⑴ 智能运维是什么
得益于IT外包服务的发达,现在的运维已经不包括搬机器上架、接网线、安装操作系统等基础工作,运维人员一般会从一台已安装好指定版本的操作系统、分配好IP地址和账号的服务器入手,工作范围大致包括:服务器管理(操作系统层面,比如重启、下线)、软件包管理、代码上下线、日志管理和分析、监控(区分系统、业务)和告警、流量管理(分发、转移、降级、限流等),以及一些日常的优化、故障排查等。
随着业务的发展、服务器规模的扩大,才及云化(公有云和混合云)、虚拟化的逐步落实,运维工作就扩展到了容量管理、弹性(自动化)扩缩容、安全管理,以及(引入各种容器、开源框架带来的复杂度提高而导致的)故障分析和定位等范围。
听上去每一类工作都不简单。不过,好在这些领域都有成熟的解决方案、开源软件和系统,运维工作的重点就是如何应用好这些工具来解决问题。
传统的运维工作经过不断发展(服务器规模的不断扩大),大致经历了人工、工具和自动化、平台化和智能运维(AIOps)几个阶段。这里的AIOps不是指Artificial Intelligence for IT Operations,而是指Algorithmic IT Operations(基于Gartner的定义标准)。
基于算法的IT运维,能利用数据和算法提高运维的自动化程度和效率,比如将其用于告警收敛和合并、Root分析、关联分析、容量评估、自动扩缩容等运维工作中。
在Monitoring(监控)、Service Desk(服务台)、Automation(自动化)之上,利用大数据和机器学习持续优化,用机器智能扩展人类的能力极限,这就是智能运维的实质含义。
智能运维具体的落地方式,各团队也都在摸索中,较早见效的是在异常检测、故障分析和定位(有赖于业务系统标准化的推进)等方面的应用。智能运维平台逻辑架构如图所示。
智能运维平台逻辑架构图
智能运维决不是一个跳跃发展的过程,而是一个长期演进的系统,其根基还是运维自动化、监控、数据收集、分析和处理等具体的工程。人们很容易忽略智能运维在工程上的投入,认为只要有算法就可以了,其实工程能力和算法能力在这里同样重要。
智能运维需要解决的问题有:海量数据存储、分析、处理,多维度,多数据源,信息过载,复杂业务模型下的故障定位。这些难题是否会随着智能运维的深入应用而得到一定程度的解决呢?我们会在下一篇文章中逐步展开这些问题,并提供一些解决方案。
本文选自《智能运维:从0搭建大规模分布式AIOps系统》,作者彭冬、朱伟、刘俊等,电子工业出版社2018年7月出版。
本书结合大企业的智能运维实践,全面完整地介绍智能运维的技术体系,让读者更加了解运维技术的现状和发展。同时,帮助运维工程师在一定程度上了解机器学习的常见算法模型,以及如何将它们应用到运维工作中。
⑵ 智能运维适合哪些场景都涉及哪些领%
智能运维一般指IT运维的智能化。主要适用于数据中心的数据存储、告警收敛、异常检测和根因定位。
领域极为广泛,凡是有IT运维工作的企业随着数据量和复杂度的增加,都有可能用到智能运维
⑶ 人工智能下的智慧运维实践一BIM 技术运维
BIM(BuildingInformation Modeling), 也称建筑信息模型,是一种通过计算机语言用信息与图像来描述建筑物的技术。
BIM 以实现建筑工程信息可视化与信息量化为分析目标,是能够提高工程建设质量与工程建设效率的信息技术。
由于现代建筑造型逐渐复杂化,通过传统人为想象很难完成整个建筑施工图设计。而BIM 可视化能将复杂建筑以三维模型姿态呈现,可全方位展示、查看建筑的设计细节,且更加直观地展现各建筑设备的运行状态。BIM技术也被应用于自动化运维中。
一、运维可视化
以BIM可视化技术为基础,结合物联网、大数据与敏捷的交互技术实现“可视化、集成化、智能化”的大型综合运营与管理模式,从“全局视野”和“精准洞察”的角度来管理大型建筑空间、EPM、综合安全等。
