‘壹’ 遗传育种是什么基因技术
基因技术仅仅是遗传育种的方法之一。遗传育种技术包括常规育种(如实生选种、杂交育种、引种驯化、诱变育种、倍性育种等),也包括原生质体融合育种、基因操纵重组等。所有育种方法均涉及基因改变。应用现代生物学技术将不同物种的目的基因转移到作物体内,即可培育出转基因品种。
‘贰’ 人类遗传学研究方法有哪些
‘叁’ 海水鱼类遗传育种技术有哪些
海水鱼类遗传育种技术研究较落后于淡水鱼类,但近年来发展迅速,目前,除传统的选择育种和杂交育种外,通过染色体操作、细胞工程、基因工程等手段进行鱼类育种已是全球性的趋势。
(1)杂交育种 是目前应用最广泛、最有成效的主要育种途径,杂交一般是指不同品系、品种间甚至种、属、科间的个体的杂交,具体操作是采用人工授精,品种间的杂交也可采用自然产卵受精。
(2)多倍体育种 正常生物的染色体一般为二倍体,在了解了鱼类染色体变化规律后,可通过人为的处理使其染色体数目发生改变,达到改造养殖鱼类,创造新的优良品种的目的。
(3)性别控制和单性育种 性别控制的目标是使鱼类不育,以使性腺发育所消耗的能量完全用于生长,延长有效生长期,提高养殖鱼的质量并避免过度繁殖。
(4)细胞工程育种 有细胞核移植、细胞融合技术和细胞培养技术等。
(5)基因工程育种 从动物体内将促生长、抗病或抗逆等目的基因分离出来转入另一动物体内,后者就具有速生、抗病或抗逆改善。
本条内容来源于:中国农业出版社《物种保护之旅》
‘肆’ 研究人类遗传学常用的方法有哪些
人类遗传学的主要研究方法是:
①系谱分析。用于研究决定人类性状或疾病的基因的传递规律。
②数理统计。通过群体的调查和系谱分析并将获得的资料经过数学处理,可以测定人类某些性状或疾病基因的分布频率,了解其传递规律及与种族、群体、环境、迁移、婚配方式之间的关系。
③细胞遗传学方法。染色体技术和人类性染色质(X染色质和Y染色质)的研究结果可广泛应用于染色体异常疾病的诊断、性别鉴定、产前诊断和遗传咨询等。医学细胞遗传学的研究为人类遗传学积累了大量的资料(见核型)。
④体细胞遗传学方法。在人类基因定位中得到广泛的应用,也常应用于肿瘤遗传学的研究。
⑤生物化学方法。层析、电泳、色谱分析 、同位素示踪等被广泛应用于先天性代谢缺陷、血红蛋白异常和各种综合征的研究。这些方法非但可应用于出生后成长过程中的个体,也可以应用于孕妇羊水及其脱屑细胞的产前诊断,以便在孕期中就去除先天性代谢异常的胎儿,这对预防遗传疾病有重要意义。
⑥免疫学方法。人类体细胞免疫学特性的研究是人类遗传学的重要内容。它为同种异体脏器的移植提供了理论基础,同时也可揭示它与某些遗传性疾病发生的关联。并为阐明免疫球蛋白的多样性来源问题开辟了新的途径。
⑦双生儿法。通过双生儿之间的异同对比研究遗传和环境对个体表型的相对效应的方法,它是人类遗传学研究中的经典方法。
‘伍’ 遗传育种 选择育种的主要方法有哪些
目前生产上常用的选择育种有两种方法,即单群选择和集团选育。
在某一蜂场内,如果发现少数几群蜂有某一有利变异——独特的优点时,则可采用单群选择法扩大,加强该有利变异。首先将这种变异的蜂群单独挑选出来作为种群,既作母群又作父群,繁殖一批后代蜂群。观察和测定这些蜂群的女儿蜂群,如果这些女儿蜂群表现出在这些有利变异上具有与亲代蜂群相同的优良性能,说明这种变异性状是可以遗传的。那么这个优良变异的蜂群即留作种用蜂群,从其后代中选出具有与亲代相同的变异性状的蜂群,留作继代种用蜂群,累代朝着这一有益变异的方向连续选择和繁育下去,经过若干世代后,这一有益变异就可在后代蜂群中稳定地遗传下来,育成具有某一独特性状的新品种。
