‘壹’ 废铜的冶炼技术
目前无论是国外还是国内,利用100%废铜连铸连轧生产线生产符合相关国家标准的低氧光亮铜杆已是较为成熟的技术。以下即从国内外废铜冶炼技术现状、废铜市场、废铜来源及废铜冶炼工艺等几个方面谈谈废铜冶炼技术现状。
1.国外废铜冶炼技术现状
长期以来,处于对铜资源和成本的考虑,各国铜杆生产商一直想在现代的连铸连轧生产线上使用尽量多的废铜作为原材料。事实上,在80年代以前,生产商使用纯铜废料的量始终限制在10~15%。因为那时利用全废铜生产高质量的低氧光亮铜杆是一项代价非常大的措施,为此必须熔化和精炼铜获得阳极铜,进而用电解法取得阴极铜。直到80年代初,西班牙巴塞罗那和意大利米兰的两家公司,对如何利用全废铜生产低氧光亮铜杆进行了研究,在共同的努力下,两家公司在他们最初接触的两年内各自成功地达到了目标。1986年,用100%废铜的第一条欧洲连铸连轧生产线开始运行,在很短的时间里工程的投资即被偿还。但最初用废铜生产铜杆的生产线,其标称能力为7吨/小时,每天(8小时计算)可生产50吨铜杆,后经多次改造,于1995 年推出的全废铜连铸连轧生产线,竖炉的熔化能力增加到了10吨/小时,生产能力增加到了80吨/8小时,如果取掉设备维护、保养及节假日时间,年产量至少可达6万吨。此生产线生产的铜杆性能的导电率等指标达到ISO标准的要求,原材料价格可节省8%~15%,每吨铜杆可便宜250~270元。
2.国内废铜冶炼技术现状
我国废铜连铸连轧生产线的研制约在90年代初。经过十年的艰辛努力,四川德阳东方电工机械有限责任公司技术人员,于2000年推出了我国第一条UL+Z-1800+255/14型全废铜连铸连轧机组生产线,该条生产线结合了美国、法国、意大利等公司的先进经验,一经推出该生产线即制造出了符合相关国家标准的低氧光亮铜杆,年产量可达5万吨,此生产线将我国100%废铜料加工成高质量光亮铜杆的梦想变成了现实。目前我国已有多家生产铜连铸连轧生产线的企业,形成一定规模的企业有三家:东方电工(已生产21条生产线)、四川煤田地质局141机械厂(已生产4条生产线)和合肥华新(已生产19条生产线)。我公司准备购买的UL+Z-1800+255/12型铜杆连铸连轧机组生产线是东方电工公司的最新换代产品,它可以将一级或二级废铜冶炼轧制成符合表1性能的光亮圆铜杆。
‘贰’ 列举关于古代中国冶炼工艺的种类
1、青铜冶铸技术:
中国古代最初是使用自然铜,商代早期已能用火法炼制铜锡合金的青铜。冶炼青铜的过程较复杂,大概是先把选好的矿石加入熔剂,再放在炼炉内,燃木炭熔炼,等火候成熟,取精炼铜液,弃去炼渣,即得初铜。初铜仍比较粗,需再经提炼才能获得纯净的红铜。
青铜的发明是人类文明史上的重大事件,由于其克服了纯铜的柔软弱点,且具有熔点低、铸造性能好等优点,逐渐成为古代铜器中的主要品种。
2、古代铸铁技术:
对铁器的大量需求,促成了铁范(铸铁金属型)的发明。1953年河北兴隆燕国冶铸遗址出土的铁范,曾用来铸造铁斧、锄、镰和车具。
这些铁范结构合理,壁厚均匀,形状和铸件轮廓相一致,并已使用铁芯。有的范能一次铸两件器物(如双镰范,图2[兴隆铁范(双镰范)]),表明铸铁技术在这个时期已达到较高的水平。
(2)国内铜的生产有哪些技术扩展阅读
被誉为“中国古代兵器之王”的越王勾践剑,于1965年12月出土于湖北望山一号楚墓,出土时插在木质剑鞘里,出鞘时寒光四射,耀人眼目,锋利无比,令人赞叹不已。
越王勾践剑就是一把采用复合金属铸造工艺制作的青铜剑,它的主要成分有铜、锡以及少量的铝、铁、镍、硫组成的青铜合金。而剑刃的精磨技艺水平可同现代在精密磨床上生产出的产品相媲美。
由于其剑身的各个部位作用不同,使铜和锡的比例也不一样。剑脊含铜较多,能使青铜剑韧性良好,不易折断;而刃部含锡量高,硬度大,则会使青铜剑更为锋利。
‘叁’ 铜的分类及常见的加工方法有哪些
常见分类:
黄铜是由铜和锌所组成的合金
白铜是铜和镍的合金
青铜是铜和除了锌和镍以外的元素形成的合金,主要有锡青铜,铝青铜等
紫铜是铜含量很高的铜,其它杂质总含量在1%以下。
1、紫铜
红铜即纯铜,又名紫铜,纯铜密度为8.96,熔点为1083℃。具有很好的导电性和导热性,塑性极好,易于热压和冷压力加工,大量用于制造电线、电缆、电刷、电火花专用电蚀铜等要求导电性良好的产品。
因呈紫红色而得名。它不一定是纯铜,有时还加入少量脱氧元素或其他元素,以改善材质和性能,因此也归入铜合金。中国紫铜加工材按成分可分为:普通紫铜(T1、T2、T3、T4)、无氧铜(TU1、TU2和高纯、真空无氧铜)、脱氧铜(TUP、TUMn)、添加少量合金元素的特种铜(砷铜、碲铜、银铜)四类。
紫铜的电导率和热导率仅次于银,广泛用于制作导电、导热器材。紫铜在大气、海水和某些非氧化性酸(盐酸、稀硫酸)、碱、盐溶液及多种有机酸(醋酸、柠檬酸)中,有良好的耐蚀性,用于化学工业。另外,紫铜有良好的焊接性,可经冷、热塑性加工制成各种半成品和成品。20世纪70年代,紫铜的产量超过了其他各类铜合金的总产量。