⑷ 智能运维适合哪些场景都涉及那些领域
IT的智能运维AIOps,目前在国内落地比较多的是对IT故障容忍率更低的行业,比如金融、交通、互联网等等。各厂商主要的差异在于数据治理的能力和经验(当数据量越来越大时,一个好的运维数据中台可以保证运行性能)、产品线的覆盖度(告警、日志、指标等均可进行智能分析)、智能场景的丰富度。
对于智能运维来说,常见的智能场景有异常检测、根因定位、自动排障、容量预测、告警收敛、日志聚类等。随着应用的进一步广泛,智能场景也会不断更新、越来越多。
可以说智能运维的发展完全是顺应时代的需求,互联网逐渐与衣食住行变得息息相关,由生活衍生出来的金融、交通、通讯、能源等行业企业同互联网一起经历了多样化的变迁升级。因此,与互联网伴生而来的是对生产数据的运维管理,经历了手工、自动化的阶段后,在人工智能的推动下,运维逐渐向智能化(AIOps)进化。
⑸ 百度有哪些核心技术
1、网络(网络App):7亿用户首选的搜索和资讯客户端。
网络App是一款有7亿用户在使用的手机“搜索+资讯”客户端,结合了搜索功能和智能信息推荐,依托网络网页、网络图片、网络新闻、网络知道、网络、网络地图、网络音乐、网络视频等专业垂直频道“有事搜一搜,没事看一看”,为用户提供更多丰富和实用的功能与服务。
2、网络地图:新一代人工智能地图。
网络地图是为用户提供包括智能路线规划、智能导航、实时路况等出行相关服务的平台。作为“新一代人工智能地图”,网络地图实现了语音交互覆盖用户操控全流程,上线了AR步导 、AR导游等实用功能。
3、网络糯米:省钱更省心!
网络糯米汇集美食、电影、酒店、休闲娱乐、旅游、到家服务等众多生活服务的相关产品,并先后接入网络外卖、去哪儿网资源,一站式解决吃喝玩乐相关的所有问题,逐渐完善了网络糯米O2O的生态布局。
4、网络贴吧:上贴吧,找组织。
网络贴吧,全球最大的中文社区。贴吧是一种基于关键词的主题交流社区,它与搜索紧密结合,准确把握用户需求,搭建别具特色的“兴趣主题“互动平台。贴吧目录涵盖社会、地区、生活、教育、娱乐明星、游戏、体育、企业等方方面面,目前是全球最大的中文交流平台。
5、网络:全球最大的中文网络全书。
网络是一个内容开放、自由的网络网络全书平台, 旨在创造一个涵盖各领域知识的中文信息收集平台。网络强调用户的参与和奉献精神,充分调动互联网用户的力量,汇聚上亿用户的头脑智慧,积极进行交流和分享。
6、网络知道:总有一个人知道你问题的答案。
网络知道,是网络旗下的互动式知识问答分享平台,也是全球最大的中文问答平台。广大网友根据实际需求在网络知道上进行提问,便立即获得数亿网友的在线解答。
7、网络文库:让每个人平等的提升自我。
网络文库是网络发布的供网友在线分享文档的知识平台,是最大的互联网学习开放平台。网络文库用户可以在此平台上,上传, 在线阅读与下载文档。
8、好看视频:分享美好,看见世界。
好看视频平台拥有独家短视频内容源,分类覆盖搞笑、音乐、影视、娱乐、游戏、生活、小品、军事、汽车、新闻等全方位优质视频内容,是一个专业短视频聚合平台。数十万视频创作者通过好看视频给7亿网络生态用户提供全方位的视频内容,每天的观看次数高达数十亿次。
⑹ 有人知道智能运维是什么
作为企业数字化转型的重要手段,IT运维效率的高低会直接影响到业务的正常运转,业务数字化的加剧会造成严重的运维之殇,发现问题、根因定位、数据治理和运营分析都变得十分困难,越来越难以满足当前主动运营的要求。
智能运维是一种全新的数字化运维能力,也将是数字化转型的必备能力。智能运维相对于传统运维模式而言,能够在运维数据治理、业务数字化风险、运维人力成本和业务侧影响力四个方面有本质的效能提升。
⑺ 智能运维服务都有哪些功能以及效果呢
