导航:首页 > 信息技术 > 遗传学有哪些诊断技术

遗传学有哪些诊断技术

发布时间:2022-12-22 05:56:10

㈠ 能够实现基因诊断的临床应用有哪些

基因诊断又称DNA诊断,是70年代末迅速发展起来的一项应用技术,目前已广泛应用于临床许多疾病的诊断,包括遗传性疾病的基因诊断、肿瘤的基因诊断、感染性疾病的基因诊断、法医学鉴定中的基因诊断、疾病易感性的基因诊断、药物筛选和药物开发的基因诊断等,本文对基因诊断在临床的应用及其应用过程中存在的问题进行综述。
与其他诊断方法相比,基因诊断具有突出的优点:一是能从基因水平彻底揭示疾病病因及发病机理;二是可进行症状前诊断,能显着提早产前诊断的时间;三是取材少,来源广,微量标本即可进行诊断;四是可快速检测不易在体外培养(如艾滋病病毒、各种肝炎病毒等)和不能再实验室安全培养的病原体。因此,基因诊断迅速在临床诊断领域特别在遗传病研究领域得到了较为广泛的应用。 1.基因诊断在临床的应用 1.1遗传性疾病的基因诊断:目前已发现的人类遗传性疾病达数千种之多,分为单基因缺陷造成的遗传病(包括显性遗传、隐性遗传、X-染色体连锁遗传病等)、多基因缺陷导致的复杂因素遗传病以及染色体数目异常的遗传病。随着对多种遗传病致病基因和突变类型以及许多可用于基因连锁分析的遗传标志的澄清,再加上基因诊断方法学的不断改进和更新,使得基因诊断被广泛地应用于遗传病的诊断中。目前遗传病基因诊断所取得的成绩最为显着和突出。地中海贫血是一种常见的严重危害的遗传性血液病。Drobyshev等用10聚体的寡核苷酸微集芯片,成功检测β-地中海贫血患者红细胞中β-珠蛋白基因中的3个突变位点[1]。血友病B是凝血因子Ⅸ基因缺陷引起的一种X染色体连锁隐性遗传病,关节腔和肌肉出血是严重病例的特征性表现。目前只能对下列遗传病进行基因诊断:已知特定基因位点突变或缺失的单基因病;已知与特定突变基因突变处于连锁不平衡的DNA标记RFLP;检查癌细胞染色体重排;新生儿死亡一击基因已被克隆的或有DNA连锁标记的遗传性酶病[2]。 1.2肿瘤的基因诊断:肿瘤的形成是遗传因素与环境因素相互作用的结果。癌基因、抑癌基因及其产物作为肿瘤标志物在肿瘤诊断,检测肿瘤复发与转移,判断疗效和预后以及人群普查等方面都有较大的实用价值。通过检测癌基因、抑癌基因中发生的基因突变有助于肿瘤的早期诊断。抑癌基因p53是人类肿瘤中最常见的突变基因,约50%以上的肿瘤都存在该基因的突变,通过将p53基因外显子2-11区域内所有突变位点的突变探针以及对应的正常序列探针集成在一块芯片上,制成p53基因芯片,为肿瘤的早期诊断、分类提供一条新途径。SPLUNCL蛋白、p16基因、p27基因等可以作为鼻咽癌的诊断标志物,用于鼻咽癌的早期诊断[3]。 1.3感染性疾病的基因诊断:采用形态学、生物化学货血清学诊断细菌、病毒、寄生虫和真菌等感染性疾病,有时存在灵敏度低、特异性差及速度慢等不足之处,基因诊断技术可以克服这些不足,它既能检出正在生长的病原体,也能检出潜伏的病原体;既能确定既往感染,也能确定现行感染。 