紫铜中的微量杂质对铜的导电、导热性能有严重影响。其中钛、磷、铁、硅等显着降低电导率,而镉、锌等则影响很小。氧、硫、硒、碲等在铜中的固溶度很小,可与铜生成脆性化合物,对导电性影响不大,但能降低加工塑性。普通紫铜在含氢或一氧化碳的还原性气氛中加热时,氢或一氧化碳易与晶界的氧化亚铜(Cu2O)作用,产生高压水蒸气或二氧化碳气体,可使铜破裂。这种现象常称为铜的"氢病"。氧对铜的焊接性有害。铋或铅与铜生成低熔点共晶,使铜产生热脆;而脆性的铋呈薄膜状分布在晶界时,又使铜产生冷脆。磷能显着降低铜的导电性,但可提高铜液的流动性,改善焊接性。适量的铅、碲、硫等能改善可切削性。
2、黄铜
以锌作主要添加元素的铜合金,具有美观的黄色,统称黄铜。铜锌二元合金称普通黄铜或称简单黄铜。三元以上的黄铜称特殊黄铜或称复杂黄铜。含锌低于36%的黄铜合金由固溶体组成,具有良好的冷加工性能,如含锌30%的黄铜常用来制作弹壳,俗称弹壳黄铜或七三黄铜。含锌在36~42%之间的黄铜合金由和固溶体组成,其中最常用的是含锌40%的六四黄铜。为了改善普通黄铜的性能,常添加其他元素,如铝、镍、锰、锡、硅、铅等。铝能提高黄铜的强度、硬度和耐蚀性,但使塑性降低,适合作海轮冷凝管及其他耐蚀零件。锡能提高黄铜的强度和对海水的耐腐性,故称海军黄铜,用作船舶热工设备和螺旋桨等。铅能改善黄铜的切削性能;这种易切削黄铜常用作钟表零件。黄铜铸件常用来制作阀门和管道配件等。
最简单的黄铜是铜-锌二元合金,称为简单黄铜或普通黄铜,改变黄铜中锌的含量可以得到不同机械性能的黄铜。黄铜中锌的含量越高,其强度也较高,塑性稍低。工业中采用的黄铜含锌量不超过45%,含锌量再高将会产生脆性,使合金性能变坏。在黄铜中加1%的锡能显着改善黄铜的抗海水和海洋大气腐蚀的能力,因此称为"海军黄铜"。锡能改善黄铜的切削加工性能。铅黄铜即我们通常所说的易削国标铜。加铅的主要目的是改善切削加工性和提高耐磨性,铅对黄铜的强度影响不大。雕刻铜也是铅黄铜的一种。多数黄铜具有良好色泽、加工性、延展性,易于电镀或涂装。
黄铜又分:
1)普通黄铜
它是由铜和锌组成的合金。
当含锌量小于39%时,锌能溶于铜内形成单相a,称单相黄铜,塑性好,适于冷热加压加工。当含锌量大于39%时,有a单相还有以铜锌为基的b固溶体,称双相黄铜,b使塑性小而抗拉强度上升,只适于热压力加工。
代号用"H+数字"表示,H表示黄铜,数字表示铜的质量分数。如H68表示含铜量为68%,含锌量为32%,的黄铜,铸造黄铜则在代号前"Z"字,如ZH62。
H90、H80单相,金黄色,故有金色共称之,称为镀层,装饰品,奖章等。
H68、H59属于双相黄铜,广泛用于电器上的结构件,如螺栓,螺母,垫圈、弹簧等。
一般情况下,冷变形加工用单相黄铜热变形加工用双相黄铜。
2)特殊黄铜
在普通黄铜中加入其它合金元素所组成的多元合金称为黄铜。常加入的元素有铅、锡、铝等,相应地可称为铅黄铜、锡黄铜、铝黄铜。加合金元素的目的。主要是提高抗拉强度改善工艺性。
代号:为"H+主加元素符号(除锌外)+铜的质量分数+主加元素质量分数+其它元素质量分数"表示。
如:HPb59-1表示铜的质量分数为59%,含主加元素铅的质量分数为1%,余量为锌的铅黄铜。
3、白铜
以镍为主要添加元素的铜合金。铜镍二元合金称普通白铜;加有锰、铁、锌、铝等元素的白铜合金称复杂白铜。工业用白铜分为结构白铜和电工白铜两大类。结构白铜的特点是机械性能和耐蚀性好,色泽美观。这种白铜广泛用于制造精密机械、化工机械和船舶构件。电工白铜一般有良好的热电性能。锰铜、康铜、考铜是含锰量不同的锰白铜,是制造精密电工仪器、变阻器、精密电阻、应变片、热电偶等用的材料。
4、青铜
原指铜锡合金,后除黄铜、白铜以外的铜合金均称青铜,并常在青铜名字前冠以第一主要添加元素的名。锡青铜的铸造性能、减摩性能好和机械性能好,适合于制造轴承、蜗轮、齿轮等。铅青铜是现代发动机和磨床广泛使用的轴承材料。铝青铜强度高,耐磨性和耐蚀性好,用于铸造高载荷的齿轮、轴套、船用螺旋桨等。铍青铜和磷青铜的弹性极限高,导电性好,适于制造精密弹簧和电接触元件,铍青铜还用来制造煤矿、油库等使用的无火花工具。
代号:表示方法为"Q+主加元素符号及质量分数+其它元素的质量分数"所组成。铸造产品则在代号前加"Z"字,
如:Qal7表示含铝为5%,其余为铜的铝青铜ZQsn10-1表示含锡量为10%,其它合金元素含量为1%,余量为铜的的铸造锡青铜。
青铜又可分为锡青铜和特殊青铜(即无锡青铜)两类。
(1)是由锡为主加元素的铜锡合金,也称为锡青铜
当含锡量小于5~6%,锡溶于铜中形成a固溶体,塑性上升,当含锡量大于5~6%时,由于出现了Cu31sb8为基的固溶体,抗拉强度下降,所以秤的锡青铜含锡量大多在3~14%之间,当含锡量小于5%,适用于冷变形加工,当含锡量为5~7%时的适用于热变形加工。当含锡量大于10%时,适用于铸造。
由于a与&电极电位相近,且成分中的锡氮化后生成致密的二氧化锡薄膜,耐大气、耐海水等的耐蚀性上升,只是耐酸性较差。
因为锡青铜结晶温度范围较宽,流动性差,不易形成集中缩孔,而易形成枝晶偏析和分散缩孔,铸造收缩率小,有利于得尺寸极接近于铸型的
铸件,所以适于铸造形状复杂。壁厚较大的条件,而不适宜铸造要求致密度高和密封性好的铸件。
锡青铜有良好的减摩性,抗磁性及低温韧性。
锡青铜按生产方法可分为压力加工锡青铜与铸造锡青铜两大类。
A、压力加工锡青铜
含锡量一般小于8%,宜冷热压力加工成板|、带、棒、管等型材供应,经加工硬化后,其抗拉强度、硬度上升、而塑性下降。再退火后可保持较高抗拉强度下改善塑性、尤其是获得高的弹性极限。