智能运维是一种全新的数字化运维能力,且是企业数字化转型的必备能力。智能运维的本质是提升运维数据的认知能力,它在提升运维数据治理能力、优化企业业务数字化风险、降低运维人力成本和提升运维在业务侧的影响力方面都有本质的提升。
智能运维,又称AIOps(Artficial Intelligence for Operations),是一种将大数据、人工智能或机器学习技术赋能传统IT运维管理的平台(技术)。
比如以我们公司的夏洛克AIOps智慧运营平台为例。它能以全局运营视角解读IT运维,在AI算法平台的支撑下实现包括精准告警、异常检测、根因定位和容量分析等场景,助力企业数字化业务高效、稳定和顺畅运行。
运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;
业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;
运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;
业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;
智能运维发展正如火如荼,Gartner预见其为下一代运维,认为到2022年将有近50%的企业用户部署智能运维。虽然目前不少企业已经在积极投入建设,也还有一些企业处在迷茫阶段,尽早布局才能在数字化时代不会被淘汰。
⑻ 智能运维是什么
智能运维,又称AIOps,是一种将大数据、人工智能或机器学习技术赋能传统IT运维管理的平台。Gartner曾在其2016年的报告中指出,AIOps将是下一代运维模式,并预测到2022年,50%的大型企业将结合大数据和机器学习功能,支持和部分替代监测、服务台和自动化流程和任务。而IT系统三大阶段:规划、建设和运维,IT系统真正产生价值的在运维阶段。没有运维好,建的再好的系统也产生不了业务价值。AIOps是未来发展的趋势,而听云通过13年的技术深耕和探索,早已成为就行业的领先者,旗下的具有AIOps的产品更是服务过上千家公司,覆盖到各行各业。
⑼ 互联网时代的网络自动化运维
互联网时代的网络自动化运维
互联网上有两大主要元素"内容和眼球","内容"是互联网公司(或称ICP)提供的网络服务,如网页、游戏、即时通信等,"眼球"则是借指海量的互联网用户。互联网公司的内容往往分布在多个或大或小的IDC中,越来越多的"眼球"在盯着ICP所提供的内容,互联网公司进行内容存储的基础设施也呈现出了爆发式的增长。为了保障对内容的访问体验,互联网公司需要在不同的运营商、不同的省份/城市批量部署业务服务器用以对外提供服务,并为业务模块间的通信建立IDC内部网络、城域网和广域网,同时通过自建CDN或CDN专业服务公司对服务盲点进行覆盖。因此随着业务的增长,运维部门也显得愈发重要。他们经过这些年的积累,逐步形成了高效的运维体系。本文将结合国内互联网公司的经验,重点针对IT基础设施的新一代自动化运维体系展开讨论。
一、运维的三个阶段
● 第一个阶段:人人皆运维
在早期,一个公司的IT基础设施尚未达到一定的规模(通常在几台到几十台机器的规模),不一定有专门的运维人员或部门,运维的工作分担在各类岗位中。研发人员拥有服务器权限,自己维护和管理线上代码及业务。
● 第二个阶段:纵向自动化
随着业务量的增长,IT基础设施发展到了另外一个量级(通常在上百台至几千台机器的规模),开始有专门的运维人员,从事日常的安装维护工作,扮演"救火队员",收告警,有运维规范,但运维主要还是为研发提供后置服务。
这个阶段已经开始逐步向流程化处理进行过渡,运维部门开始输出常见问题处理的清单,有了自己业务范围适用的自动化脚本,开始利用开源软件的拼装完成大部分的工作。
具体表现为:各产品线有自己编写的脚本,利用如SVN+puppet或chef来完成服务器的上线和配置管理等工作。
● 第三阶段:一切皆自动