1.4法医学鉴定中的基因诊断:主要是针对人类DNA遗传差异进行个体识别和亲子鉴定。其中最常用的基因诊断技术是DNA指纹技术、扩增片段长度多态性分析技术以及检测基因组中短串联重复序列遗传特征的PCR-STR技术和检测线粒体DNA的PCR-mtDNA技术。 疾病易感性的基因诊断:基因诊断在判断个体对某种重大疾病的易感性方面起着重要作用。如人类白细胞抗原复合体的多态性与一些疾病的遗传易感性有关。 1.5器官移植组织配型中的基因诊断:器官移植的主要难题时如何解决机体对移植物的排斥反应。基因诊断技术能够分析和显示基因型,更好地完成组织配型,从而有利于提高器官移植的成功率[4]。 1.6药物筛选和药物开发中的基因诊断:由于芯片技术具有高通量、规模、行性等特点,可以进行新药的筛选,尤其在对中药成分的真伪鉴定及有效成分的筛选、理学研究、化学药物的合成等方面具有重要的药化作用。且用基因芯片作大规模的筛选研究可以省略大量的动物实验,缩短药物筛选所用时间。 1.7胚胎植入前遗传学诊断(PGD):GPD是体外获取卵子或植入前胚胎,经极体或卵裂球活检,检测胚胎的染色体和基因,将无病胚胎植入母体子宫,以获取正常子代的技术,是一项实现诊断时机前移、避免选择性流产、可应用于不育患者并能达到源头阻断遗传病传递的积极优生技术。目前在我国,该项目开展十分有限,总体处于起步阶段。使用到的技术包括单个卵裂球荧光原位杂交、多色/多重FISH等基于单细胞的染色体分析技术;单细胞巢式/多重巢式PCR等基于单细胞的基因诊断技术;全基因扩增技术等[5] 。 2.基因诊断在临床应用存在的问题 2.1基因诊断中的伦理问题:目前使用基因诊断方法所测得的结果是否可靠?被诊断为基因缺陷阳性的人如何得到法律保障,使他们不受人寿保险、招聘单位和社会的歧视?等等,目前推广使用基因诊断方法是否合适还值得商榷。某些遗传疾病通过基因诊断技术虽然可以明确病因,但是,若不能给予有效治疗,这种基因诊断对患者自身的生活将可能意味着负担和麻烦。基因诊断可能导致新的种族歧视并最终使纳粹的人种改良企图死灰复燃[6]。 2.2基因诊断技术的标准化问题:基因诊断技术的发展历史较短,有的问世只有数年,最多也就20余年,故目前尚缺乏标准化的操作规程和质量认证体系,各研究机构之间、各医疗机构的实验室之间尚存在方法不统一,质量难保证的问题[7] 。 综上所述,基因诊断与传统方法相比,具有更灵敏、准确、快捷的特点,在临床应用中具有其他诊断方法不可替代的地位,其未来的发展方向是发挥其在疾病预测、预防和个体化治疗中的作用;同时必须关注基因诊断在医学伦理和生物安全问题,并加强基因诊断技术的质量控制。
基因诊断方法与传统的诊断方法相比,有着显着的优越性,它以基因的结构异常或表达异常为切入点,而不是从疾病的表型开始,因此往往在疾病出现之前就可作出诊断,为疾病的预防和早期及时治疗赢得了时间。另外,遗传病基因变异在全身各处细胞中均能一致体现,诊断取材极为方便,血液细胞及羊水脱落细胞等均可作为诊断材料,而不需要对某一特殊的组织或器官进行检测。由于以上这些优点,基因诊断从发展伊始就受到了人们的高度重视和普遍欢迎,已应用于许多临床疾病的诊断。

