导航:首页 > 信息技术 > 生物化学新技术都有哪些

生物化学新技术都有哪些

发布时间:2022-10-03 10:49:05

Ⅰ 生物学和化学分别有哪些尖端科技是需要大量计算机技术的支持的

“系统生物学”是现在“生物学”最热门的研究领域之一。(此网业连接不到,不好意思)可看看下列回答
从生物学的研究方向来看,无论是宏观,还是微观,仅仅掌握单一的生物学知识是无法胜任的。从生物学发展趋势来看,今日的尖端科技,明日就可能成为生物科技发展的基础。这就需要我们的学生不断掌握新知识,了解新成就。只有这样,才有可能站在前人...相关资料请看http://www.hqzx.e.sh.cn/mainweb/sw/kctz/smfz.htm
其次是基因工程范畴的系列问题要用到关于计算机类的问题(如:基因识别器, 生物特征 身份鉴别 模式识别)。要用到生物计算机。
生物计算机

生物计算机是以生物界处理问题的方式为模型的计算机。目前主要有:生物分子或超分子芯片、自动机模型、仿生算法、生物化学反应算法等几种类型。
计算机工业在近几十年内飞速发展,其速度令人瞠目。然而目前晶体管的密度已近当前所用技术的理论极限,晶体管计算机能否继续发展下去?所以,人们在不断寻找新的计算机结构。另一方面,人们在研究人工智能的同时,借鉴生物界的各种处理问题的方式,即所谓生物算法,提出了一些生物计算机的模型,部分模型已经解决了一些经典计算机难以解决的问题。

生物计算机目前主要有以下几类:

1. 生物分子或超分子芯片:立足于传统计算机模式,从寻找高效、体微的电子信息载体及信息传递体入手,目前已对生物体内的小分子、大分子、超分子生物芯片的结构与功能做了大量的研究与开发。“生物化学电路” 即属于此。

2. 自动机模型:以自动理论为基础,致力与寻找新的计算机模式,特别是特殊用途的非数值计算机模式。目前研究的热点集中在基本生物现象的类比,如神经网络、免疫网络、细胞自动机等。不同自动机的区别主要是网络内部连接的差异,其基本特征是集体计算,又称集体主义,在非数值计算、模拟、识别方面有极大的潜力。

3. 仿生算法:以生物智能为基础,用仿生的观念致力于寻找新的算法模式,虽然类似于自动机思想,但立足点在算法上,不追求硬件上的变化。 4. 生物化学反应算法:立足于可控的生物化学反应或反应系统,利用小容积内同类分子高拷贝数的优势,追求运算的高度并行化,从而提供运算的效率。DNA计算机 属于此类。以下将着重介绍自动机模型中的计算神经网络和生物化学反应算法中的DNA计算机的模型。

计算神经网络

早在1943年心理学家W. McCulloch和数学家W. Pitts合作提出神经元的二值逻辑模型。1949年D. Hebb提出了改变神经元连接强度的学习规则,这一规则至今在各种网络模型中起着重要作用。1962年F. Rosenblatt提出感知机模型。1982年美国物理学家J.Hopfield提出一种全新的神经网络模型 ,它体现了D. Marr的计算神经理论、耗散结构和混沌理论的基本精神,用S型曲线替代二值逻辑,引入“能量”函数,使网络的稳定性有了严格的判断依据,模型具有理想记忆、分类与误差自动校正等智能。Hopfield模型的动力学特征的分析提供了有力的研究方法。

神经网络系统模拟大脑的工作方式,由大量简单的神经元广泛相互连接而成,形成一种拓扑结构。大脑具有相当高级的处理信息的能力,与传统计算机模型相比,大脑具有如下特征:首先是大规模并行处理能力,其次是大脑具有很强的“容错性”和联想功能,第三是大脑具有很强的自适应能性和自组织性。在这些方面,目前的传统计算机模型是难于实现的。

具体的神经元模型主要是如何更好地反应神经元在刺激下发放电位的本质。大多数模型把神经元之间的连接考虑成线性连接,输入层与输出层直接相连,没有中间所谓隐单元层。每个神经元只能是兴奋态或抑制态,任一神经元的输入是其他神经元的输出通过突触作用的总和。如果考虑兴奋态和抑制态之间的过渡情况,可以采用S型曲线来表征神经元的非线性输入和输出特性,如J. Hopfield模型;也可以按照统计物理学的概念和方法,神经元的输入由神经元状态更新的概率来决定,如波尔兹曼机模型;还可以在神经元的输入与输出层之增加中间变换层,如感知机模型;增加反向误差校正通道的反传播模型等等。通过对神经元的形态与功能的不同表达,可以产生不同的模型。

