导航:首页 > 信息技术 > 飞行控制哪些关键技术

飞行控制哪些关键技术

发布时间:2022-10-21 10:21:34

Ⅰ 高超声速飞行器的关键技术有哪些

以超燃冲压发动机为动力的高超声速飞行器研制面临一系列技术上的难题.美国(包括俄罗斯等国家)为此付出了近半个世纪的艰苦努力,制定了多个不断变化的发展计划,几经起伏,最终探索出一条比较实际的、循序发展的道路。发展高科技工程必须要有基础研究的积累,在关键技术问题上取得突破,否则,可能导致失败的后果。

当前应当抓紧进行的主要研究和关键技术攻关工作包括:
(1) 高温气体动力学
高温真实气体效应是高超声速飞行器研制中必须考虑的一个重要问题. 对于高温气体非平衡流动问题, 已进行了大量的研究. 对高温气流中化学反应速率的知识不足, 特别是在振动自由度激发、分子离解、表面化学反应等各种因素耦合在一起的情况下, 更是知之甚少. 目前存在的主要问题是: 高温气体热力学特性和化学反应速率常数以及化学反应模型的选取, 还有一定的不确定性,这将导致头部激波脱体距离、物面边界层速度剖面、密度剖面和物面热流等重要参数预示上的偏差.
(2) 超燃基础和新概念推进研究
在能够促使吸气式高超音速飞行实现的各种关键技术中, 推进技术占据首要的位置. 对于超燃冲压发动机的研制来说, 存在着许多具有挑战性的技术难题, 包括: 在整个宽广的运行速度范围内(特别是在马赫数超过8 的情况下) 超燃冲压发动机内部流动, 燃烧稳定性与过程优化, 地面试验和精细流场诊断、飞行试验以及数字模拟技术;质量轻、耐高温的发动机材料和有效的热管理技术; 研究新的发动机技术, 以及验证飞行速度大于马赫数8 情况下的发动机性能; 研究发动机/飞行器一体化设计方法(包括进气道/发动机/ 尾喷管组合; 综合气动力与防热一体化; 高升阻比与操稳特性的协调; 气动特性与结构完整性设计; 气动外形与有效载荷容积要求; 多学科多目标(multidis-ciplinary design optimization, MDO) 总体优化等. ),实现可实际运行的、具有高性能的一体化设计的飞行器方案; 如何从低速推进模式转变成高速推进模式的问题, 特别是在采用可变几何形状的发动机的情况下, 如何实现工况转换的问题.
(3) 新型防热、隔热原理、材料与结构
现有飞行器热防护系统大都是针对战略弹头的, 特点是: 简单外形、短时间、很高的加热率.采用的主要办法是烧蚀热防护.新一代空天飞行器热防护问题具有不同的特点: 复杂的升力体外形、中低热流和长时间加热. 为了获得良好的气动特性, 一般需采用保持飞行器外形不变的非烧蚀热防护技术, 还要解决长时间持续飞行的内部隔热问题. 已经建立的宏观热防护理论已不能满足要求, 要发展新的热流预示方法; 非烧蚀热防护技术; 防热结构的一体化设计技术; 结构在力/热综合作用下的动态响应特性和破坏机制等. 各种防热、隔热原理, 包括: 被动式(热沉、隔热、表面辐射)、半被动式(热管传导+ 辐射) 和主动式(发汗、冷却膜、冷气流对流), 都是值得深入探讨的问题.
在发动机防热材料技术方面焦点集中在: 采用主动式冷却方式的燃烧室壁板材料, 以及超低温推进剂贮箱的材料. 需要更加坚固耐用的被动式冷却的或者主动式冷却的(即需要使用冷却剂进行冷却的) 热防护系统; 燃烧室部分必须采用主动式冷却方式. 虽然到目前为止已经对许多种不同的热防护系统的候选设计方案进行了广泛的试验研究, 但是还没有找到一个可以完全满足多种运行要求的解决办法.
(4) 变参数、快速响应、强鲁棒性、高效控制系统设计
近空间飞行器为了追求高的升阻比和优异的机动性能, 一般外形都比较复杂, 飞行过程中速度和空域变化范围也很大. 飞行器在不同速度下, 自身的气动特性(升阻比、稳定性和操纵性) 也会发生很大变化, 这就为飞行控制增加了新的困难. 高机动性要求快速响应的控制系统和大的控制力作用, 以产生大过载.
复合控制系统涉及大量的关键技术问题, 如:复合控制系统工作模式优化设计与仿真建模, 控制发动机点火逻辑与控制周期的设计, 侧向喷流直接力作用和喷流与主流场的气动干扰效应建模与分析计算, 控制系统工作频率与舵系统带宽与弹性弹体频率的匹配, 复合控制系统的风洞与地面模拟试验等.
(5) 高超声速飞行器的空气弹性问题
现代高超声速飞行器有着比较宽阔的飞行包线, 飞行高度和Ma 数的变化范围很大, 为了增加机动航程, 多采取复杂的高升阻比构形. 由于对结构重量有着严格的限制, 因此大量使用超轻质、高强韧材料, 使机/弹体柔性程度加大. 高速飞行时气动加热现象非常突出, 控制系统的作用也日益重要, 这些因素所造成的高超声速空气弹性问题与传统的亚、跨、超声速相比, 不管是在研究、试验或理论计算分析方法上都有很大不同. \空气/伺服/热弹性" 耦合因素变得非常显着, 高超声速空气弹性成为不可忽略的重要研究课题, 相关技术尚未成熟.
(6) 多学科设计优化
高超音速飞行器必将是由几个高度一体化设计的系统组成的, 需要进行多学科设计优化处理,以便获得能够满足所有设计约束条件的、坚实可靠的飞行器设计方案. 飞行器的形状将决定飞行器下列的诸多特性: 飞行器的结构形式; 与机身一体化设计的热防护系统的类型和其所用的材料;飞行控制系统; 飞行力学特性和飞行轨迹等. 反过来, 飞行器的飞行轨迹又会决定飞行器所受到的气动加热、载荷, 影响到飞行器的气动弹性力学特性、飞行器的性能和飞行器的重量. 气动和隐身也是相互交叉耦合的. 为了进行多学科设计优化所必不可少的几种能力, 目前还都处于不成熟的状态.
(7) 智能变形飞行器技术
近空间飞行器从地面或运载平台上起飞, 穿越大气层飞行, 执行各种任务使命, 其飞行环境(高度、飞行马赫数等) 变化很大; 固定外形的飞行器很难适应如此广泛的环境参数变化, 始终保持优良的使用性能. 因此要采用智能变形飞行器技术(morphing aircraft technology, MAT). 随着空气动力、智能材料和控制技术的发展, 这种设想正逐步变成现实.
智能变形包括两层含义: 对变形进行智能控制和以智能材料与结构为基础实现变形. 需要重点解决的关键技术问题有: 可变形飞行器气动性能预测和气动布局研究, 可变形飞行器总体与设计优化, 变形过程及变形前后的飞行稳定性与操纵特性, 可变形飞行器的飞行控制技术, 智能材料与结构的应用技术.