1 基因诊断在感染性疾病中的应用

基因诊断具有高度的敏感性和特异性,且简便、快捷,因此在病毒、细菌、支原体、衣原体、立克次体及寄生虫感染诊断中得到了广泛应用。(1)人乳头瘤病毒的检测:HPV(双链DNA病毒)难以用传统病毒培养和血清学技术检测,用核酸杂交、PCR等基因诊断方法则可迅速准确地检出HPV感染并同时进行分型。(2)肝炎病毒的检测:HBV(乙型肝炎病毒)的血清学检测方法已广泛地应用于临床,但其测定的只是病毒的抗原成分和机体对HBV抗原的反应,基因诊断则可直接检测病毒本身,有其独特的优越性。首先,它高度敏感,可在血清学方法阳性之前就获得诊断,这在献血员的筛选中尤为重要,基因诊断方法可将HBV、HCV(丙型肝炎病毒)、HIV(人类免疫缺陷病毒)的窗口期分别由血清学方法60、70、40天缩短到49、11和15天,在防止输血后肝炎的发生中有着重大的意义。其次,基因诊断可对患者血中的病原体定量检测,对临床评价抗病毒治疗效果,指导用药,明确病毒复制状态及传染性有重要价值。如我科引进的定量PCR仪,应用实时在线检测反应管中的荧光信号变化进行病原体DNA的定量,结果更为准确可靠,产物检测始终在密闭状态下进行,有效地解决了产物污染这一难题。基因诊断还可检出病毒变异或因机体免疫状态异常等原因不能测出相应抗原和抗体的病毒感染。(3)结核杆菌的检测:结核病是长期以来严重威胁人类,特别是发展中国家人民生命健康的常见病,传统的实验室诊断依赖痰涂片镜检和结核杆菌的培养与鉴定,但阳性率不高,所需时间长。目前应用PCR技术建立诊断方法,敏感度可达到少至100个细菌的水平,且应用针对在结核分枝杆菌中拷贝存在的特异性重复序列引物,既使菌株发生变异,也能准确检出。(4)基因诊断尚可用于HIV、人类巨细胞病毒(HCMV)、EB病毒、淋病奈瑟氏菌、幽门螺杆菌、脑膜炎奈瑟氏菌、螺旋体及疟原虫、弓形虫等的检测,无不具有灵敏、特异,能反应现行感染的优点 [1] 。

2 基因诊断在遗传病中的应用 [2]

基因诊断本身是在分子遗传学的基础上发展起来的,在遗传病的诊断方面成绩最为突出,也最有发展前途,对许多已明确致病基因及其突变类型的遗传病诊断效果良好。即使不明确致病基因,也可利用遗传标志进行连锁分析来 诊断某些遗传病。现在已实现基因诊断的遗传病已不下百种,这里仅举几例加以说明。(1)血红蛋白病的基因诊断:大多数α地中海贫血是由于α珠蛋白基因缺失所致,应用DNA限制性内切酶酶谱分析法,或用PCR检测α珠蛋白基因有无缺失及其mRNA水平的方法进行诊断。(2)苯丙酮尿症的诊断:苯丙酮尿症是一种常见的常染色体隐性遗传病,其病因的分子基础是苯丙氨酸羟化酶基因点突变,可针对突变的类型应用PCR方法与RFLP(限制片段长度的多态性分析)联合检测。(3)杜氏肌营养不良症:约65%的杜氏肌营养不良症患者有X染色体Xp 21.22-21.3 区抗肌萎缩蛋白基因内部DNA片段的缺失和重复,由此导致移码突变,用针对Xp 21 区各不同部分的多种DNA探针,内切酶酶谱分析,多重PCR等方法均可诊断出抗肌萎缩蛋白基因的异常。

3 基因诊断在肿瘤学中的应用

肿瘤是一类多基因病,其发展过程复杂,临床表现多样,涉及到多个基因的变化并与多种因素有关,因而相对于感染性疾病及单基因遗传病来说,肿瘤的基因诊断难度更大得多。但肿瘤的发生和发展从根本上离不开基因的变化 ,所以基因诊断在肿瘤疾病中也会有广阔的前景。其重要表现有以下几方面。(1)肿瘤的早期诊断及鉴别诊断。(2)肿瘤的分级、分期及预后的判断。(3)微小病灶、转移灶及血中残留癌细胞的识别检测。(4)肿瘤治疗效果的评价。另外检查癌基因的变化不但有助于对肿瘤的诊断和预后,在判断手术中肿瘤切除是否彻底、有无周围淋巴结转移方面也很有优势。在白血病诊断方面,PCR阳性诊断结果可比传统的细胞学方法及临床症状出现早5~8个月,可检出1×10 6 个有核细胞中的一个白血病细胞,在白血病的早期诊断、早期治疗及临床化疗后残留白血病的监测方面有着其它方法无可比拟的特异性和敏感性。基因诊断不是万能的,它只是现代检验医学的非常重要、非常有前景的一种手段。纵观目前基因诊断的临床应用现状,除了病原体的PCR检测得到了一定程度的应用外,其它领域的应用非常有限,即使在条件较好的三级甲等医院开展的项目也不多。