适制仪表上要求耐蚀及耐磨件,弹性件,抗磁件及机器中滑动轴承,轴套等
常用的有Qsn4-3 Qsn6.5~0.1。
B、铸造锡青铜
以铸锭供应,由铸造车间铸成铸件使用,适宜铸造形状复杂但致密度要求不高的铸件,如滑动轴承、齿轮等。常用的有ZQsn10-1 ZQsn6-6-3。
(2)特殊青铜
加入其它元素以取代锡,或为无锡青铜,多数特殊青铜都比锡青铜具有更高的机性,耐磨性与耐蚀性,常用的有铝青铜(QAL7 QAL5)铅青铜(ZQPB30)等。
以镍为主要添加元素的铜基合金呈银白色,称为白铜。镍含量通常为10%、15%、20%,含量越高,颜色越白。铜镍二元合金称普通白铜,加锰、铁、锌和铝等元素的铜镍合金称为复杂白铜,纯铜加镍能显着提高强度、耐蚀性、电阻和热电性。工业用白铜根据性能特点和用途不同分为结构用白铜和电工用白铜两种,分别满足各种耐蚀和特殊的电、热性能。
二、辨别:
白铜、黄铜、红铜(也称为"紫铜")、青铜(青灰色或者灰黄色)是从颜色上区别的。
其中白铜、黄铜极易区分;红铜是纯铜(杂质<1%)、青铜(其他合金成分5%左右)稍难以区别。未氧化时,红铜色泽较青铜亮,青铜略带青色或黄色偏暗;氧化后,红铜变为黑色,青铜则位青绿色(多水的有害氧化)或者巧克力色。
铜及铜合金的分类和焊接特点
(1)纯铜:纯铜常被称作紫铜。它具有良好的导电性、导热性和耐蚀性。纯铜用字母+T}}(铜)表示,如Tl,T2,T3等。氧的含量极低,不大于0.O1%的纯铜称为无氧铜,用TU(铜无)表示,如TU1、TU2等。
(2)黄铜:以锌为主要合金元素的铜合金称为黄铜。黄铜用+H;(黄)表示如H80、H70,H68等。
(3)青铜:以前把铜与锡的合金称作青铜,现在则把除了黄铜以外的铜合金称作青铜。常用的有锡青铜、铝青铜和敏青铜等。青铜用"Q,'(青)表示。
铜及铜合金的焊接特点是:
(1)难熔合及易变形
(2)容易产生热裂纹
(3)容易产生气孔
铜及铜合金焊接主要采用气焊、惰性气体保护焊、埋弧焊、钎焊等方法。
铜及铜合金导热性能好,所以焊接前一般应预热,并采用大线能量焊接。钨极氢弧焊采用直流正接。气焊时,紫铜采用中性焰或弱碳化焰,黄铜则采用弱氧化焰,以防止锌的蒸发。
‘肆’ 现在冶炼铜的方法有哪些
我们通过吹炼铜矿石得到冰铜(铜锍),然后氧化精炼得到金属铜。目前主流为两大方法,熔池熔炼和闪速熔炼。
所谓闪速熔炼,又叫悬浮熔炼,主要反应在空中进行,主要反应为气固反应;所谓熔池熔炼,主要反应在熔融的液态物中进行,就像熔化的液体形成的池子一样,故名熔池熔炼。熔池熔炼的主要反应为气液反应。
闪速熔炼有奥托昆普法,因科法等,目前,全世界有闪速炉40多座,我国有四座(贵溪、金隆、金川、祥光)。
熔池熔炼有奥斯麦特法,艾莎法,三菱法等。像2楼提到的就是三菱法。其他如诺兰达法,白银法等都属于熔池熔炼
‘伍’ 请教铜的上引法生产工艺,越详细越好,谢谢!
上引法 摘要:上引法工频炉本来没有精炼程序,不能冶炼废铜线、废品店回收来的原料紫杂铜。但通过试验,改进操作方法和工艺,实现了上引法工频炉也能溶炼出符合国家标准要求的铜杆,取得了一定的经济效益。本文论述详尽,便于操作。值得推广。
主题词:上引法 废铜 溶炼 方法
由机械工业部上海电缆研究所在国内首先开发研制的上引法生产无氧铜杆新工艺,具有工艺技术先进,产品质量好,单位能耗低,生产品种及规格灵活多样,适应性强,没有三废污染,投资少等特点,是铜导体及铜材加工的理想工艺。然而,上引法铜杆生产过程中没有精炼工序,为了保证铜杆的质量。该厂把生产过程中产生的废线,都运到外厂去加工,每吨废线的加工费运费除外还要 1000 元,每年要为此多支出近百多万元。
溶炼废铜线的方法
针对这种情况,我厂试验利用上引法工频炉自己溶炼废铜线,并对外实行加工。取得了一定的经济效益。具体方法如下:
1. 选择原材料。我厂为了保证溶炼废铜线的质量,对所有的废铜线进行了选择。我厂是一个漆包线生产厂家,主要废线是拉线和漆包车间的废线,另外,我厂还从各废品店,收购一些废紫杂铜,收购的废紫杂铜里常常有一些黄铜,废塑料土块石头等混杂在里面,所以,必须进行适当地清除。再进行打捆,每捆 10 公斤左右。
2. 选择冶炼用的活松。活松一般采用刚伐下来的松树,长短大小要有利于操作。我厂采用的是厂内间伐的松树,长 2 米,直径在 5 厘米左右。弯曲度小于全长的 2% 。
3. 把原有铜液从上引法工频炉里引杆至最低位置,我厂工频炉容量在 6-7 吨之间,加废料时只留 2.4 吨左右在炉子中,留下足够的空间来,以便存贮熔炼的废铜线液。开始按正常生产加料,铜液温度控制在 1150 ± 5 ° C ,铜液上的木炭覆盖厚度控制在 100-150mm ,冷却水进水温度控制在:热天控制在 26-30 ° C ,冷天控制在 21-25 ° C ,进出水温差 8 ° C 左右,供水压力 0.18-2.2Mpa 。加料过程中会产生大量的渣子和炉壁挂渣,要注意按时清渣。清渣数,每小时不能小于一次。我厂一次投料量在 4-5 吨之间。
4. 插活松。加料完成后,对上引法工频炉内的铜液进行插活松还原,除去铜液中的气体。还原氧化亚铜为铜,当松木在高温下分解时,碳氢化合物直接与铜中的 Cu 2 O 起化学反应作用,其反应式为: 4Cu 2 O+CH 4 =8Cu+2H 2 O+CO 2