在互联网化的大潮中,越来越多的黑马团队应运而生,都曾有过短时间内用户访问量翻N倍的经历。在流量爆发的过程中,ICP的互联网基础服务设施是否能够很好的跟进,直接决定了业务内容能否满足海量用户的并发访问。
与此同时,运维系统需要足够地完善、高效、流程化。谷歌、腾讯、网络和阿里等规模的公司内一般都有统一的运维团队,有一套或多套自动化运维系统可供参照,运维部门与开发部门会是相互平行的视角。并且也开始更加关注IT基础设施在架构层面的优化以及超大规模集群下的自动化管理和切换(如图1所示)。
图1.大型互联网公司IT基础设施情况概览
二、BAT(网络、阿里、腾讯)运维系统的分析
国内的互联网公司网络、阿里、腾讯(以下简称:BAT)所提供的主要业务内容不同,IT架构不同,运维系统在发展过程中有不同的关注点。
1.腾讯运维:基于ITIL的运维服务管理
预计到2015年腾讯在全国将拥有60万台服务器。随着2012年自动化部署实践的成功,目前正在进行自动化验收的工作。在网络设备方面,后续将实现从需求端开始的全自动化工作:设备清单自动生成->采购清单自动下发->端口连接关系、拓扑关系自动生成->配置自动下发->自动验收。整个运维流程也已由初期的传统IT管理演进到基于ITIL的服务管理流程(如图2所示)。
图2.腾讯基于ITIL的运维服务管理
2.阿里运维系统:基于CMDB的基础设施管理+逻辑分层建模
CMDB(Configuration Management Database) 配置管理数据库(以下简称:CMDB),将IT基础架构的所有组件存储为配置项,维护每个配置项的详细数据,维护各配置项之间的关系数据以及事件、变更历史等管理数据。通过将这些数据整合到中央存储库,CMDB可以为企业了解和管理数据类型之间的因果关系提供保障。同时,CMDB与所有服务支持和服务交付流程都紧密相联,支持这些流程的运转、发挥配置信息的价值,同时依赖于相关流程保证数据的准确性。可实现IT服务支持、IT运维以及IT资产管理内部及三者之间的流程整合与自动化。在实际的项目中,CMDB常常被认为是构建其它ITIL流程的基础而优先考虑,ITIL项目的成败与是否成功建立CMDB有非常大的关系。
3.网络自动化运维:部署+监控+业务系统+关联关系
网络主要面临的运维挑战包括:突发的流量变化、复杂环境的关联影响、快速迭代的开发模式以及运维效率、运维质量、成本之间的平衡等等。网络的运维团队认为,当服务器规模达到上万台时,运维视角需要转为以服务为粒度。万台并不等于"百台*100";机器的运行状态,也不再代表业务的工作状态;运维部门为研发提供前置服务,服务与服务之间关系也随着集群的扩大逐渐复杂起来。
图3.网络自动化运维技术框架
网络的自动化运维技术框架,划分为部署、监控、业务系统、关联关系四大部分,整个框架更多突出了业务与IT基础设施的融合,注重"关联关系"的联动。所谓关联关系,主要是指任务与任务之间的时序依赖关系、任务与任务之间的数据依赖关系、任务与资源之间的引用依赖关系,分别对应到任务调度、数据传输、资源定位的服务流程中,形成了多条服务链。
关联关系的运维与业务较强相关,需要有一套系统能够理清楚关系的全貌,从而在复杂的服务链上,定位运行所在的环节,并在发生故障时预估影响范围,及时定位并通知相应的部门。在这样的一套系统中,自动化监控系统非常重要。网络的技术监控框架,主要通过数据采集、服务探测、第三方进行信息收集,进行监控评估后交给数据处理和报警联动模块处理,通过API接口进行功能扩充(如图4所示)。
图4.网络自动化技术监控框架