㈡ 基因诊断有哪些技术

基因诊断又称DNA诊断或分子诊断,通过分子生物学和分子遗传学的技术,直接检测出分子结构水平和表达水平是否异常,从而对疾病做出判断
常用技术
综述
当细胞的基因组DNA用特定的内切酶如Eco RⅠ切割时, 基因诊断凡有GAATTC的地方都被切开,得到许多长度一定但互不相等的片段,需要分析、分离的基因或DNA片段就在其中某一特定的的片段上。 然而许多长短不同的DNA片段混合在一起是很难分析的。因此首先必需将它们按大小(长短)分离开来,这可借助凝胶电泳来完成。在电泳时,分子量愈小的片段的迁移愈快,愈大的片段愈慢。因此,在电泳结束时可以获得一个由大到小连续的带谱(smear),而由许多细胞基因组得来的某一特定片段,因其长度相同将处于同一位置,有利于检出。但凝胶易碎且操作不便。英国科学家Southern首创印迹法克服了上述困难。
Southern印迹法
Southernblot的基本原理是:硝酸纤维膜或尼龙滤膜对单链DNA的吸附能力很强,当电泳后凝胶经过DNA变性处理,覆以上述滤膜,再于其上方压上多层干燥的吸水纸,借助它对深盐溶液的上吸作用,凝胶上的单链DNA将转移到滤膜上。转移是原位的,即DNA片段的位置保持不变。转移结束后,经过80℃烘烤的DNA,将原位地固定于膜上。 当含有特定基因片段已原位转移到膜上后,即可与同位素标记了的探针进行杂交,并将杂交的信号显示出来。杂交通常在塑料袋中进行,袋内放置上述杂交滤膜,加入含有变性后探针的杂交溶液后,在一定温度下让单链探针DNA与固定于膜上的单链基因DNA分子按碱基到互补原理充分结合。结合是特异的,例如只有β珠蛋白基因DNA才能结合上β珠蛋白的探针。杂交后,洗去膜上的未组合的探针,将Ⅹ线胶片覆于膜上,在暗盒中日光进行放射自显影。结合了同位素标记探针的DNA片段所在部位将显示黑色的杂交带,基因的缺失或突变则可能导致带的缺失或位置改变。 分子杂交是基因探测的基础,除了用印迹杂交外,还有斑点杂交法。即将DNA样品变性后直接点在硝酸纤维滤膜上,再与探针杂交,或者将细胞或病毒点在膜上,菌落或菌斑原位地吸附在膜上,经过变性处理,再进行杂交。斑点杂交多用于病原体基因,如微生物的基因,但也可用于检查人类基因组中的DNA序列。
聚合酶链反应
近年来,基因分析和基因工程技术有了革命性的突破,这主要归功于聚合酶链反应(polymerase chain reaction,PCR)的发展和应用。应用PCR技术可以使特定的基因或DNA片段在短短的2-3小时内体外扩增数十万至百万倍。扩增的片段可以直接通过电泳观察,也可用于进一步的分析。这样,少量的单拷贝基因不需通过同位素提高其敏感性来观察,而通过扩增至百万倍后直接观察到,而且原先需要一、二周才能作出的诊断可以缩短至数小时。 首先应按照欲检测的DNA的5’和3’端的碱基顺序各合成一段长约17-20余个碱基的寡核苷酸作为引物(primer),其次是将待检测的DNA变性后,加入四种单核苷酸(dNTP)、引物和耐热聚合酶。在较低的温度,引物将与待扩增的DNA链复性结合,然后的聚合酶的作用下,利用溶液中的核苷酸原料,不断延伸合成新互补链,这样,一条DNA双链就变成了两条双链。若继续按照变性(92-95℃)→复性(40-60℃)→引物延伸(65-72℃)的顺序循环20至40个周期,就可以得到大量的DNA片段。理论上循环20周期可使DNA扩增2n,即100余万倍。PCR反应特异性强,灵敏度高,极微量的DNA即可作为扩增的模板得到大量的扩增片段。毛发、血痕,甚至单个细胞的DNA即可供PCR扩增之用。因此它用于病原体DNA的检查、肿瘤残留细胞的检出、罪犯或个体遗传物质的鉴定以及遗传病的基因诊断等。 已可对一系列的遗传病进行PCR诊断。如果疾病是由基因缺失引起的(如α地贫),则在缺失两端设计一对引物进行扩增,就不会得到扩增产物或只能得到缩短了的扩增产物。如果疾病是由点突变引起的,而突变的位置和性质已知,则在设计引物时使之包括突变部位,由于突变后的碱基不配对,结果无扩增片段;或者在引物设计时于其3’端设计一个错误的核苷酸,使之与突变了的核苷酸配对,其结果是正常引物不能扩增,而用错误的引物能扩增,从而可对突变的存在作出判断。 PCR技术目前有许多新的发展,用途日益扩大。例如,可用RNA为模板经过逆转录再行扩增的RT-PCR;改变两引物浓度,使其相差100倍,结果得到大量单链产物,称为不对称PCR,其单链产物可用于序列分析;在一个反应中加入多对引物同时检测多个部位的多重PCR等等。
扩增片段长度
多态性小卫星DNA和微卫星DNA的长度多态性可以通过PCR扩增后电泳来检出,并用于致病基因的连锁分析,这种诊断方法称为扩增片段长度多态性(amplified fragment length polymorphism,Amp-FLP)连锁分析法。PCR扩增后,产物即等位片段之间的差别有时只有几个核苷酸,故需用聚丙烯酰胺凝胶电泳分离鉴定。此法多用于突变性质不明的连锁分析。
等位基因的特异
寡核苷酸探针诊断法当基因的突变部位和性质已完全明了时,可以合成等基因特异的寡核苷酸探针(allele-specific oligonucleotide,ASO)用同位素或非同位素标记进行诊断。探针通常为长20bp左右的核苷酸。用于探测点突变时一般需要合成两种探针,一种与正常基因序列完全一致,能与之稳定地杂交,但不能与突变基因序列杂交;另一种与突变基因序列一致,能与突变基因序列稳定杂交,但不能与正常基因序列稳定杂交,这样,就可以把只有一个碱基发生了突变的基因区别开来。 PCR可结合ASO,即PCR-ASO技术,即先将含有突变点的基因有关片段进行体外扩增,然后再与ASO探针作点杂交,这样大大简化了方法,节约了时间,而且只要极少量的基因组DNA就可进行。
单链构象多态性诊断法
单链构象多态性(signlestrand conformation polymorphism,SSCP)是指单链DNA由于碱基序列的不同可引起构象差异,这种差异将造成相同或相近长度的单链DNA电泳迁移率不同,从而可用于DNA中单个碱基的替代、微小的缺失或手稿的检测。用SSCP法检查基因突变时,通常在疑有突变的DNA片段附近设计一对引物进行PCR扩增,然后将扩增物用甲酰胺等变性,并在聚丙烯酰胺凝胶中电泳,突变所引起的DNA构象差异将表现为电泳带位置的差异,从而可据之作出诊断。 PCR-SSCP法具有能快速、灵敏地检测有无点突变或多态性的优点,但如欲阐明突变的碱基性质,则需作序列分析。