5. 静置。插完活松后,实行保温静置 8 小时以上,这样,可以使铜液中的气体从铜液中完全溢出,因为铜液中存在的气体,是缓慢向上升的,要想使它完全不存留于铜液中,要有相当一段时间,通过静置后,它就能使铜液中的气体完全溢出,不使引出的铜杆产生空心了,再有通过静置,能使铜液中的杂质,升浮到铜液表面,通过扒渣、清理,能减少铜中的杂质。
6. 引杆,通过以上部署后,就可以正式引杆了,引杆速度按工艺要求控制在 500-700mm/min ,铜杆引出结晶器与空气接触的表面温度: 100 ° C 左右,引杆时,加符合国标 GB-466-82 规定的一、二号铜板,其化学含量如表 1 :
表 1 铜的化学成分
铜品号
代
号
化学成分( % )
铜不小于( % )
杂质含量不大于( % )
砷
锑
铋
铁
铅
锡
镍
锌
硫
磷
总和
一号铜
Cu-1
99.95
0.002
0.002
0.001
0.004
0.003
0.002
0.002
0.003
0.004
0.001
0.05
二号铜
Cu-2
99.90
0.002
0.002
0.001
0.005
0.005
0.002
0.002
0.004
0.004
0.001
0.10
7. 对铜杆各项性能进行分析化验。经过引杆出来后,取样用肉眼观看,铜杆表面光亮,无斑痕,断面呈玫瑰红色,细粒结晶, 在拉线和引杆过程中,分别取 3.0mm,8.0mm,14.4mm 进行试验分析,其结果均符合国家规定的各项要求,其试验结果如下
表 2 废铜线在上引法工频炉冶炼的机械电气性能实测数据
名称
抗拉强度( Mpa )不小于
伸长率( % )不小于
电阻率 ( Ω .mm 2 /m) 不大于
取样日期
规格
3.0 mm
8.0mm
14.4mm
3.0 mm
8.0mm
14.4mm
3.0 mm
8.0mm
14.4mm
标准
389
325
_
1.0
2.2
35
0.01777
0.01777
0.017241
实测
448
355
187
1.4
4
38
0.01740
0.01741
0.017149
199.8
450
359
192
1.3
3.9
37.3
0.01737
0.01736
0.017203
199.13
442
343
181
1.5
4.5
38.9
0.01745
0.01743
0.017196
1996.6.18
447
356
184
1.4
4.1
38.5
0.01741
0.01738
0.017240
1996.7.30
451
361
193
1.3
3.7
37
0.01733
0.01731
0.015
1996.8.2
由表中各项数据可知,各项机械电气性能,均符合国家标准要求。同时,按以上操作方法生产的铜杆,在拉线的过程中,很少发现夹杂、空心等质量问题。
注意事项
上引法工频炉加工废线废料时,应该注意以下几个方面:
1 ;对加工的废线废料要严格把关,清除其中的杂质,如黄铜,土块,石头,过多的塑料,铁丝等,以免杂质混入其中影响铜杆的质量。
2 ,所加工的废线废料,要打成 10 公斤左右的小捆。以便于操作工加料。
3 ,加料时,废线废料中的塑料等易燃物,会使火焰腾升,要注意安全。
4 ,加料时,废线废料会比铜液轻,要准备长而好操作的工具,把废线废料轻轻压入铜液中。
5 ,要保证炉子温度符合工艺要求。过低过高都会影响产品的质量和产量。
6 ,要及时清除炉壁上过多的挂渣,但注意不能粗鲁损坏炉壁。
结束语
我厂 1996 年以前熔炼废线是采用边熔炼边引杆的,然后把引杆出来的铜杆再剪切成 90cm 左右的长条,重新投入工频炉,这样生产出来的铜杆,也能符合国家规定的各项要求,但在引杆的过程中,结晶器常常会脱引,结操作带来很大的不便。为此,我厂改用了上述操作方法,使用至今。
利用上引法加工废线废料炉壁虽然挂渣较严重。但对炉子的寿命影响不大。实践证明,采用上引法工步炉进行废线废料的加工,是切实可行的,我厂除满足本单位的生产任务外,还经常为怀化等地的电线电缆厂家加工废线,取得了一定的经济效益。值得广大厂家借鉴利用。
‘陆’ 我国古代冶炼铜的步骤有哪些
古代冶金技术始于炼铜。铜矿冶炼工艺一般至少要分两步走,首先得通过氧化焙烧,除去其中的一部分硫和铁,在此过程中会生成冰铜;第二步则是冰铜冶炼,在竖炉中以木炭焙烧,而得到金属粗铜。
在古代的技术条件下,用硫化铜所冶炼出的金属铜中,往往会含有明显量的铁和硫,还有由共生矿物引入的砷、铅、锡、锌、银、锑,以及残余的冰铜和氧化焙烧的中间产物等元素。
冶炼硫化矿大约在春秋时期,当时个别地区的冶炼技术已经进步到这个阶段。如对内蒙古自治区昭乌达盟赤峰市林西县大井古矿冶遗址的发掘和研究表明,它属于夏家店上层文化,相当于春秋早期。
在该遗址,当年的工匠曾用石质工具较大规模地开采了铜、锡、砷共生硫化矿石,矿石经焙烧后直接还原熔炼出了含锡、砷的金属铜合金。
该遗址在赤峰市林西县官地乡,铜矿区的矿石主要类型为含锡石、毒砂的黄铁矿黄铜矿,少量为黄锡矿。遗址发掘中出土了多座炼炉以及炉渣、炉壁、矿石,对当时的冶炼技术提供了相当丰富的实物资料。
‘柒’ 现在大自然中很难找到纯铜,铜是如何提炼制造的
现在大自然中很难找到纯铜,铜是如何提炼制造的?