DNA计算机

1994年,美国加州大学的L. Adleman博士在《Science》上公布了DNA计算机的理论,并成功地在DNA溶液的试管中进行了运算实验。L. Adleman博士的DNA计算机完全是一种新的观念。其基本设想是:以DNA碱基序列作为信息编码的载体,利用现代分子生物学技术,在试管内控制酶作用下的DNA序列反应,作为实现运算的过程;即以反应前的DNA序列作为输入的数据,反应后的DNA序列作为运算的结果。DNA计算机是一种化学反应计算机。到目前为止,已有人通过DNA计算机模型进行实验解决了一些基本的NP问题。如L. Adleman博士做的对货郎担问题(哈密顿图问题,HPP)的计算,和普林斯顿大学查科普顿作的可满足性问题(SAT问题) 。所谓NP问题 ,是指人们根据问题类的算法复杂程度的划分而言,与P问题相对。P问题是指算法复杂性随着问题规模的增长而呈多项式增长的算法,是可以计算的。NP问题是指指算法复杂性随着问题规模的增长而呈指数增长的算法,是实际上不可计算的。DNA计算机的构想是一种创新,具有巨大的潜力。DNA计算机运算速度快,其几天的运算量就相当于计算机问世以来世界上所有计算机的运算总量。它的存储容量非常巨大,而耗能却只有一台普通计算机的十亿分子一。当然,DNA计算机毕竟只是一种理论设想,在很多方面还相当不完善。主要表现在:

1. 构造的现实性及计算潜力。DNA计算机以编码后的DNA序列作为输入,在试管内反应完成计算,反应产物及溶液给出了全部解空间,但是最优解如何与其他解分离,怎样输出,是一个技术性极强的问题。目前还没有令人满意的输出手段。随着求解问题规模的扩大,输出将成为DNA计算机的瓶颈。

2. 运算过程中的错误问题。在扩增DNA的过程中,有较高的错配率,而且大量的DNA在几百步的反应中也会产生一些支路反应。错误会产生伪解,并增加最优解输出的难度。

3. 人机界面。怎样使得DNA计算机的输入和输出变成一般人可以接受的,否则就无法进行广泛的应用。

不论如何,DNA计算机的提出拓宽了人们的视野,启发人们用算法的观念研究生命,并向众多领域提出了挑战。(http://..com/question/7358400.html为原文出处) 相关“生物 计算机问题可以到http://www..com/s?ie=gb2312&bs=%CE%B4%BD%E2%BE%F6%B5%C4%C9%FA%CE%EF%CE%CA%CC%E2&sr=&z=&cl=3&f=8&wd=%C9%FA%CE%EF+%BC%C6%CB%E3%BB%FA&ct=0观看(希望你能找到自己想要的)
再说说化学与计算,应该是把对未直元素和试验等数据用C++编程,编辑的软件利用是十分有必要的。在程序中模拟试验,既不要试验空间,也不会用到很多器具,节省了很多不必要的资源。而且还可以与世界各地专家在网上交流和共同试验等等,这都是化学,生物计算软件可开发利用成分...
化学 计算机

想象一下,未来的计算机会成为什么样子?假如有人说,让像果冻一样的物质去思考,去表达同情心,你觉得可能吗?对于早已习惯和熟悉了棱角分明的显示屏、主机和鼠标的现代一族而言,把计算机想象成为一团软软的、滑滑的、没有固定形状的果冻,确实有点异想天开。然而,英国布里斯多大学计算机专家安德鲁正在做着这样的梦,他的梦想是,用离子替代电子,用果冻一样的物质替代硅芯片和电路板。大多数人累了的时候,一般是喝杯咖啡,或者是到户外去散步,呼吸一下新鲜空气。安德鲁却与众不同,当他觉得脑子有些不大灵光,需要点额外刺激时,就让他的机器人用金属手指划拉一下一个盛满化学液体的盘子。这一盘子的化学液体,就是安德鲁所设计的液体计算机的”大脑”原型。离子波的形成和扩散,就是化学计算机的“思考”过程。当运行速度变慢时,“大脑”就会对机械手发出指令,将金属手指浸到盘子中去,摇晃一下那些神奇的化学液体。
安德鲁现在所设计的化学计算机,还只是简单地模仿人类的手臂和大脑之间的反馈过程,他的志向是,要设计化学处理器,把计算机硬件装到瓶子里去。经过10多年的研究,安德鲁现在已开发出液体逻辑门,并认为他所设计的阵列具有无限的自我重组和修复能力。计算机巨人IBM也认为,利用这种阵列技术,有可能设计出功能强大的新型计算机芯片。此外,安德鲁还有另外一个雄心勃勃的目标,即进一步加强“鼓波”的能力,使之无愧于液体脑的称号。为了证明液体脑的概念潜力无限,前途光明。安德鲁特别设计了液体脑的载体———果冻机器人。它有人造的眼睛,合成的荷尔蒙。也许有一天,果冻机器人可以感受到周围的环境,甚至有可能感受到人类的情感。化学计算机有个十分复杂而又特别迷人之处,称之为贝洛索夫-恰鲍廷斯基反应(BZ反应),它是由3个不同的反应组成的化学振荡反应。每个反应都有不同的分子和离子,当加入特定的化学成分后,首先触发第一个反应,所产生的生成物可以触发第二个反应,随后第二个反应的生成物又可以触发第三个反应,第三反应的生成物再触发第一个反应,由此循环往复。更为迷人的是,各个不同的反应会产生不同的颜色,因此可以形成红蓝交替的波。BZ反应之所以重要,在于利用它可以解决一些数学难题,尤其是一些现在的计算机难以解决的问题。比如,迷宫最短路径问题。用传统的计算机解这一问题必须要穷尽所有的路径,然后再进行比较,这需要耗费大量的时间。而利用BZ反应则不同。由于波在传播和扩散时,总是走最短的路径。只要利用照相机,记录下波的运动轨迹,就可以解决这一难题。