Ⅱ 我国八大航天技术是什么

高精度定轨技术:定轨精度优于百米量级,是我国近地航天器定轨30年来的重大突破。

高精度轨道机动控制技术:打破俄美的技术垄断,将世界最优控制理论应用于实践,创造性地解决了飞船轨道控制的关键技术,使飞船实际运行轨迹同理论轨迹完全吻合。

精确返回控制技术:这是载人飞行任务安全成功的核心技术之一,中心独创性地研究了返回控制参数计算与返回落点预报方法,在目标落点计算精度、准确性和可靠性上优于任务总体要求,填补了国内空白,使我国成为继俄、美之后第三个掌握此项技术的国家。

测控过程可视化技术:中心运用了当今最先进的虚拟现实、数字建模技术,使飞行控制操作实时逼真。

飞行控制自动化技术:中心创造性地实现了遥控发令、数据注入、轨道计算预报等软件运行的高度自动化,提高了科学管理水平和指挥效能。实现了在2秒钟内把指令发送到飞船。这种透明控制方式在中国航天领域是史无前例的,在世界航天测控领域也属一流。

软件构件化技术:在国内创造性地采用平台化、构件化、开放型的开发设计思想,建成了拥有140余万行源程序、7000多个模块、关键软件模块1100余个的庞大而有序的软件系统。

智能化故障诊断技术:中心采用人工智能和专家系统技术,在我国首次实现了航天飞行器重要状态和故障诊断的自动识别。

应急救生控制技术:基于地面飞行控制中心的大气层外应急救生控制技术,使航天员能够在任一圈次选择安全返回地面,被誉为是中国特色的载人航天技术创新,填补了我国航天测控领域的一项空白。

Ⅲ 无人机有哪些关键技术

无人机主要有五项目关键技术,分别是机体结构设计技术、机体材料技术、飞行控制技术、无线通信遥控技术、无线图像回传技术,这五项目技术支撑着现代化智能型无人机的发展与改进。

Ⅳ 载人航天四大关键技术是什么

第一大关键:运载火箭

众所周知,载人航天是人类利用航天器在外层空间的飞行活动。外层空间是无氧气的近似真空的环境,要想克服地球引力而将航天器送出大气层,就必须依靠推力极大、载荷能力极强的运载火箭来完成。运载火箭与在空气中飞行的飞机不同,它不是靠空气中的氧气作氧化剂,而是靠自身携带的氧化剂与燃烧剂作火箭动力来源的。火箭可以在大气层内和大气层之外的太空中飞行,它的飞行原理是利用火箭发动机进行化学燃烧时产生高温高速喷射气体的反作用力而将火箭推向前方。这种推动火箭向前飞行的力叫“推力”。在真空中,火箭的推力要比在大气层中大15%左右。通过推进剂燃烧产生的“推力”可以使火箭获得巨大的速度,长时间喷射气体,火箭就会不断加速。

实践证明:仅靠一枚火箭的推力是无法将载人飞船或其他类型的航天器送到宇宙空间的。因为靠一枚火箭是不可能一下子就将航天器的速度增至11.2千米/秒(即第二宇宙速度),从而摆脱地球引力逃离地球的。实践经验告诉我们,必须使用多级火箭逐渐加速的方法才能实现载人航天。因为,要想把重达几吨甚至几十吨的载人飞船或航天飞机、空间站送上宇宙空间(还要考虑到火箭的自身重量),不仅需要有极大的推力,同时也要有极高的速度才能完成。此外,火箭启动速度过高,会使人遭受到极高的加速度,它会导致航天员死亡。那么,怎么办呢?为解决上述问题,既让火箭的推力和速度达到脱离地球引力,又让航天员不遭受过高的加速度,于是科学家想到采用多级火箭“接力”的办法。

所谓多级火箭就是将几枚火箭串接起来,在第一级火箭上接上第二级火箭,就称为二级式火箭;再在二级火箭上接上第三级火箭,称作三级式火箭。

当第一级火箭加速到4千米/秒的速度时,第二级火箭燃烧,加速到8千米/秒的速度(就是达到了环绕地球飞行而不被地球引力吸下来的7.9千米/秒的第一宇宙速度);第三级火箭点火燃烧后,又增加了4千米/秒的速度,于是速度达到了12千米/秒(即达到了摆脱地球引力,飞向太阳系的其他星球的第二宇宙速度)。如果要飞出太阳系,那么就要有四级式火箭,使它的速度达到16.7千米/秒的第三宇宙速度。这样,人类就实现宇宙航行的自由了。每一级火箭的燃料用完后,那一级火箭就被甩掉,火箭重量逐渐减轻,速度不断加快。用这种多级火箭方式,就可以发射载人飞船或其他类型的载人航天器。

那么,多级火箭是如何设计的?它的结构如何呢?目前,发射载人航天器的火箭,通常采用三级式火箭,三级火箭中第二级比第三级大得多,而第一级则更大。发射几吨重的人造飞船,第一级火箭应是几百吨甚至几千吨重的庞然大物。

那么,运载火箭的各级是如何安排的呢?宇宙运载火箭的排列一般是:最底部为一级火箭,二级火箭居中,三级火箭居上。载人航天器则放在三级火箭的顶部。迄今制成的最大的宇宙运载火箭是美国的“土星5”号,共有三级,全长110米,直径达10.1米,起飞重量2950吨,它的总推力将近4000吨,三级火箭内共装有近5000万升推进剂,用它可以发射126吨的巨大人造航天器。它曾经把高25米、重45吨、直径10米的“阿波罗11”号飞船送往月球;而前苏联的“G—1—E”运载火箭高102米,载重量可达161吨。中国研制的“长征”系列火箭,有多级、捆绑式等结构,它使用不同推进剂,能产生不同推力,可发射高、中、低不同轨道的各类卫星和航天器。

第二大关键:载人航天器

运载火箭是解决载人航天的第一大关键技术,它可以保障航天器脱离地球引力,将航天器送出大气层而进入太空轨道。进入太空后,就是十分严峻的宇宙环境(无氧、强辐射和高真空),因此,制作具备先进设施的载人航天器是第二大关键技术。除了需要材料、能源、通信、控制等技术先进外,还必须具备保证航天员生命安全的系统。在航天器中,科学家们为航天员设计了一个密闭座舱,里面有很好的人工环境。