第一、工人用稀释的硫酸溶液喷洒氧化铁矿石,经历数个月的时间,溶液会渗透并溶出铜。铜溶液会流进一个槽池子里,然后精油泵把铜溶液输送到工厂。铜溶液在渠道内与有机媒介连接,浮在表面。接着工人加入酸性溶液,这样能提升铜的浓度,使其成为导电体。接下来,这些铜溶液会继续输送进连续槽里,里面含有纯铜启动薄板也叫阴极板。接着工人将电流送进槽内,同会被阴极板吸收。刚开始时,阴极板还只有薄薄的一片,但是经过十天后,阴极板会逐渐增厚,厚度就变成了2.5公分厚了,此时每块阴极板重量就达到了125公斤,纯度达到了99.99%,这对利用铜制作电子产品来说是很重要的,但对于铜筒硫化石里分解出来较为困难。
第四、工人把薄板送进熔炉一个高耸的直井里,纯铜在中断时熔化,流到熔炉的底部,然后被送往绝缘金属通道,使其保持溶解状态,随后倒入直立的模具里,这个模具将会把铜塑成矩形,变成铜柄。铜柄可用来制造像式铜片或管路零件。刚从模具出炉的铜柄约六米长,输送系统会把他们送往圆具,然后切成客户要求的长度。完成堆叠和贴标后,这些纯度极高的铜柄就可以运送给制造商了。当然,这家工厂也会把纯铜制成条状了,这种形式的铜条更适合制造电线。融化的铜层开口留进模具,然后用水降温,同形成连续的锯条,接着利用带有沟槽的滚轮将其有矩形的样子变成圆形,并且它的直径也会大大缩小。铜进入沟槽后就会变成八毫米粗的铜条了,紧接。这铜条出来后,机器就会卷成线圈,整齐的套入钢轴,接着机器压缩线圈,将它往下压,这样在运送时不会占据更多的空间。最后再以过顶压制机压缩产品的铜线,用强化塑料绳加固。
‘捌’ 工业制铜的方法
冶炼技术
古代的铜矿开采术
先秦时期青铜冶铸的高度发达,也从一个侧面反映了铜矿开采技术的先进。湖北省大冶铜绿山的古铜矿遗址,向人们展现了从商周至汉代铜矿开采状况和采矿技术的发展过程。这是迄今发现的中国最早的古矿遗址,在世界矿业史上也是不可多得的珍贵遗存。
清代所修《大冶县志》记载,铜绿山“山顶高平,巨石对峙,每骤雨过时,有铜绿如雪花小豆点缀土石之上,故名。”这里,铜矿富集,矿体规模大,而且矿石含铜品位高,成为中国古代一个重要的采铜中心。至今,地上堆积着40万吨以上的古代炼渣,地下古矿井分布密集,还有多种形式的炼铜竖炉,记录着古代矿冶生产的宏大规模和卓越技术。
商代遗址采用的是群井开采方法。井筒打在矿体内,下掘井筒就是开采矿石,掘进终了即开采完毕。继续开采又另打新井。群井开采简单易行,井深一般为20~30米,开挖在软岩或围岩蚀变带内,用打水井的工具即可掘进。提升矿石和废石,采用大轮导向往返拉动。
西周的遗址仍用群井开采。井为方形,井深与商代相同。井中有支护遗址,支护形式为间隔支护,距离40~60厘米。井框木为带榫的套接方式,榫口一律凿成方形。井框外,四壁先背一层竹席,竹席内间格敷有直径4~5厘米的木枝条。这时期已出现有巷道、平巷,但处于初始阶段。
春秋战国时期已采用竖井、斜井、平巷的联合挖掘,初步形成了地下开采系统。其中,斜井的掘进施工和支护技术都有较大的难度,它的出现,是坑采技术的一大进步。斜井的倾度因地而异,由25度至70度不等。斜井的作用不仅可以沿矿体倾斜延伸,节省人力和费用,而且还有探矿的作用。平巷和竖井也较西周时期有明显的进步,最大井深达64米,延伸至潜水面下8~10米。春秋时期主要的开挖工具为铜制,战国时期则主要应用铁制工具。同时,这时期已比较成功地解决了有关掘进、通风、排水、照明、运输、支护等一系列问题。这些技术,在当时世界上都是无与伦比的。
铜绿山遗址现在已被作为重要的文化史迹,受到国家的保护。
青铜冶铸术
从世界范围看,古代美索不达米亚人大约于9000年前开始利用自然铜,6000年前有了铜的冶炼,5500年前有了炼青铜;古埃及大约于7000年前开始炼铜,5000年前有了青铜。相比之下,中国对于铜的加工和利用要晚得多,大约在四五千年前方有自然铜的利用和青铜的冶炼。但是中国不像其他古文明地区那样,曾经经历过较长时间的炼制红铜阶段,而是在红铜加工出现不久就开始冶青铜,并利用青铜熔点低、易于浇铸的特点,使青铜冶铸技术迅速发展起来,一跃而跨入世界先进行列,并居领先地位,创造了举世瞩目的青铜文明。
迄今出土或传世的大量先秦青铜器,向人们展示着中国青铜文化的盛况。其中,河南殷墟出土的重达875公斤的司母戊鼎;湖北随县曾侯乙墓出土的大型编钟,总重量达10吨以上,以及精巧绝伦的铜尊盘;在地下埋藏2500多年,表现依然花纹清晰、光彩照人的越王勾践剑和吴王夫差剑;等等,都堪称世界之最。这些青铜器物,反映了当时青铜铸造技术的高度发展水平,包括浑铸、分铸、失蜡法、焊接、镶嵌、表面处理等工艺的高超程度。
高超的青铜铸造加工的技术工艺,是以高超的青铜冶炼技术为基础的。没有优质的青铜材料,就不可能产生优秀的青铜器物。当时的人们已经熟练地掌握了青铜的冶炼技术,而且已掌握了鉴定青铜质地是否精纯的方法。这就是在《考工记》一书中记载的火焰颜色判定法。
《考工记》中说,在冶炼青铜时,铜料与锡料中会先冒出黑浊的气体,“黑浊之气竭,黄白次之;黄白之气竭,青白次之;青白之气竭,青气次之,然后可铸也”。近代科学证明,金属加热时由于蒸发、分解、化合等作用,会产生不同的颜色。冶炼青铜时,原料中所附着的碳氢化合物会燃烧,产生黑浊的气体;随着炉温的升高,原料中所含的氧化物、硫化物等杂质会产生黄白、青白的气体;到只冒青气时,说明杂质已基本去除,青铜已经炼成,可以浇铸了。这是冶金史上关于火焰颜色鉴别法的最早记载。