上个世纪90年代中安德鲁意识到,BZ反应有更重要的应用,那就是可以用于化学处理器。为此,他组织起一个专门的班子,并开发了两个化学处理器的概念模型。一个模型可以模仿人类的手臂与大脑的反馈活动。另一个由两个BZ反应组成,可以在一个布满家具的房间内自动移动到目的地。虽然这两个概念模型表现还不错,安德鲁却意识到,如果要让化学处理器处理更为复杂的运算过程,必须要有逻辑门。美国波士顿大学的一项理论研究引起了安德鲁的注意。该研究认为,可以模仿斯诺克台球,制造一种形式简单的处理器。也就是说,每个球可以代表1或0,球的碰撞过程就是计算过程,球如何相撞,相撞后弹出的方向,可以精确地表现为逻辑过程。换句话说,碰撞结果可以成为逻辑门的等价物。这样,安德鲁的任务就变成如何让BZ波进行碰撞。去年,安德鲁的研究取得重大突破。他把BZ混合物放到卤化银薄胶层上,由于卤化物可以起到化学阻滞剂的作用,胶层可以延缓波的传播速度。这样,BZ反应就不会形成完整的圆形波,只是形成了小段的圆弧,并且沿直线进行传播,安德鲁将之称为BZ弹。BZ弹更多地表现出准粒子的特性,而不是波的特性,其表现与台球相似。实验中,安德鲁发现,两个BZ弹在特定的角度相撞时,只在特定的方向产生唯一的输出。如果仅有一个输入,则在该方向没有输出。这样安德鲁就研究出了逻辑与。此后,他又相继研究出逻辑或、逻辑非以及逻辑互斥,这就为安德鲁的化学处理器奠定了坚实的基础。安德鲁的化学处理器虽然还处于初级阶段,但他已把目光转向了并行化学处理器。对于化学处理器能否成功,人们还处于未知阶段,但科学家相信,如果人类能够具备控制纳米级水平制造波的能力,化学处理器就很可能实现。正如一些专家所言,不管安德鲁的志向能否实现,他的研究工作无论对揭示人类大脑的奥秘,还是制造更好的处理器,均具有十分重要的意义。毕竟,化学处理器是生物组织器官和电子设备之间的一座桥梁(http://..com/question/16587357.html原文出处)相关的可到
(http://www..com/s?ie=gb2312&bs=%C9%FA%CE%EF+%BC%C6%CB%E3%BB%FA&sr=&z=&cl=3&f=8&wd=%BB%AF%D1%A7+%BC%C6%CB%E3%BB%FA&ct=0)去看。
我可说的就这么多了希望对你有所帮助

Ⅱ 生物化学的重大发现有哪些

你好,我是在读大三学生,是在大二修的生物化学,由于这是很厚的一本书,这是我在书找的一些资料,希望对你有用(由于很繁杂,所以只简略写了):1907年,E.Fisher提出蛋白质由氨基酸组成,并组成多肽。1897,E.Suchner发现酶具有催化活性,1902,E.Fischer合成糖和嘌呤衍生物,1907,E.Buchner发现无细胞酵母液发酵现象,1923,加拿大F.G.Banting发现胰岛素,1929,F.G.Hopkins发现促进生长的维生素,1931,O.H.Warburg发现呼吸酶及作用方式。1939,A.Butenandt发现了性激素,1948,A.W.K.Tiselius发明了电泳技术并发现血清蛋白的组分。1952,S.A.Waksman发现链霉素,1954,Linus Pauling美国,发现a螺旋,1962,J.D.Waton ,Crick,提出DNA双螺旋结构,等等……还有很多,打外国人的名字好麻烦吖,如果还不够的话请讲哦~~还很多,大部分都获得诺贝尔奖的