载人航天器的宇宙密闭舱由轻而坚硬的金属制成,舱体的外壳包有绝热材料,可防止舱体在大气层内飞行时产生的气动力热传入舱内;舱内装有带缓冲装置的乘员坐椅;有各种电子设备、仪表及航天员救生与生活装备;舱壁两侧有供航天员观察星空与地球的舷窗(舷窗具有防强光、防紫外线及防辐射的能力)。为防护外界恶劣环境和保证航天员生命安全,这种密闭舱与外界完全隔绝,舱内提供了由人工控制的环境控制与生命保障系统,使舱内的压力、空气成分与地球上相似,并提供了符合人生理需求的温度与湿度条件,航天员能安全和方便地在其中生活与工作。

此外,舱内还设有清除污染物质的设备,以保持舱内空气新鲜。水与食品是人类生存的必需条件,生活在宇宙空间的航天员,需要从地面携带食品、部分饮食用水和卫生用水。有了密闭座舱和保持航天员生存的各种条件与设备,人类就具备了进入宇宙空间的条件。

另外,载人航天器中还设有与地面控制中心联系的通信系统,有自动驾驶和手动驾驶仪器,有各种各样的仪表……总之,载人航天器要比最先进的飞机复杂得多。所以,研制出先进的各类用途的航天器是载人航天的第二大关键技术。

第三大关键:太空安全与人身保障系统

载人航天除具备前述两项关键技术外,第三项关键技术就是太空安全与人身保障系统。除密闭舱中的安全措施外,太空安全与人身保障系统就是宇航服和故障逃逸系统。

在载人飞船中只有密闭舱还是不够的。因为宇宙飞行(航天探宇)的目的是进行探险与开发地外资源,要进行太空作业,登足外星,航天员就不能永远待在密闭舱中。如果航天员在航天飞行中想走出密闭舱,不采取特殊防护措施是不行的。为此,科学家设计了一种能保护航天员免受低压危险并能到密闭舱外从事宇宙空间活动的特殊的装置,即宇航用的航天压力服。

航天服是世界上最昂贵的服装,每件达上百万美元,有的价值上千万美元。 人身安全和生命保障系统的另一种设施便是弹射椅和逃逸塔。这两种设施是用于出现故障和紧急情况时逃离危险现场或飞行器的。在正常返回地面时,这两种设施在某些程序段也是有用的。这是与航天员的人身安全紧密相关的。弹射椅是早期所采用的救生系统,而逃逸塔是后期发展起来的救生系统。使用逃逸塔比弹射椅更加安全,但设备技术也更复杂些。

第四大关键:航天测控与返回

载人航天的第四大关键技术就是测控技术和返回式航天器的回收技术。当航天器被运载火箭从发射场发射升空之后,还必须完成入轨、变轨、飞行、返回、再入等阶段的任务和采用登陆舱与轨道上的指令舱对接、返回等任务。这些阶段的飞行和任务完成都是在地面控制中心控制下,天上、地下联手合作完成的。这就需要有跟踪、测量、监视、控制以及与航天器上的航天员通信联络等技术手段来保障。这些任务是通过地面测控站(网)来完成的。地面测控站可设在飞行器经过的陆上地区、海岛上、海上测量船上,并利用空中的中继通信卫星构成海、陆、空三维立体测控网。

载人航天或返回式卫星(含动物实验卫星等)都需要安全可靠的回收技术,包括:航天器再入技术、降落技术、救援技术(降落救援和医疗救援)、最后是地面疗养。这些内容不仅涉及航天、航空知识,而且还包括医疗保健、人体科学、药学、通信学、控制学、海洋学等多学科领域。如果是太空农业、工业、电子学试验卫星回收,还要涉及农业、工业、电子学等知识领域。如果是载人登月、登陆外星飞行器回收,必然要有外星的土壤、岩石标本的采集与分析,这就涉及微生物学、宇宙学、天体物理学、考古学等更广阔的领域……如此说来,载人航天事业确实是不同寻常的事业,是一个国家高科技实力的综合体现。

Ⅳ 无人机关键技术要点

无人机关键技术要点

无人驾驶飞机简称“无人机”,英文缩写为“UAV”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞行器。那么,下面是由我为大家带来的无人机关键技术要点,欢迎大家阅读浏览。

一、动力技术

续航能力是目前制约无人机发展的重大障碍,消费级多旋翼续航时间基本在20min左右,用户外出飞行不得不携带多块电池备用,造成使用作业的极大不便。无人机必须在动力方面实现突破才能走上新的革命性高度。

1. 新型电池

2015年,来自加拿大蒙特利尔的Energy Or技术有限公司报道采用燃料电池的四旋翼进行了3小时43分钟续航飞行。此外,石墨烯、铝空气电池、纳米电池这三项电池技术有望成为未来电池世界的希望。人们对这些新的电池技术有着十分迫切的需求。它们将首先会被应用到手机和电动汽车,随后可配备于多旋翼。

2. 混合动力

2015年,美国初创公司Top Flight Technologies报道自己开发混合动力六旋翼无人机。该六旋翼仅需要1加仑汽油,便可以飞行两个半小时,约160公里的距离,最高负重达约9公斤。另外,一家来自德国的公司Airstier推出了一款多旋翼。该多旋翼采用油电混合动力,有效载荷5公斤,可飞行1个小时。

3. 地面供电

采用地面供电的系留多旋翼,通过电缆将电能源源不断输送给多旋翼,可以极大提升多旋翼的滞空时间。比如:以色列公司Skysapience旋翼。

4. 无线充电

无线充电技术已经在手机、电动牙刷等电子产品上实现市场化,并正在电动汽车领域开展深入应用。来自德国柏林的初创公司Sky Sense在无人机户外充电方面提供了一种解决方案:研发出一块可以为无人机进行无线充电的平板。Sky Sense的最大特点是可以进行远程控制,无人机的降落—充电—起飞全过程可以独立实现,不需要有人在现场进行干预和辅助。如果充电时间更快,那么无线充电技术将会极大地帮助多旋翼进行长途飞行。

二、导航技术

无人机准确地知道自己“在哪儿”、“去哪儿”,几乎是类似于人类“从哪里来、到哪里去”的哲学问题,在无人机的任何发展阶段都是绕不开的问题。

1. 定位技术

(1)GPS载波相位定位

目前正在这方面开展研究的项目有:Swift Navigation公司开发的Piksi; 日本东京海洋大学开发的RTKLIB开源项目。

(2)多信息源定位

英国军方BAE 最近公布了他们研发的名为NAVSOP的定位技术。该技术将利用包括TV、收音机、Wi-Fi 等等信息定位,弥补GPS 的'不足。

(3)UWB (Ultra Wideband,超宽带)无线定位

2. 测速技术

目前公认的比较精确的测速方案是通过“视觉(光流)+超声波+惯导”的融合。AR.Drone是最早采用该项技术的多旋翼飞行器,极大提升了飞行器的可操控性,获得了巨大的成功。