顺便应该指出的是,“炉火纯青”是我们常用的一句成语,用来比喻功夫达到纯熟完美的程度。其来源,现在通用的一般辞典中都说是来自道家炼丹成功时火焰发青,有的还加注“迷信”二字。这种说法恐有误。它的最早出现应是上引的《考工记》记载。
湿法炼铜
湿法炼铜,也叫胆铜法,这是中国历史上在炼铜技术上的一项重大发明。
今天,铁元素比铜元素活跃,它能在铜盐溶液中,经过置换反应,置换出铜来,这已是最基本的化学知识。而这种置换反应,却是由中国首先发现,并加以实际利用的。
铁铜置换反应的发现,是炼丹家在化学方面的一大贡献。他们在炼丹实践中,观察到这一置换现象,并不断加以记录和总结。现知这一置换现象的最早文字记录,是2000多年前在西汉时成书的《淮南万毕术》一书中所记载的,“曾青得铁则化为铜”。曾青,又叫空青、石胆、胆矾,为天然的硫酸铜。硫酸铜一般是蓝色结晶体,因在空气中会部分风化失去水分,而呈白色,故又有白青之称。曾青是炼丹家在炼丹活动中的常用药物,被认为“久服身轻不老”。它亦被引入医学,作为治疗疮疖等疾患的用药,故中药本草着作中也有记载。汉代成书的《神农本草经》中,即记有石胆“能化铁为铜”。不单是硫酸铜会与铁起置换反应,其他可溶性铜盐也会与铁起置换反应。对此,古代的炼丹家和药物学家也有所发现。南北朝时着名的炼丹家和药物学家陶宏景就说:“鸡屎矾……投苦酒中,涂铁皆作铜色”。苦酒即醋酸,鸡屎矾可能是碱性硫酸铜或碱性碳酸铜,因难溶于水,要加醋酸方能溶解。
所谓胆铜法,就是把铁放在胆矾溶液(胆水)中,使铁离子置换出胆水中的铜离子,从而析出单质铜的冶铜方法。胆铜法,是一种先进的炼铜方法,为中国所首创。与火法炼铜相比较,它有着多方面的优越性。它可以就地取材,在胆水多的地方设置铜场,设备简单,技术操作容易,成本低;只要把蒲铁片或碎铁块投入胆水槽中浸渍,就可获取铜,而且铜质精纯。它的冶炼过程是在常温下进行的,可以节省大量燃料,免除鼓风、熔炼等设备,也减轻了炼铜工人的劳动强度,并减少了环境污染。而且,胆铜法不管是贫矿还是富矿,都可使用。
胆铜法何时由炼丹家的炼丹实验转成工业生产,现在尚不清楚。有人推测在唐末或五代已经开始湿法炼铜,而在北宋时已经实际应用并得到推广,却是确定无疑的。在11世纪末叶,北宋哲宗时的张潜已着有湿法炼铜专着《浸胆要略》,尽管此书已经佚亡,但却反映了当时已有一整套湿法炼铜的工艺,并已有人进行了总结。据《宋会要辑稿》记载,北宋时用湿法炼铜的地区有11处,分布在广东、湖南、江西、福建、浙江等地。其中,信州铅山(今江西省铅山县)的冶铜工场有浸铜沟漕77处,绍圣三年(1096年)产铜38万斤;而广东韶关岑水的工场,在政和六年(1116年)产铜达100万斤之多。据统计,在1107~1110年间,北宋政府每年收铜660万斤,其中胆铜有100多万斤,占15%~20%。到南宋时,政府收取的铜中,胆铜所占的比例达到 85%之多。湿法炼铜的方法,在明、清两代仍继续采用,至今仍有些地区用此方法炼铜。
生铁冶铸和柔化术
与炼铜一样,中国冶铁技术的发明亦晚于其他一些古文明发达的国家和地区。埃及大约在公元前1000年左右开始进入铁器时代,美索不达米亚地区大约在公元前1200年左右开始进入铁器时代,爱琴海地区大约在公元前1000年左右开始进入铁器时代,印度大约在公元前800年左右开始进入铁器时代,而中国则是在公元前600~500年左右开始炼铁的。但是,中国不似其他国家和地区,经历了一个漫长的块炼法冶铁时期,而是很快发明了生铁冶铸技术和生铁柔化技术,因此后来居上,很快跃居世界冶铁事业的前列,并长期居于世界领先的地位。历史上中国的钢铁除输往邻近国家外,还曾远销古罗马和西南亚。
在历史上,炼铁方法主要有两种,一是块炼法,一是生铁冶炼。块炼法是在比较低的温度下进行的,它用烧红的木炭使铁矿石直接由固态还原成铁。用块炼法炼得的铁质地疏松,故有海绵铁之称。海绵铁含夹杂物较多,要把它制成铁器,必须经过反复加热锻打。生铁是在1100~1200℃的炉温下,由还原出的固态铁吸收碳而炼成。由于其熔点低,冶炼时呈熔融状态,可直接用范浇铸成器,从而免除了块炼铁加工费工费时的缺陷,提高了生产效率,降低了成本,使铁器的大规模、高效率生产成为可能。中国在公元前6世纪即已发明了生铁冶铸技术,这项技术在世界领先约2000年。罗马人虽在公元前后也偶尔炼出过生铁,但却被当作废品而抛弃,直至14世纪时,欧洲人才认识到生铁的意义,开始生产生铁。
生铁的最大特点是其可铸性,故又称铸铁。但生铁含碳量高,一般都在2%以上,往往又含有硫、磷等杂质,因而性脆,韧度低,直接铸造出来的农具、工具和兵器,使用时容易断裂。为了弥补这一缺陷,我们的祖先在战国时期又发明了铸铁柔化术。
中国早期的铸铁柔化术可分为两类:一类是在氧化气氛下对生铁进行脱碳热处理,使成白心韧性铸铁;一类是在中性或弱氧化气氛下,对生铁进行石墨化热处理,使成黑心韧性铸铁。在西方,白心韧性铸铁的生产技术是1722年由法国人发明的,黑心韧性铸铁是1831年在美国问世的。到汉代时,铸铁柔化术又有新的突破,形成了铸铁脱碳钢的生产工艺,可以由生铁经热处理直接生产低、中、高碳的各种钢材。