㈢ 研究人类遗传学常用的方法有哪些

人类遗传学的主要研究方法是:
①系谱分析。用于研究决定人类性状或疾病的基因的传递规律。
②数理统计。通过群体的调查和系谱分析并将获得的资料经过数学处理,可以测定人类某些性状或疾病基因的分布频率,了解其传递规律及与种族、群体、环境、迁移、婚配方式之间的关系。
③细胞遗传学方法。染色体技术和人类性染色质(X染色质和Y染色质)的研究结果可广泛应用于染色体异常疾病的诊断、性别鉴定、产前诊断和遗传咨询等。医学细胞遗传学的研究为人类遗传学积累了大量的资料(见核型)。
④体细胞遗传学方法。在人类基因定位中得到广泛的应用,也常应用于肿瘤遗传学的研究。
⑤生物化学方法。层析、电泳、色谱分析 、同位素示踪等被广泛应用于先天性代谢缺陷、血红蛋白异常和各种综合征的研究。这些方法非但可应用于出生后成长过程中的个体,也可以应用于孕妇羊水及其脱屑细胞的产前诊断,以便在孕期中就去除先天性代谢异常的胎儿,这对预防遗传疾病有重要意义。
⑥免疫学方法。人类体细胞免疫学特性的研究是人类遗传学的重要内容。它为同种异体脏器的移植提供了理论基础,同时也可揭示它与某些遗传性疾病发生的关联。并为阐明免疫球蛋白的多样性来源问题开辟了新的途径。
⑦双生儿法。通过双生儿之间的异同对比研究遗传和环境对个体表型的相对效应的方法,它是人类遗传学研究中的经典方法。