PX4自驾仪开源项目提供了开源的光流传感器PX4Flow。该传感器可以帮助多旋翼在无GPS情况下精确悬停。大疆公司推出的 “悟”和“Phantom3”、“Phantom4”同样采用了该项技术。

3. 避障技术

让飞行中的无人机“长眼镜”,能够识别飞行路径上的障碍物,并准确绕飞或悬停,是实现无人机智能化的重要一步。未来无人机避障技术将在这些方面实现突破:

(1)深度相机避障技术;

(2)声呐系统避障技术;

(3)“视觉+忆阻器”避障技术;

(4)双目视觉避障技术;

(5)小型电子扫描雷达;

(6)激光扫描测距雷达;

(7)四维雷达。

4. 跟踪技术

识别目标并进行跟踪飞行,减轻使用者的操作负担,并能够利用无人机执行特殊环境条件下的特殊任务。智能跟踪主要有:

(1)GPS跟踪;

(2)视觉跟踪。

目前在大疆Phantom4等先进机型上这些技术都已经有所体现。

三、交互技术

无人机目前主要通过遥控器进行飞行控制,需要专业训练,具有一定的局限性。随着新技术的发展,无人机应简化对操作人员的要求,提升用户体验。

(1)手势控制技术

手势交互是一种未来人机交互的趋势,目前在精确度上存在挑战。在CES2014的展场上,有利用MYO手势控制臂带来控制AR.Drone2.0四旋翼的演示。

(2)脑机接口技术

近年来,科研人员在多个领域都运用到了BCI(Brain Computer Interface,脑机接口技术)技术,科员人员运用该技术制作新型玩具、为残疾人制作义肢。作为需要安全性较高的飞行器,这种方式目前还不成熟。它可作为一种验证性质的技术展示,离实际还有不少距离。

四、通讯技术

(1)4G/5G通讯技术

2013年6月17日,北京4G联盟联合无人机联盟组织召开了4G联盟与无人机联盟交流研讨会,旨在加强北京4G联盟和无人机联盟之间技术交流,寻找无人机机载载荷与4G设备仪器的聚焦,促进北京市信息产业发展。2015年,中国移动开发4G“超级空战队”设备,能支持航拍影像即拍即传。5G的速度比现在的LTE网络标准连接速度快250倍,它标志着无线行业的一个新的里程碑。无论是智能手机,还是汽车、医疗设备、无人机和其他设备,都将受益于这一无线连接速度。

(2)Wifi通讯技术

2013年,德国的卡尔斯鲁厄理工学院开发出了一项新的无线广域网技术,打破了最快的WiFi网络速度纪录,它可以让1公里以外的用户每秒钟下载40GB。由于这种设备的传输距离比普通WiFi路由器的覆盖范围要广得多,因此这种设备很适合无人机航拍图传或光纤布放不方便的农村地区应用。

五、芯片技术

(1)2014年CES上,高通和英特尔展示了功能更为丰富的多轴飞行器。例如,高通CES上展示的Snapdragon Cargo无人机是基于高通Snapdragon芯片开发出来的飞行控制器,它有无线通信、传感器集成和空间定位等功能。2015年9月,据美国科技新闻网站Engadget报道,高通已经为无人机市场推出了一个芯片解决方案,名为“骁龙飞行平台”。

英特尔CEO Brian Krzanich也亲自在CES上演示了他们的无人机,采用了四核的英特尔凌动(Atom)处理器的PCI-express定制卡。此外,活跃在在机器人市场的欧洲处理器厂商XMOS也表示已经进入到无人机领域。

(2)3DR发表声明与Intel英特尔共同合作开发Edison芯片,这是一种新型微型处理芯片。它只有一个硬币的大小,却具有个人电脑一样的处理能力。

(3)目前,包括IBM在内的多家科技公司都在模拟大脑,开发神经元芯片。而一旦类似芯片被应用于无人机,自主反应、自动识别有望会变得轻而易举。

六、平台技术

(1)“Dronecode”的无人机开源系统

2014年10月,着名开源基金会Linux推出了名为“Dronecode”的无人机开源系统合作项目,将3D Robotics、英特尔、高通、网络等科技巨头纳入项目组,旨在为无人机开发者提供所需要的资源、工具和技术支持,加快无人机和机器人领域的发展。

(2)Ubuntu 15.04 操作系统

Ubuntu 15.04的物联网版本是Ubuntu 目前最小且最安全的版本,非常地精简,适合发行家、科技专业人士与开发者使用,能够在无人机等领域中使用。

(3)Airware发布企业级无人机系统

Airware公司旨在通过标准化的无人机软件系统,帮助企业迅速、高效地完成商用无人飞行器的部署及管理——该系统已于本周四正式发布,通过硬件和软件的结合,Airware成功实现了在一个软件平台上统一管理多个不同型号、不同品牌无人机的目标。目前,Airware产品已获得两家合作伙伴的采纳,分别为通用电气(也同时是Airware的投资者)和Infinigy。Infinigy是一家通讯公司。

七、空管技术

(1)2014年,Airware计划在NASA加州基地针对不同类型的无人机(四旋翼、直升机、固定翼飞机)展开一系列的飞行和实验室测试。

(2)初创公司SkyWard正在研发一个无人机交通控制系统,这个系统将让数千无人机在城市上空飞行而不会互相碰撞。Skyward正在跟FAA和全球三大无人机制造商——国内的大疆、美国的3D Robotics和法国的Parrot——合作以证明大量的无人机可以在拥挤的空域安全地共存。

(3)美国航天局(NASA)同空间技术公司Exelis已经联手组成团队开发无人机空中交通管制系统的原型产品。

(4)位于美国西雅图的Transtrex公司,发布了测试版本的无人机动态地理空间限制系统软件。该系统是为了确保无人机在500英尺高度下,安全规范飞行而设计的。

(5)在第三届AOPA(Aircraft Owners and Pilots Association,航空器拥有者及驾驶员协会)国际飞行训练展会上,中国AOPA联合多家企业开发的针对轻小无人机的“U Cloud”无人机监管系统宣布上线。


;

