操作(Unit Operation) 单元操作按其遵循的基本规律分类:(1)遵循流体动力学基本规律的单元操作:包括流体输送、沉降、过滤、固体流态化等;(2)遵循热量传递基本规律的单元操作:包括加热、冷却、冷凝、蒸发等;(3)遵循质量传递基本规律的单元操作:包括蒸馏、吸收、萃取、结晶、干燥、膜分离等;
⑽ 什么是单元操作食品加工中常用的单元操作有哪些
单元操作是指化学工业和其他过程工业中进行的物料粉碎、输送、加热、冷却、混合和分离等一系列使物料发生预期的物理变化的基本操作的总称。
食品加工中常用的单元操作有粉碎、输送、加热、冷却、混合和分离等。
不同工艺中的相同单元操作基本原理和典型设备都是一样的。例如,制碱工业中苛性钠溶液的浓缩与制药工业中葡萄糖溶液的浓缩,都是通过蒸发单元操作来实现的,它们共同遵循热交换原理并目都采用蒸发器。
(10)制药单元操作技术有哪些扩展阅读:
单元操作所遵循的规律可归纳成以下基本过程
1、动量传递过程。流动的基本规律以及相关的单元操作,如流体的输送与压缩、沉降、过滤等。
2、热量传递过程。研究传热过程的基本规律及相关的单元操作,如传热、蒸发、结晶等。热量传递过程又被称为传热过程。
3、质量传递过程。研究物质通过相界面迁移过程的基本规律及受这些规律支配的一些单元操作,如吸收、蒸馏、萃取、干燥等。质量传递过程又被称为传质过程。