㈣ 遗传学的学科有哪些,包括DNA的学科吗

遗传学(Genetics)是一门学科,研究生物起源、进化与发育的基因和基因组结构、功能与演变及其规律等,是生物学的一个重要分支,经历了孟德尔经典遗传学、分子遗传学和如今系统遗传学的研究时期。

遗传学中的亲子概念不限于父母子女或一个家族,还可以延伸到包括许多家族的群体,这是群体遗传学的研究对象。遗传学中的亲子概念还可以以细胞为单位,离体培养的细胞可以保持个体的一些遗传特性,如某些酶的有无等。对离体培养细胞的遗传学研究属于体细胞遗传学。遗传学中的亲子概念还可以扩充到DNA脱氧核糖核酸的复制甚至mRNA的转录,这些是分子遗传学研究的课题。基因相互作用与信号传导网络的系统生物学研究是系统遗传学的内容。

由一个受精卵产生的免疫活性细胞能够分别产生各种不同的抗体球蛋白,这也是遗传学的一个课题,它的研究属于免疫遗传学。

从噬菌体到人,生物界有基本一致的遗传和变异规律,所以遗传学原则上不以研究的生物对象划分学科分支。人类遗传学的划分是因为研究人的遗传学与人类的幸福密切相关,而系谱分析和双生儿法等又几乎只限于人类的遗传学研究。

微生物遗传学的划分是因为微生物与高等动植物的体制很不相同,因而必须采用特殊方法进行研究。此外,还有因生产意义而出现的以某一类或某一种生物命名的分支学科,如家禽遗传学、棉花遗传学、水稻遗传学等。

更多的遗传学分支学科是按照所研究的问题来划分的。例如,细胞遗传学是细胞学和遗传学的结合;发生遗传学所研究的是个体发育的遗传控制;行为遗传学研究的是行为的遗传基础;免疫遗传学研究的是免疫机制的遗传基础;辐射遗传学专门研究辐射的遗传学效应;药物遗传学则专门研究人对药物反应的遗传规律和物质基础,等等。

从群体角度进行遗传学研究的学科有群体遗传学、生态遗传学、数量遗传学、进化遗传学等。这些学科之间关系紧密,界线较难划分。群体遗传学常用数学方法研究群体中的基因的动态,研究基因突变、自然选择、群体大小、交配体制、迁移和漂变等因素对群体中的基因频率和基因平衡的影响;生态遗传学研究的是生物与生物,以及生物与环境相互适应或影响的遗传学基础,常把野外工作和实验室工作结合起来研究多态现象、拟态等,借以验证群体遗传学研究中得来的结论;进化遗传学的研究内容包括生命起源、遗传物质、遗传密码和遗传机构的演变以及物种形成的遗传基础等。物种形成的研究也和群体遗传学、生态遗传学有密切的关系。

从应用角度看,医学遗传学是人类遗传学的分支学科,它研究遗传性疾病的遗传规律和本质;临床遗传学则研究遗传病的诊断和预防;优生学则是遗传学原理在改良人类遗传素质中的应用。生统遗传学或数量遗传学的主要研究对象是数量性状,而农作物和家畜的经济性状多半是数量性状,因此它们是动植物育种的理论基础。

阅读全文

与遗传学有哪些诊断技术相关的资料

热点内容
腾讯mot什么产品好 浏览:786
成都旧铜交易市场在哪里 浏览:239
非实时信息交流什么意思 浏览:591
计算机存储设备负责哪些数据 浏览:403
天线原理和微波技术基础哪个难 浏览:813
战时用什么接收信息 浏览:259
家庭医生产品如何销售 浏览:304
如何查北京成交数据 浏览:246
物流信息多久就没有了 浏览:719
wps两列怎么选出不一样的数据 浏览:234
交易施罗德后湖人还有什么操作 浏览:961
手机如何拍美容产品照片 浏览:77
省交易中心属什么机构 浏览:316
数据库分类产品有哪些 浏览:816
蒸汽账号技术升级怎么注册账号 浏览:385
销售每天统计哪些数据 浏览:221
通达信数据统计如何设置 浏览:644
唐山原装红酒代理怎么谈 浏览:834
两张表格长度不一样怎么整合信息 浏览:831
数据分析师如何更好理解业务 浏览:867