Ⅵ 大飞机的关键技术都有哪些

按照设计目标和要求,为保持飞机竞争力。采用IPS吊挂、航电系统高度模块化和综合化技术、先进综合显示技术、先进外部通讯技术、带包线保护功能的全数字电传飞控系统、放宽静稳定性主动控制技术,开展飞机发动机一体化设计、显示控制及合成视景系统研究、空地无线宽带技术研究、电传飞控系统控制律设计与主动控制技术研究、电传飞控系统综合设计与验证等关键技术攻关。
围绕突破型号研制的技术瓶颈,解决机体结构制造中新材料零件制造及装配、自动化装配和检测等难题,将开展复合材料整体结构制造技术、整体壁板喷丸成形技术、大部件自动对接技术、自动化集成测试技术等新工艺攻关。

Ⅶ 无人驾驶飞机的关键技术

无人机主要有五项目关键技术,分别是机体结构设计技术、机体材料技术、飞行控制技术、无线通信遥控技术、无线图像回传技术,这五项目技术支撑这现代化智能型无人机的发展与改进。
机体结构设计技术:飞机结构强度研究与全尺寸飞机结构强度地面验证试验。在飞机结构强度技术研究方面,包括飞机结构抗疲劳断裂及可靠性设计技术,飞机结构动强度、复合材料结构强度、航空噪声、飞机结构综合环境强度、飞机结构试验技术以及计算结构技术等。
机体材料技术:机体材料(包括结构材料和非结构材料)、发动机材料和涂料,其中最主要的是机体结构材料和发动机材料,结构材料应具有高的比强度和比刚度,以减轻飞机的结构重量,改善飞行性能或增加经济效益,还应具有良好的可加工性,便于制成所需要的零件。非结构材料量少而品种多,有:玻璃、塑料、纺织品、橡胶、铝合金、镁合金、铜合金和不锈钢等。
飞行控制技术:提供无人机三维位置及时间数据的GPS差分定位系统、实时提供无人机状态数据的状态传感器、从无人机地面监控系统接收遥控指令并发送遥测数据的机载微波通讯数据链、控制无人机完成自动导航和任务计划的飞行控制计算机,所述飞行控制计算机分别与所述航姿传感器、GPS差分系统、状态传感器和机载微波通讯数据链连接。本实用新型采用一体化全数字总线控制技术、微波数据链和GPS导航定位技术,可使无人机平台满足多种陆地及海上低空快速监测要求。
无线通信遥控技术:无人机通信一般采用微波通信,微波是一种无线电波,它传送的距离一般可达几十公里。频段一般是902-928MHZ,常见有MDSEL805, 一般都选用可靠的跳频数字电台来实现无线遥控,北京节点通有成熟的应用。
无线图像回传技术:采用COFDM调制方式,频段一般为300MHZ,实现视频高清图像实时回传到地面,比如NV301等,节点通有多种应用。