铸铁柔化术的发明,在冶金史上是一项具有划时代意义的成就。它大大加快了铁器取代铜器的历史进程,有力地促进了社会生产力的发展,使中国社会迈人一个新的发展时期。
值得一提的是,大约在明代时,出现了从生铁到熟铁的连续生产工艺。据《天工开物》记载,这项技术是把炼铁炉与炒铁炉串联在一起,让由炼铁炉炼出的生铁液流入炒铁炉,用柳木棍急搅,使生铁液中的碳份氧化,而成熟铁。这种连续生产的工艺,已初具组合化生产的系统思想,既提高了生产效率,又减少了能耗,是冶铁技术的又一重大突破。
灌钢技术
灌钢技术是中国历史上在炼钢技术方面的一项重大发明。其工艺过程大致为,将生铁与熟铁合炼,因生铁熔点低,熔化后的生铁水就会向熟铁中渗透,使熟铁增加碳份而成钢。因生铁水像灌进熟铁一样,故称灌钢。这种炼钢方法无需加热锻打,碳份分布均匀,且可去除部分杂质,得到的即是优质钢材,可用以制造刀锋的锋刃。在1740年西方坩锅炼钢法发明之前,是世界上最先进的炼钢方法。
灌钢法大约创始于5世纪后半叶的南北朝时期。陶弘景说:“钢铁是杂炼生柔作刀镰者。”“生”指生铁,柔指柔铁,即熟铁。北齐的冶金专家綦母怀文也说:“造宿铁刀,其法烧生铁精以重柔挺,数宿则成钢。”他用灌钢造出的宿铁刀,是当时的名刀,非常锋利,可“斩甲过三十札”。也有人认为,东汉末年王粲《刀铭》中的“灌辟以数”,西晋张协《七命》中的“乃炼乃炼,万辟千灌”,其中之“灌”即指灌钢。如是,则灌钢的创始年代可提前到3世纪时。
在灌钢技术应用的初期阶段,需经多次灌炼,方能成钢。宋以后灌钢技术不断得到改进。据史籍记载,其加工工艺大致可分为3种,其发展趋势是减少灌炼次数,以至一次炼成。
第一种加工工艺,是北宋沈括在《梦溪笔谈》卷三所记载的,“世间锻铁所谓钢铁者,用柔铁屈盘之,乃以生铁陷其间,泥封炼之,锻令相入,谓之团钢,亦谓之灌钢。”其中,把柔铁屈盘起来,是为了增加生熟铁的接触面,提高灌钢的效率,并使碳份分布更加均匀;封泥则可以促进造渣,去除杂质,并起保护作用。《梦溪笔谈》中还说“二三炼则生铁自熟,仍是柔铁”,反映了加工时灌炼次数的减少。
第二种加工工艺,记载于宋应星的《天工开物》卷十四之中。它把柔铁屈盘改为薄熟铁片,进一步增加了生熟铁的接触面,加速了“生熟相和,炼成则钢”的进程,泥封亦改为草泥混封,反映了明代灌钢技术的改进。
第三种加工工艺,是自清代至近代盛行于江苏、安徽、湖北、湖南、四川、福建等地的“抹钢”或“苏钢”。其特点是,先将料铁加热,再把生铁板的一端伸入炉中,待生铁熔化时,用钳夹住生铁板的一端,并不断移动,同时不断转动料铁,让生铁水均匀地滴在料铁上,再经锻打,去除杂质。这种方法有利于去除夹杂,提高金属的收得率。
垒铸技术
中国冶金史上的一个突出特点,是铸造技术占有很重要的地位,以至于铸造既作为成形工艺而存在,又成为冶炼工序中的一个组成部分,达到了“冶”与“铸”密不可分的地步。因此,在古代文献中往往是冶铸并称,而且对中国文化产生了深刻的影响。如常用词汇“模范”、“范围”、“陶冶”、“熔铸”、“就范”等,都是由冶铸技术演生而来的。这种冶与铸密不可分的冶金传统,是古代世界上其他国家和地区所无法比拟的。
中国铸造技术可以说是伴随青铜冶炼而产生与发展,其后又随着生铁冶炼而持续发展着。历史上,在铸造技术方面有很多重要的发明,并取得过很多重要的成就。例如,被认为是中国古代文明象征的商周到战国的青铜器,在某种意义上可以说是铸造技术所造就的。从重875公斤的司母戊方鼎、精美的曾侯乙尊盘和大型的随县编钟群,以至大量的礼器、日用器、车马器、兵器、生产工具等,可以看到当时中国已经非常熟练地掌握了综合利用浑铸、分铸、失蜡法、锡焊、铜焊的铸造技术,在冶铸工艺技术上已处于世界领先的地位。而叠铸技术则是在铸造方面的又一重大发明。
所谓叠铸,是把许多个范块或成对范片叠装在一起,由一个共用的浇口和浇道进行浇注,一次可以得到几十件,以至上百件铸件。它可以批量生产,生产效率高,成本比较低,又能够节省造型、浇注的用地,是一种比较先进的铸造方法。这种方法在西方是随着大机器生产才出现和发展起来的,至今仍被广泛采用。而在中国,这种方法在2000多年前的战国时期已经开始应用。
现在发现的最早叠铸件,是战国时齐国的刀币。它是用铜质范盒翻制出具有对称性和互换性的范片,每两片合成一层,再多层叠合浇注而成。
在汉代,叠铸技术得到了很大的发展。本世纪70年代,在陕西咸阳、西安,河南南阳、温县,山东临淄等地,都曾多次出土有汉代的叠铸泥范。其中,以温县烘范窑中出土的叠铸范数量最大,保存最为完好,计出土有16类、36种规格的叠铸范500多套。每套铸范由5至14层叠成,最少的一次可浇铸5件,最多的达84件。这些铸范的设计和制作都很精细。据分析,用这些铸范浇出的铸件,表面光洁度可达五级(计分14级),金属收得率可达90%,工艺水平已相当先进。而且,从中还可以看到当时已具备了制范、烘范、叠装、浇铸、成器等一整套成熟的生产工艺。
‘玖’ 我国古代青铜冶铸技术有哪些发展历史
随着人们对锡石或铅矿石的识别,冶炼铜的技术逐渐向加锡石或方铅矿的方向演进。