在某一蜂场内,经过考察或鉴定,发现具有相同类型的有益变异性状的蜂群的数量较多时,可采用集团选育的方法。可将选出的蜂群作为种用蜂群,并把这些蜂群分作两组,一组作母群,移取其卵或小幼虫培育处女王;另一组则作父群,让其培育种用雄蜂,把处女王和雄蜂放在具有可靠隔离条件的交尾场进行自然交尾,或进行人工授精。对这批种用蜂群的后代进行鉴定,从中选出与亲代具有相同变异性状的优良子代蜂群作为继代种用蜂群。并把它们也分作两组,分别作为母群和父群进行繁育。如此重复选育下去,使某一有利的变异性状在后代蜂群不断巩固和加强,最后就有可能形成一个具有某一有利性状的新品种。
‘陆’ 遗传学的学科有哪些,包括DNA的学科吗
遗传学(Genetics)是一门学科,研究生物起源、进化与发育的基因和基因组结构、功能与演变及其规律等,是生物学的一个重要分支,经历了孟德尔经典遗传学、分子遗传学和如今系统遗传学的研究时期。
遗传学中的亲子概念不限于父母子女或一个家族,还可以延伸到包括许多家族的群体,这是群体遗传学的研究对象。遗传学中的亲子概念还可以以细胞为单位,离体培养的细胞可以保持个体的一些遗传特性,如某些酶的有无等。对离体培养细胞的遗传学研究属于体细胞遗传学。遗传学中的亲子概念还可以扩充到DNA脱氧核糖核酸的复制甚至mRNA的转录,这些是分子遗传学研究的课题。基因相互作用与信号传导网络的系统生物学研究是系统遗传学的内容。
由一个受精卵产生的免疫活性细胞能够分别产生各种不同的抗体球蛋白,这也是遗传学的一个课题,它的研究属于免疫遗传学。
从噬菌体到人,生物界有基本一致的遗传和变异规律,所以遗传学原则上不以研究的生物对象划分学科分支。人类遗传学的划分是因为研究人的遗传学与人类的幸福密切相关,而系谱分析和双生儿法等又几乎只限于人类的遗传学研究。
微生物遗传学的划分是因为微生物与高等动植物的体制很不相同,因而必须采用特殊方法进行研究。此外,还有因生产意义而出现的以某一类或某一种生物命名的分支学科,如家禽遗传学、棉花遗传学、水稻遗传学等。
更多的遗传学分支学科是按照所研究的问题来划分的。例如,细胞遗传学是细胞学和遗传学的结合;发生遗传学所研究的是个体发育的遗传控制;行为遗传学研究的是行为的遗传基础;免疫遗传学研究的是免疫机制的遗传基础;辐射遗传学专门研究辐射的遗传学效应;药物遗传学则专门研究人对药物反应的遗传规律和物质基础,等等。
从群体角度进行遗传学研究的学科有群体遗传学、生态遗传学、数量遗传学、进化遗传学等。这些学科之间关系紧密,界线较难划分。群体遗传学常用数学方法研究群体中的基因的动态,研究基因突变、自然选择、群体大小、交配体制、迁移和漂变等因素对群体中的基因频率和基因平衡的影响;生态遗传学研究的是生物与生物,以及生物与环境相互适应或影响的遗传学基础,常把野外工作和实验室工作结合起来研究多态现象、拟态等,借以验证群体遗传学研究中得来的结论;进化遗传学的研究内容包括生命起源、遗传物质、遗传密码和遗传机构的演变以及物种形成的遗传基础等。物种形成的研究也和群体遗传学、生态遗传学有密切的关系。
从应用角度看,医学遗传学是人类遗传学的分支学科,它研究遗传性疾病的遗传规律和本质;临床遗传学则研究遗传病的诊断和预防;优生学则是遗传学原理在改良人类遗传素质中的应用。生统遗传学或数量遗传学的主要研究对象是数量性状,而农作物和家畜的经济性状多半是数量性状,因此它们是动植物育种的理论基础。
‘柒’ 基因工程中有那些技术,,总结
1、植物细胞工程技术:植物组织培养和植物体细胞杂交 2、动物细胞工程技术:动物细胞培养、动物细胞融合、单克隆抗体的制备、核移植和胚胎移植等。 3、遗传工程技术:基因拼接技术(基因工程)
‘捌’ 研究人类遗传学常用的方法有哪些
1.系谱法
2、双生子法
3、跟踪调查法
4、数据统计法
5、锡细胞遗传学方法
6、生物化学方法
7、种族差异 比较法
8、关联分析法
9、免疫学法
10、DNA分析法
‘玖’ 遗传学的研究技术
黑腹果蝇(Drosophila melanogaster)是一种流行于遗传学研究中的模式生物。