其实无论是BAT等互联网企业还是其他行业的企业,在IT建设中都会遵循IT基础架构库(ITIL)或ISO20000服务管理的最佳实践,采用自动化IT管理解决方案以实现重要的业务目标,如减少服务中断、降低运营成本、提高IT效率等等。随着ISO20000、ITIL v3.0的发布和推广,两者已经成为事实上的某种标准。在当今企业IT管理领域,对两个标准有着很迫切的需求。特别是ISO20000的认证要求,已经成为企业越来越普遍的需求 。ITIL v3.0包含了对IT运维从战略、设计到转换、运营、改进的服务全生命周期的管理,相关方案往往覆盖了多个领域和多个产品,规划实施和工具的选择会比较纠结。如果选择开源的工具,从CMDB开始就会遇到很多的开发工作,对于很多注重成本收益比的企业,可以参考,但由于无法保证性能与效果并不一定适用。因此,成熟的商业方案会是更好的选择。
最新的iMC V7版本,围绕资源、用户、业务三个维度进行创新,发布了SOM服务运维管理(基于ISO20000、ITIL标准)等组件,增加了对服务器的管理,能很好的满足更多互联网化的场景需求。
通常认为,一个高效、好用的配置管理数据库一般需要满足6条重要标准,即联合、灵活的信息模型定义、标准合规、支持内置策略、自动发现和严格的访问控制。企业IT基础架构的元素类型、管理数据的类型往往有较多种,如网络设备、服务器、虚拟机等,因此对于多种信息的存储需要有合适的联合的方法。虽然 iMC智能管理平台在网络设备、服务器设备等方面已经能够较好的的满足,但是随着服务器虚拟化技术的发展,虚拟机正越来越多的成为IT基础架构的一大元素。因此,针对这一需求华三通信基于CAS CVM虚拟化管理系统,对服务器CPU、内存、磁盘I/O、网络I/O等更细节的重要资源以及虚拟机资源进行全面的管理。与BAT不同,华三通信的网管软件面向全行业,目前虽然没有对域名管理等特殊资源的'管理,但是能够通过API接口等方式与特有系统进行联动,进而满足定制化运维的需求,尤其是在互联网化的场景中,针对不同的业务需求,可以实现很多定制化的对接需求,例如,iMC+WSM组件与国内某大互联网公司自有Portal系统进行了对接,打通了iMC工具与用户自有运维平台,很好的实现了架构融和。另外,与阿里的逻辑分层建模相似,H3C "iMC+CAS"软件体系在上层也做了很多的逻辑抽象、分层,形成了诸多的模块,也即是大家看到的各种组件。
三、网络自动化运维体系
"哪怕是一个只有基础技术能力的陌生人,也能做专业的IT运维;哪怕是一个只有初中学历的运维人员,也能够带队完成中小型机房节点的建设,并负责数百至上千台服务器的维护管理工作"--这是一些公司对自己IT运行维护水平的一个整体评价。看似有些夸大的嫌疑,但实际上依托于强大的IT运维系统,国内已经有不少互联网公司能够达到或者接近这一标准。
这些企业都经历了运维发展过程中的各个阶段,运维部门曾经也是被动的、孤立的、分散的"救火队"式的团队,在后来的发展过程中,IT系统架构逐渐走向标准化、模型化,运维部门建立了完整的设备、系统资源管理数据库和知识库,包括所有硬件的配置情况、所有软件的参数配置,购买日期、维修记录,运维风险看板等等,通过网管软件,进行系统远程自动化监控。运维过程中系统会收集所有的问题、事件、变更、服务级别等信息并录入管理系统,不断完善进而形成一套趋向自动化的运作支撑机制。按照云计算的体系架构,在这样一套系统中,主要的IT资源包括计算、存储、网络资源,近些年随着网络设备厂商的推动,网络设备管理方面的自动化技术也得到十足的发展。
总结来看,一个企业在进行互联网化的建设初期,就需要考虑到随着用户访问量的增加,资源如何进行扩展。具体可以细化为规划、建设、管理、监控、运维五个方面。
1.规划模型化
为了确保后续业务能够平滑扩容,网管系统能够顺利跟进,互联网企业一般在早期整体系统架构设计时便充分考虑到标准化、模型化,新增业务资源就好比点快餐,随需随取。
标准化:一是采用标准协议和技术搭建,扩展性好,使用的产品较统一,便于管理;二是采用数据中心级设备,保证可靠性、灵活性,充分考虑业务系统对低时延的要求。
模型化:基于业务需求设计网络架构模型,验证后形成基线,可批量复制,统一管理,也适宜通过自动化提高部署效率、网管效率。