Ⅷ 微型飞机的技术归纳

第一条,就是低雷诺数的空气学问题。
第二条,高推重比的微型动力系统,
第三条,大容积重量比的结构设计技术。
第四条,飞行稳定性操纵性与控制技术。
第五条,弱功率信号下的超视距遥控导航信息传递技术。
第六条,多学科设计优化技术。
第七条,基于微机电的加工与制造技术,微机电就是我们经常提到的MEMS技术。
那么,这7条关键技术是我们归纳和总结出来的研究和发展微型飞机所必须解决的问题,也就是说是我们面临的挑战。那么为了对这些问题有一个进一步的认识,我们下面做一些比较详细的介绍。
空气学问题
首先我们来看看低雷诺数的空气动力学问题,为了让大家对低雷诺数空气动力学问题有一个更加清楚了解,我们首先来看一看雷诺数的定义。雷诺数是这样定义的,在对流动空气的控制方程进行无量纲和的时候,方程中出现相似参数,而雷诺数就是其中最重要的相似参数。这里所说的控制方程,那么就是我们说的空气在流动过程中,它应该遵守的能量守恒的方程和动量守恒的方程,雷诺数的表达数可以写成这样一个式子,ρ(读音:柔),VL/μ(读音:谬),其中ρ(读音:柔)表示气体的密度,它是一个在正常空气条件下是不变的,V代表气流和飞行器的相对速度,L代表飞行器的长度,μ(读音:谬)表示气体的粘性常数,雷诺数它的物理意义是什么呢?实际上它反映了空气动力中,惯性力和粘性力的相对大小。什么是惯性力呢?就是M乘A,M就是流动空气的质量,A就是它的加速度,什么是粘性力呢?就是飞行器在空气中飞行的过程里面所受到的阻力,雷诺数很小是,粘性的效应很突出,而雷诺数很大的时候,粘性效应可以忽略不记。
因此,我们通常所研究的大雷诺数的空气动力学问题和我们在设计微型飞机的时候,所用到的低雷诺数的动力学问题有本质的区别。那么,在对大飞机而言,我们知道,大飞机的飞行速度一般都是非常高的,一般我们达到超音速的状态,特征尺寸也是非常大的,因此,雷诺数的数值也是非常高的。而对于微型飞机来讲,因为它的飞行速度是比较慢,另外它也非常小,所以它的雷诺数的数值是非常小的。那么,这两种空气动力学问题它的机理和它的研究方法都有本质性的差别,需要我们进一步深入地研究。
那么,下面我们来看一看,雷诺数与飞机大小的关系,以便大家留下一个直观的印象,因为,雷诺数的数值是非常大的通常以百万作为单位,以Mill作为单位,对于波音737这样的大型飞机它的雷诺数大约在100个百万左右,对于正常的无人机而言,常规的无人机而言它的雷诺数大约在一个百万到10个百万之间,而对于像老鹰这样的飞行物,它雷诺数大概在10万到百万之间,而,像我们所关心的MAV,也就是微型飞机它的雷诺数大概在10的四次方,到10的5次方之间。对于像蝴蝶这样的飞行物,它的雷诺数大约在10的3次方到10的4次方之间。我们从这个图上可以看出,波音737这样的大型飞机,它的雷诺数和我们所关心的微型飞机这样的雷诺数它的量级差别是很大的。因此,在空气的流动机理和它的研究方法上面,有本质性的差别,那么,如何解决这一问题呢?它的解决方法跟常规的大型飞机的空气动力学解决方法,思路是相同的。也就是说无外乎是数值模拟的办法和气动实验的办法。那么我们所看到这幅图实际上是用数值模拟的办法,模拟微型飞机在低于雷诺数空气中,流动的情况。那么,对一个发展到对一个简单物体,像球,圆柱这样一些物体,我们可以很好地用数值方法来模拟它们在低雷诺数空气中的流动的情况。而对于像微型飞机飞行器这样具有复杂外形的几何体,我们需要研究它在低雷诺数空气中的流动的机理和它的数值模拟方法。
下面我们来看看,研究和发展低雷诺数空气动力学第二个基本途径,也就是风洞及实验技术。那么,对于微型飞机而言,我们要发展和研究微型飞机,就需要进行风洞实验,这时,我们需要特种的风洞来支持这个实验,这种特种的风洞需要具有两个特点。第一个就是它的低雷诺数要求,这点是大家很容易理解的,为什么呢?微型飞机是在低雷诺数空气中飞行的,另外一个要求就是它的低湍流度要求,那么为什么有低于湍流度要求呢?主要是要求微型飞机所受到空气动力和它的力矩它的量值是非常小的。如果说,风洞中的流动品质不是很好,那么,空气流动的扰动,所产生的力和力矩它的量级足以和正常飞行情况下真正在微型飞机上产生的真正的升力和它的力矩,它的量级是差不多的,这样就会影响到我们整个测量的精度,因此,我们要求这种特种风洞具有低湍流度,同时满足这两个条件的风洞在世界上也不是很多见的,也是比较少见另外,有关微型飞机所受的空气动力和它的力矩都非常小因此在正常的风洞里面所产生的风洞的控制系统,它的测力系统和它的包括模型的悬挂系统,那么都需要重新地设计和改进,这样才能满足微型飞机设计的要求。
我们在研究和发展微型飞机的时候,所碰到第二个关键技术就是高推重比的微型动力系统。我们知道,动力是飞机的心脏,那么,高推重比的微型动力系统,我们对于高推重比的微型动力系统而言,有三个问题需要解决,第一个问题就是需要解决高效率的螺旋桨的设计技术,为什么提出这样一个问题?因为我们从下面的介绍可以看出,世界上所研制的微型飞机大多数都是用电动机来带动螺旋桨,使飞机飞行的,那么,微型飞机的尺寸非常小,当然它的螺旋桨也将非常小,如何提高微型螺旋桨的效率,就是我们要解决的,关键问题之一。我们所面临的第二个问题,在这方面所面临的第二个问题就是高能量密度电池,及节能微型电机的研究。
那么,为什么要研究这个问题呢从前面的讲解我们可以看到,我们世界上研究的最新式的,最先进的微型飞机像黑寡妇和卫星这样的微型飞机,它的续航时间,也仅仅只有20分钟。而的DARPA的要求是两小时,这个差距是非常大的。那么,怎么缩短这个距离呢?那么,主要要提高它的电能供给。那么,研究高能量密度电池和节能微型电机就是解决这一类问题的一种途径。另外一种方式就是要求微型的喷气发动机美国国防部预研计划据,也就是DARPA,正在资助麻省理工学院研制由硅制成的氢燃料,纽扣式的微型喷气发动机。这种发动机它的直径只有1个厘米,也就是说像我们正常的比一般人民币的直径还要小一点,厚度是三个毫米,其推力在0.05-0.1牛顿之间,每小时约耗10克的氢,也就是说它要飞行两个小时的话,它耗20克的氢,它的氢燃料这个燃料的重量是非常小的,这种微型飞机发动机计划在2001年生产出可以用于飞行的样机,届时可使微型飞机的速度达到每小时57到114公里。飞行距离达到60到111公里,可以说,微型喷气发动机技术是解决目前微型飞机短航时和短航程这一缺点的最根本的出路。
我们看这幅图,就是麻省理就学院研制的由硅制成的氢燃料,微型喷气发动机的原理图,它的直径是1个厘米,厚度是三个毫米,虽然像一个纽扣式的一个微型喷气发动机,但也是麻雀虽小,五脏俱全。它有进气口,有排气口,有燃烧室,有火焰稳定器。有各种各样的转子叶片,像压气机的转子叶片,压气机的扩压器叶片,涡轮转子叶片,涡轮导向器叶片等等。也就是说它具有正常的发动机大型发动机所应当具备的全部的主要部件和系统。
我们在研究和发展微型飞机的过程里面,我们碰到的第三个关键技术就是大容积重量比的结构设计技术。我们知道,微型飞机它面对的最大矛盾就是它的小尺寸和轻重量,另外呢它又要装载基本上像大飞机一样全部的主要的机载设备,当然它的机载设备的尺寸跟大飞机相比是小型的。但也是应该主要的系统,都要装载在飞机里面,因此为了解决这一矛盾,研究新型的结构布局形势就成了关键,我们前面所看到的圆盘式布局,双飞翼布局,像图所示的双翼布局,等等都是新型结构布局的探索。
另外,解决这一问题的另外一种途径,就是将电池与结构复合起来也就是电池与结构的复合技术,也就是说我们把结构做成电池,电池也是结构。当然可以是全部,也可以是部分。一方面它可以大大减轻微型飞机的重量,另外一方面可以提供比较充足的电能。据悉,美国正在研究将微型飞机的固定翼用薄膜电池来制作这样一种新型的技术。
在研究和发展微型飞机的过程里,我们所碰到需要解决的第四个关键技术就是飞行的稳定性,操纵性与控制技术,微型飞机它的尺寸非常小,它的空气流动的粘性又非常大,因此,采用传统的舵面,控制方式就是比较困难的这个时候我们可以利用,微机电技术中控制流动控制的方式,来代替传统舵面方式。同样可以实行飞机姿态的稳定和控制,为了说明这个概念,我们来看这样一个图,这个左边这幅图是一架飞机的三角翼,是一个三角翼,它的机翼的左前缘由微激励器分布了一排分布式气囊,右机翼的前沿是正常的机翼前缘。那么,由于分布式微气囊的作用,使机翼左右两个前缘所产生的流动就是不对称的流动,因此,左右两边就有一个升力差,这种升力差就能够产生一个使机翼滚转的力矩。那么,为了对这个问题有一个更加清楚的描述,我们来看看这两组图。
我们先看看左边这组图,它表示了微气囊在机翼前缘的位置,分别在下部,下前部,上前部和上部。而,右边这组图代表了左右两机翼前缘它的气流分布形成漩涡的情况。对于右前缘,由于没有分布式气囊,因此在任何情况下它的流动都是相同的,而对于左前缘,由于有不同位置的分布气囊,因此它的流动大小它的流动形成的涡就是不相同的,因此它就产生了不同力矩。
那么这幅图就更加清楚地说明这个概念,这幅图的横坐标是气囊的位置,它用角度(读音:cita)来表示,纵坐标表示由于不对称流所产生的滚转力矩的大小,我们可以看出来,随着气囊位置的变化,滚转力矩的大小是变化的,这就说明,我们可以采用流动控制的方式取代传统的飞机舵面,那我们又产生了两个新的问题,第一个问题就是如何产生这种微气囊,我们在真实的飞机上,如何产生这种微气囊这就是我们遇到一个新的问题,实际上这个必须借助于MEMS技术来解决。另外一个我们怎么样来分布气囊在整个机翼表面怎么样分布气囊,并且实现气囊的控制,这个是我们要解决的问题。
我们在研究和发展微型飞机时候碰到第五个关键技术就是弱功率信号下的遥控导航和信息传递技术。实用性微型飞机它的航程要求在10公里以上,而由于微型飞机严格的重量限制,不允许有较大尺寸的机载接收机和发射机,微型飞机往往必须在微弱信号下实现长距离的遥控或导航,因此,开展弱功率信号下的超视距遥控导航信息传递关键技术与设备的研究势在必行。可以这样讲,弱功率信号下的超视距遥控导航信息传递技术是把微型飞机从实验室投入到实际使用的关键性的技术,我们在研究和发展微型飞机的时候,所碰到第六个关键技术是多学科设计优化技术,我们看到这幅图实际上是以三个学科分别是Aerodynamics空气动力学学科,Structure结构学科,Propulsion,就是推进系统,这三个学科为例来说明多学科设计优化的一个整个过程。一个优化算子,将设计变量在各个学科内部,也就是说分别在Aerodynamics,Structure和Propulsion这三个学科内部进行优化,并且在学科之间进行优化,最后,得到满足约束条件和最佳性能要求的设计。这就是一个多学科的设计优化的一个整个思路,那么对于多学科设计优化而言它可以用在大型飞机上,也可以用在其他的飞行器设计里面,甚至可以用在任何一种工业产品的设计上,那么,对于微型飞机而言,它就显得更加迫切,为什么?就是我们前面经常提到的微型飞机的小尺寸和轻重量的要求,所造成的,那么,美国国防部预研计划局DARPA目前正在资助该方面的研究,而且在长度为6英寸,约15厘米的可执行侦查任务的微型飞机设计中取得成功。该多学科优化设计系统中,所涉及学科主要有微型推进系统的性能参数,低雷诺数空气动力学,飞行力学与品质,飞行控制及结构布局与细节设计等,涉及这些学科的模块用一个叫NEWSUMT-1型的软件包联合起来,形成实用的多学科设计优化平台,这里面有一个SUMT这个词,那么它实际上是优化设计方面一种比较先进的技术,叫序列无约束规划技术。那么,NEW就是它的发展型,ONE就是它的第一个版本。那么用这样一个NEWSUMT-1型的软件包形成了实用的多学科设计优化平台。
那么在研究和发展微型飞机的过程里面,我们所碰到第七个需要解决的关键技术就是基于微机电的加工与制造技术。也就是说基于MEMS的加工与制造技术。向着微型化,高度化,集成化方向发展,MEMS正是伴随着这一趋势诞生和发展的。自从80年代末,美国首次出现直径为100个U(读音:谬)M的微电机以来,MEMS研究得到了迅猛发展,各种微执行器,微控制器,以及微机器人相继问世,且各种机构趋于高度集成。形成完备的微机械电子系统。整个系统的尺寸缩小到几毫米,甚至几百微米,并开始了基于MEMS的微型器械研究,同时,MEMS研究已从单一的加工技术向设计向设计和制造一体化系统方向发展,出现了许多集成设计与制造工具技术。如微电子机械,计算机辅助设计,MEMCAD系统,先进微系统计算机辅助原型,CAPAM系统等等。还出现了实用的CAD系统和MEMS仿真工具等。
那么,为什么说基于MEMS技术的加工和制造技术是研究和发展微型飞机的关键技术呢?我们看看这两幅图就不难找到答案,我们的左上图是一架微型飞机,它的尺寸要求小于15厘米,重量,要求限制在100克。如此小和如此轻的微型飞机,又要装载正常飞机所应当具备的主要的机电设备,当然这种机电设备它的尺寸也是微型化的。那么,如果不依靠MEMS制造技术的话这种微型飞机实际上是制造不出来的。
我们看看这两幅图,这两幅图分别是我们在微型飞机上所采用的机载设备,左边上面图,是将这些机载设备和我们正常大小的3.5寸软盘它的尺寸进行比较,这是一个3.5寸的软盘,下面两个是在微型飞机上所用的机载设备,这种机载设备它的原件高度地集中化,集成化,它的尺寸又非常小,因此,必须采用MEMS技术,才能加工出这种机载设备来。下面一幅图也是同样的,在微型飞机上所用机载设备的它和正常长度的钢笔比较起来它的尺寸也是非常小的另外它又是高度集成化的,因此我们也必须采用MEMS技术才能加工和制造出这种机载设备来,因此我们说,基于MEMS的制造和加工技术是解决微型飞机研制的一个关键问题。