在夏代、商代早期及中期,青铜器的化学组成是杂乱无章的,铅、锡的含量也较低,这表明当时很可能是以红铜或孔雀石与锡矿砂或方铅矿合炼青铜。
虽然在新石器时期晚期和夏代,黄河流域的许多地区开始推广冶铜工艺,但是那时只能生产锥、环、管、镞等小件铜器,它们显然不能对生产有多大的促进作用。
至商代,青铜冶铸技术有长足的进步,并开始铸造较大型的青铜器件,首先是铸造代表权力象征的礼器。
在对已出土的青铜文化鼎盛时期的商代青铜器进行化学分析,将它们分为两类。一类是铜锡二元合金,其中含铅小于2%;另一类是铜锡铅三元合金,即含铅大于2%。
在铜锡二元合金中,铜和锡的比例大都接近4比1。而在铜锡铅三元合金中,铜与锡铅含量和之比也维系在4比1。锡与铅之间似乎没有明显的比例关系。
由此可以推测,当时的青铜冶炼已有一定的配方,但是工匠们对铜锡或铜锡铅之比与青铜性能的关系仅有肤浅的经验认识,即认识到青铜比红铜实用,因而自觉地冶炼青铜。
‘拾’ 中国古代常用炼铜技术有哪些
在我国商周奴隶社会,青铜的冶铸技术已有很高的水平。经过春秋战国,青铜一度
在制造兵器和生产工具方面进一步有所发展。到了秦汉,由于铁制工具的迅速进展,青
铜工具逐步被取代了。但另一方面又因为封建社会商品经济发展的要求,青铜大量地被
用于铸造钱币,而无法用铁器、漆器取代的青铜镜,其制作技术也在提高。总之,在我
国进入封建社会后,炼铜技术的发展并没有停顿,而在某些制造业中继续发展。
秦、汉以后,除青铜外,还出现了一些其他的铜合金。首先应指出的是铜锌合金,
也就是“黄铜”。最初冶炼这种铜锌合金,是通过将铜与含锌的炉甘石防在还原炉中冶
炼而制成的,后来在我国制造出单质锌以后,便直接将红铜与锌冶炼成黄铜合金。关于
这方面的可靠记载,见于宋代人崔昉的《外丹本草》,其中说:“用铜一斤,炉甘石一
斤,炼之即成黄铜一斤半”。元代着作《格致粗谈》也说:“赤铜入炉甘石炼为黄铜,
其色如金”。
明代李时珍《本草纲目》曾提到:“炉甘石大小不一,状如羊脑,松如石脂,赤铜
得之,即化为黄。今之黄铜皆此物点化也”。以上记载清楚地表明,早期黄铜的冶炼是
由碳酸锌矿石(古称炉甘石)与铜在还原炉中炼出的。尽管关于黄铜冶炼技术的最早记
载出现于宋、元人的着作中,但应该说在此以前我国已具备冶炼这种合金的技术条件了
,不能由此说冶炼铜锌合金是从宋以后才开始的。
特别应指出的是,在《天工开物》中,更具体而详细地记载了炼制金属锌(当时叫
“倭铅”)及黄铜的方法,谈到炼制黄铜时说:“每红铜六斤,入倭铅四斤,先后入罐
熔化,冷定取出,即成黄铜”。稍后,在《物理小识》中也有同样记载。
继黄铜之后,又出现了白铜即铜镍合金。在北宋末何芫的《春渚纪闻》中已有关于
用铜与砒石冶炼白铜的记载。元代着作《格物粗谈》中有“砒石炼为白铜,杂锡炼为响
铜”之语。明代李时珍在其《本草纲目》中说:“白铜出云南,赤铜以砒石炼为白铜”
。宋应星在其《天工开物》中亦说:铜“以砒霜等药制炼为白铜”。这些宋、元、明人
着作中提到的用砒石及赤铜炼制的白铜,很可能是指含镍的砷镍矿与赤铜炼制者。白铜
很可能在宋、元以前就已有了。
明、清以后我国制造的白铜器物远销于国外。到十七、十八世纪,东印度公司从我
国购买白铜器物,再远销于欧洲各国,欧洲语中Packtong(白铜)就导源于中国词“白
铜”。在这以前的唐代,波斯语、阿拉伯语中也把白铜称为“中国石”,可见也是来自
我国。但其成分及制法,则记载得很少。
在我国古代的炼铜技术中,还应特别指出的是:我国古代劳动人民很早就认识了铜
盐溶液里的铜能被铁取代,从而发明了“水法炼铜”的新途径。这一方法以我国为最早
,是水法冶金技术的起源,在世界化学史上是一项重大贡献。
早在西汉的《淮南万毕术》里,就有“曾青得铁则化为铜”的记载。曾青成分是2C
UCO3?CU(OH)2,易溶于苦酒(醋),又叫白青、空青。东汉时的《神农本草经》也有:
“石胆……能化铁为铜”的话,石胆或胆矾,成分是含水硫酸铜CUSO4?5H2O。南北朝时
的陶弘景则更进一步认识到不仅硫酸铜,而只要可溶性的铜盐类就能与铁置换反应。他
说:“鸡屎矾……投苦酒中(醋),涂铁,皆作铜色”。鸡屎矾可能是不纯的碱式硫酸
铜或碱式碳酸铜,难溶于水,但却能溶于醋,而与铁起置换反应。从而扩大了以前的认
识范围。
这种认识大约到唐末、五代间就应用到生产中去了。宋时更有发展,成为大量生产
铜的重要方法之一,这就是水法炼铜的“胆铜法”。这种方法比火法炼铜有许多优点:
它一则可以在产胆水(即硫酸铜溶液,俗称“胆水”)的地方就地取材;二则设备简单
,操作容易,不要冶炼、鼓风设备,在通常温度下就可提取铜,不须高温,节省了燃料
。
宋代时由于铸造钱币的大量需要,同时“胆水炼铜”又有上述优点,因此对“胆水
炼铜”甚为重视。宋代文献记载,当时南方用“水法炼铜”的约有十一处,其中以饶州
德兴、信州铅山和韶州岑水规模最为宏大。北宋每年产胆铜达一百万至一百七、八十万
斤,占当时铜总产量的白分之十五到百分之二十;南宋时铜产量虽大为减少,但胆铜比
重却大有增加,绍兴(宋高宗)年间,竟占铜总量的百分之八十五以上。
胆铜的生产过程包括两个方面。一是浸铜,二是收取沉积的铜。目前,我国有的地
方(如湖北黄石市)还仍用这种方法生产铜。