图5.常见互联网IDC架构
2.建设自动化
互联网IT基础设施具备批量复制能力之后,可以通过自动化技术,提高上线效率。在新节点建设过程中,3~5人的小型团队即可完成机房上线工作。例如某互联网公司某次针对海外紧急业务需求,一共派遣了2名工程师到现场进行设备安装部署和基本配置,而后通过互联网链路,设备从总部管理系统中自动获取配置和设备版本,下载业务系统,完成设备安装到机房上线不超过1周时间。
要达到自动化运维的目标,建设过程中需要重点考虑批量复制和自动化上线两个方面(如图6所示)。
批量复制:根据业务需要,梳理技术关注点,设计网络模型,进行充分测试和试点,输出软、硬件配置模板,进而可进行批量部署。
自动化上线:充分利用TR069、Autoconfig等技术,采用零配置功能批量自动化上线设备,效率能够得到成倍提升。
图6.批量配置与自动化上线
○ Autoconfig与TR069的主要有三个区别:
○ Autoconfig适用于零配置部署,后续一般需要专门的网管系统;TR069是一套完整的管理方案,不仅在初始零配置时有用,后续还可以一直对设备进行监控和配置管理、软件升级等。
○ Autoconfig使用DHCP与TFTP--简单,TR069零配置使用DHCP与HTTP--复杂,需要专门的ACS服务器。
安全性:TR069更安全,可以基于HTTPS/SSL。
而H3C iMC BIMS实现了TR-069协议中的ACS(自动配置服务器)功能,通过TR-069协议对CPE设备进行远程管理,BIMS具有零配置的能力和优势,有灵活的组网能力,可管理DHCP设备和NAT后的私网设备。BIMS的工作流程如图7所示。
图7.H3C iMC BIMS工作流程
3.管理智能化
对于网管团队而言,需要向其他团队提供便利的工具以进行信息查询、告警管理等操作。早期的网管工具,往往离不开命令行操作,且对于批量处理的操作支持性并不好,如网络设备的MIB库相比新的智能化技术Netconf,好比C和C++,显得笨拙许多。因此使用的角度考虑,图形化、智能化的管理工具,往往是比较受欢迎。
智能化:使用新技术,提升传统MIB式管理方式的处理效率,引入嵌入式自动化架构,实现智能终端APP化管理(如图8所示)。
图8.消息、事件处理智能化
● Netconf技术
目前网络管理协议主要是SNMP和Netconf。SNMP采用UDP,实现简单,技术成熟,但是在安全可靠性、管理操作效率、交互操作和复杂操作实现上还不能满足管理需求。Netconf采用XML作为配置数据和协议消息内容的数据编码方式,采用基于TCP的SSHv2进行传送,以RPC方式实现操作和控制。XML可以表达复杂、具有内在逻辑、模型化的管理对象,如端口、协议、业务以及之间的关系等,提高了操作效率和对象标准化;采用SSHv2传送方式,可靠性、安全性、交互性较好。二者主要对比差异如表1所示。
表1 网管技术的对比
● EAA嵌入式自动化架构
EAA自动化架构的执行包括如下三个步骤。
○ 定义感兴趣的事件源,事件源是系统中的软件或者硬件模块,如:特定的命令、日志、TRAP告警等。
○ 定义EAA监控策略,比如保存设备配置、主备切换、重启进程等。
○ 当监控到定义的事件源发生后,触发执行EAA监控策略。
4.监控平台化
利用基本监控工具如Show、Display、SNMP、Syslog等,制作平台化监控集成环境,实现全方位监控(如图所示)。
⑽ 什么是IT智能运维
IT智能运维必须以大数据为基础,所以企业必须具有采集IT全层级数据的能力,并能实现数据融合,结合机器学习、智能算法,对IT运维实现洞察,获得预见性。
现在推IT智能运维的服务商国内有几家,我比较认可博睿数据提出的数据为本的理念,没有数据就是无水之源,所以企业别被概念忽悠,先踏实做数据采集和融合,智能运维是水到渠成的事