Ⅸ 空天飞机需要的关键技术有哪些

发展空天飞机的主要目的是想降低空天之间的运输费用?其途径归纳起来主要有三条:一是充分利用大气层中的氧,以减少飞行器携带的氧化剂,从面减轻起飞重量;二是整个飞行器全部重复使用,除消耗推进剂外不抛弃任何部件;三是水平起飞,水平降落,简化起飞(发射)和降落(返回)所需的场地设施和操作程序,减少维修费用?

但是,经过几年的研究分析,科学家们发规,过去的估计过于乐观?实际上?上述三条途径知易而行难?需要解决的关键技术难度决非短时间内能突破,这些关键技术有:

新构思的吸气式发动机

因为,空天飞机的飞行范围为从大气层内到大气层外,速度从0到M=25,如此大的跨度和工作环境变化是目前现有的所有单一类型的发动机都不可能胜任的,从而也就使为空天飞机研制全新的发动机成为整个项目的关键?

众所周知,喷气式发动机需要在大气层中吸入空气,无需携带氧化剂,但无法在大气层外工作,且实用速度较小;而火箭发动机自带氧化剂,可以工作在大气层内外,使用速度范围较广,但携带的氧化剂较笨重,比冲小?

目前设想的空天飞机的动力一般为采用超音速燃烧冲压发动机+火箭发动机或涡轮喷气+冲压喷气+火箭发动机的组合动力方式?但超燃冲压发动机的研制上存在相当多的技术问题,而多种发动机的组合方式又使结构变得过于复杂和不可靠?

计算空气动力学分析

航天飞机返回再入大气层的空气动力学问题,曾经耗费了科学家们多年的心血,作了约10万小时的风洞试验?空天飞机的空气动力学问题比航天飞机复杂得多?因为飞机速度变化大,马赫数从0变化到25;飞行高度变化大,从地面到几百公里高的外层空间;返回再入大气层时下行时间长,航天飞机只有十几分钟,空天飞机则为l~2小时?