一开始遗传学家们的研究对象很广泛,但逐渐地集中到一些特定物种(模式生物)的遗传学上。这是由于新的研究者更趋向于选择一些已经获得广泛研究的生物体作为研究目标,使得模式生物成为多数遗传学研究的基础。模式生物的遗传学研究包括基因调控以及发育和癌症相关基因的研究。
模式生物具有传代时间短、易于基因操纵等优点,使得它们成为流行的遗传学研究工具。目前广泛使用的模式生物包括:大肠杆菌(Escherichia coli)、酿酒酵母(Saccharomyces cerevisiae)、拟南芥(Arabidopsis thaliana)、线虫(Caenorhabditis elegans)、果蝇(Drosophila melanogaster)以及小鼠(Mus musculus)。 医学遗传学的目的是了解基因变异与人类健康和疾病的关系。当寻找一个可能与某种疾病相关的未知基因时,研究者通常会用遗传连锁和遗传系谱来定位基因组上与该疾病相关的区域。在群体水平上,研究者会采用孟德尔随机法来寻找基因组上与该疾病相关的区域,这一方法也特别适用于不能被单个基因所定义的多基因性状。一旦候选基因被发现,就需要对模式生物中的对应基因(直系同源基因)进行更多的研究。对于遗传疾病的研究,越来越多发展起来的研究基因型的技术也被引入到药物遗传学中,来研究基因型如何影响药物反应。
癌症虽然不是传统意义上的遗传病,但被认为是一种遗传性疾病。癌症在机体内的产生过程是一个综合性事件。机体内的细胞在分裂过程中有一定几率会发生突变。这些突变虽然不会遗传给下一代,但会影响细胞的行为,在一些情况下会导致细胞更频繁地分裂。有许多生物学机制能够阻止这种情况的发生:信号被传递给这些不正常分裂的细胞并引发其死亡;但有时更多的突变使得细胞忽略这些信号。这时机体内的自然选择和逐渐积累起来的突变使得这些细胞开始无限制生长,从而成为癌症性肿瘤(恶性肿瘤),并侵染机体的各个器官。 琼脂平板上的大肠杆菌菌落,细胞克隆的一个例子,常用于分子克隆。
可以在实验室中对DNA进行操纵。限制性内切酶是一种常用的剪切特异性序列的酶,用于制造预定的DNA片断。然后利用DNA连接酶将这些片断重新连接,通过将不同来源地DNA片断连接到一起,就可以获得重组DNA。重组DNA技术通常被用于在质粒(一种短的环形DNA片断,含有少量基因)中,这常常与转基因生物的制造有关。将质粒转入细菌中,再在琼脂平板培养基上生长这些细菌(来分离菌落克隆),然后研究者们就可以用克隆菌落来扩增插入的质粒DNA片断(这一过程被称为分子克隆)。
DNA还能够通过一个被称为聚合酶链锁反应(又被称为PCR)的技术来进行扩增。利用特定的短的DNA序列,PCR技术可以分离和扩增DNA上的靶区域。因为只需要极少量的DNA就可以进行扩增,该技术也常常被用于DNA检测(检测特定DNA序列的存在与否)。 DNA测序技术是遗传学研究中发展起来的一个最基本的技术,它使得研究者可以确定DNA片段的核苷酸序列。由弗雷德里克·桑格和他的同事于1977年发展出来的链终止测序法现在已经是DNA测序的常规手段。在这一技术的帮助下,研究者们能够对与人类疾病相关的DNA序列进行研究。
由于测序已经变得相对廉价,而且在计算机技术的辅助下,可以将大量不同片断的序列信息连接起来(这一过程被称为“基因组组装”),因此许多生物(包括人类)的基因组测序已经完成。这些技术也被用在测定人类基因组序列,使得人类基因组计划得以在2003年完成。随着新的高通量测序技术的发展,DNA测序的费用被大大降低,许多研究者希望能够将测定一个人的基因组信息的价格降到一千美元以内,从而使大众测序成为可能。
大量测定的基因组序列信息催生了一个新的研究领域——基因组学,研究者利用计算机软件查找和研究生物的全基因组中存在的规律。基因组学也能够被归类为生物信息学(利用计算的方法来分析生物学数据)下的一个领域。