解决空气动力学问题的基本手段是风洞?目前,就连美国也不具备马赫数可以跨越这样大范围的试验风洞?即使有了风洞还需要作上百万小时的试验,那意味着就是昼夜不停地试验,也需要花费100多年的时间?于是,只能求助于计算机,用计算方法来解决,而对那维尔斯托克斯方程的求解目前尚存在,许多理论上和计算速度上的问题?

发动机和机身一体化设计

当空天飞机以6倍于音速以上的速度在大气层中飞行时,空气阻力将急剧上升,所以其外形必须高度流线化?亚音速飞机常采用的翼吊式发动机已不能使用?需要将发动机与机身合并,以构成高度流线化的整体外形?即让前机身容纳发动机吸人空气的进气道,让后机身容纳发动机排气的喷管?这就叫做“发动机与机身一体化”?

在一体化设计中,最复杂的是要使进气道与排气喷管的几何形状,能随飞行速度的变化而变化,以便调节进气量,使发动机在低速时能产生额定推力,而在高速时又可降低耗油量,还要保证进气道有足够的刚度和耐高温性能,以使它在返回再入大气层的过程中,能经受住高速气流和气动力热的作用,这样才不致发生明显变形,才可多次重复使用?

防热结构与材料

空天飞机需要多次出人大气层,每次都会由于与空气的剧烈摩擦而产生大量气动加热,特别是以高超音速返回再入大气层时,气动加热会使其表面达到极高的温度?机头处温度约为1800℃,机翼和尾翼前缘温度约为1460℃,机身下表面约为980℃,上表面约为760℃?因此,必须有一个重量轻?性能好?能重复使用的防热系统?

空天飞机在起飞上升阶段要经受发动机的冲击力?振动?空气动力等的作用,在返回再入阶段要经受颤振?科振?起落架摆振等的作用?在这种情况下,防热系统既要保持良好的气动外形,又要能长期重复使用,维护方便,所以其技术难度是相当大的?

目前的航天飞机,由于受气动加热的时间短,表面覆盖氧化硅防热瓦即可达到满意的防热效果,但对空天飞机则远远不够?

如果单靠增加防热层厚度来解决问题,则将使重量大大增加,而且防热层还不能被烧坏,否则会影响重复使用?一个较简单的解决办法是在机头?机翼前缘等局部高温区,使用传热效率特别高的吸热管来吸热,以便把热量转移到温度较低的部位?

更好的办法是采用主动式冷却防热系统,也就是把机体结构与防热系统一体化,即把机体结构设计成夹层式或管道式,让推进剂在夹层内或管道内流动,使它吸走空气对结构外表面摩擦所生成的热量?

为了满足空天飞机的防热要求,目前正在研究用快速固化粉末冶金工艺制造纯度很高?质量很轻的耐高温合金?美国已研制出高速固化钛硼合金,它在高温下的强度可达到目前使用的钛合金在室温下的强度,这种合金适宜用来制造机身内层结构骨架?

机头与机翼等温度最高的部位,要求采用碳复合材料,这种复合材料表面有碳化硅涂层,重量轻,耐高温性能好?此外,还需要研究金属基复合材料,例如碳化硅纤维增强的钛复合材料等?这种材料应该兼有碳化硅的耐高温性能,又具有钛合金的高强度特性?

空天飞机技术难度大,所需投资多,研制周期长,所以将来进入全尺寸样机研制,势必也会象空间站那样采取国际合作的方式?

Ⅹ 航天工程关键技术有哪些

航天技术(space technology)
航天技术,又称空间技术。是一项探索、开发和利用太空以及地球以外天体的综合性工程技术。是一个国家现代技术综合发展水平的重要标志。 军事航天技术,是把航天技术应用于军事领域,为军事目的进入太空和开发利用太空的一门综合性工程技术。

其组成主要包括:
(1)航天运载器技术.航天运载器技术是航天技术的基础.要想把各种航天器送到太空,必须利用运载器的推力克服地球引力和空气阻力.常用的运载器是运载火箭.
运载火箭主要由动力系统,控制系统,箭体和仪器,仪表系统组成.为了使航天器获得飞出地球所需要的速度,靠单级运载火箭的推力目前难以达到.为此,人们发展了多级运载火箭.多级运载火箭是由几个能独立工作的火箭沿轴向串联组成.
(2)航天器技术.航天器是在太空沿一定轨道运行并执行一定任务的飞行器,亦称空间飞行器.航天器分无人航天器和载人航天器两大类.
无人航天器按是否环绕地球运行又分为人造地球卫星和空间探测器等.其中人造地球卫星按用途分为:①科学卫星:用于探测和研究;②应用卫星:直接为国民经济和军事服务;③技术试验卫星:用于技术试验和应用卫星试验.空间探测器按探测目标分为月球探测器,行星(金星,火星,水星,土星等)探测器和星际探测器.
载人航天器按飞行和工作方式分为载人飞船,空间站和航天飞机等.其中载人飞船可分为卫星式载人飞船,登月式载人飞船和行星际载人飞船等;空间站可分为单一式空间站和组合式空间站.
(3)航天测控技术.航天测控技术是对飞行中的运载火箭及航天器进行跟踪测量,监视和控制的技术.为了保证火箭正常飞行和航天器在轨道上正常工作,除了火箭和航天器上载有测控设备外,还必须在地面建立测控(包括通信)系统.地面测控系统由分布全球各地的测控台,站及测量船组成.航天测控系统主要包括:光学跟踪测量系统,无线电跟踪测量系统,遥测系统,实时数据处理系统,遥控系统,通信系统等.

阅读全文

与飞行控制哪些关键技术相关的资料

热点内容
西宁市卖旧书籍市场在哪里 浏览:553
江西技术电子产品哪个好 浏览:825
如何把地图做成数据 浏览:637
kbaby童装怎么代理 浏览:606
纳米技术未来会发展到什么阶段 浏览:477
蜡油加氢裂化的产品有哪些 浏览:708
南京中山职业技术学院有什么专业 浏览:964
怎么能提高炒股技术 浏览:379
怎么样给群里所有人发信息 浏览:778
附加值农产品有哪些 浏览:642
数据线全自动焊锡机有哪些品牌 浏览:442
佛山照明led技术怎么样 浏览:819
怎么选择招聘代理公司 浏览:20
什么是msoffice数据 浏览:315
ea交易者数学思维怎么用 浏览:799
学生数据的分析是什么 浏览:290
阜阳母婴产品代理有哪些 浏览:405
车间工艺技术主管如何开展工作 浏览:29
德国哪些大学有电子信息专业 浏览:71
鞍山铁东区有哪些市场 浏览:242