Ⅲ 现在生物化学的研究方向有哪些

生物化学主要研究生物体分子结构与功能、物质代谢与调节以及遗传信息传递的分子基础与调控规律。

生物化学组成

除了水和无机盐之外,活细胞的有机物主要由碳原子与氢、氧、氮、磷、硫等结合组成,分为大分子和小分子两大类。前者包括蛋白质、核酸、多糖和以结合状态存在的脂质;后者有维生素、激素、各种代谢中间物以及合成生物大分子所需的氨基酸、核苷酸、糖、脂肪酸和甘油等。在不同的生物中,还有各种次生代谢物,如萜类、生物碱、毒素、抗生素等。

虽然对生物体组成的鉴定是生物化学发展初期的特点,但直到今天,新物质仍不断在发现。如陆续发现的干扰素、环核苷一磷酸、钙调蛋白、粘连蛋白、外源凝集素等,已成为重要的研究课题。有的简单的分子,如作为代谢调节物的果糖-2,6-二磷酸是1980年才发现的。另一方面,早已熟知的化合物也会发现新的功能,20世纪初发现的肉碱,50年代才知道是一种生长因子,而到60年代又了解到是生物氧化的一种载体。多年来被认为是分解产物的腐胺和尸胺,与精胺、亚精胺等多胺被发现有多种生理功能,如参与核酸和蛋白质合成的调节,对DNA超螺旋起稳定作用以及调节细胞分化等。

代谢调节控制

新陈代谢由合成代谢和分解代谢组成。前者是生物体从环境中取得物质,转化为体内新的物质的过程,也叫同化作用;后者是生物体内的原有物质转化为环境中的物质,也叫异化作用。同化和异化的过程都由一系列中间步骤组成。中间代谢就是研究其中的化学途径的。如糖元、脂肪和蛋白质的异化是各自通过不同的途径分解成葡萄糖、脂肪酸和氨基酸,然后再氧化生成乙酰辅酶A,进入三羧酸循环,最后生成二氧化碳。

在物质代谢的过程中还伴随有能量的变化。生物体内机械能、化学能、热能以及光、电等能量的相互转化和变化称为能量代谢,此过程中ATP起着中心的作用。

新陈代谢是在生物体的调节控制之下有条不紊地进行的。这种调控有3种途径:①通过代谢物的诱导或阻遏作用控制酶的合成。这是在转录水平的调控,如乳糖诱导乳糖操纵子合成有关的酶;②通过激素与靶细胞的作用,引发一系列生化过程,如环腺苷酸激活的蛋白激酶通过磷酰化反应对糖代谢的调控;③效应物通过别构效应直接影响酶的活性,如终点产物对代谢途径第一个酶的反馈抑制。生物体内绝大多数调节过程是通过别构效应实现的。

结构与功能

生物大分子的多种多样功能与它们特定的结构有密切关系。蛋白质的主要功能有催化、运输和贮存、机械支持、运动、免疫防护、接受和传递信息、调节代谢和基因表达等。由于结构分析技术的进展,使人们能在分子水平上深入研究它们的各种功能。酶的催化原理的研究是这方面突出的例子。蛋白质分子的结构分4个层次,其中二级和三级结构间还可有超二级结构,三、四级结构之间可有结构域。结构域是个较紧密的具有特殊功能的区域,连结各结构域之间的肽链有一定的活动余地,允许各结构域之间有某种程度的相对运动。蛋白质的侧链更是无时无刻不在快速运动之中。蛋白质分子内部的运动性是它们执行各种功能的重要基础。

80年代初出现的蛋白质工程,通过改变蛋白质的结构基因,获得在指定部位经过改造的蛋白质分子。这一技术不仅为研究蛋白质的结构与功能的关系提供了新的途径;而且也开辟了按一定要求合成具有特定功能的、新的蛋白质的广阔前景。

核酸的结构与功能的研究为阐明基因的本质,了解生物体遗传信息的流动作出了贡献。碱基配对是核酸分子相互作用的主要形式,这是核酸作为信息分子的结构基础。脱氧核糖核酸的双螺旋结构有不同的构象,J.D.沃森和F.H.C.克里克发现的是B-结构的右手螺旋,后来又发现了称为 Z-结构的左手螺旋。DNA还有超螺旋结构。这些不同的构象均有其功能上的意义。核糖核酸包括信使核糖核酸(mRNA)、转移核糖核酸(tRNA)和核蛋白体核糖核酸(rRNA),它们在蛋白质生物合成中起着重要作用。新近发现个别的RNA有酶的功能。

基因表达的调节控制是分子遗传学研究的一个中心问题,也是核酸的结构与功能研究的一个重要内容。对于原核生物的基因调控已有不少的了解;真核生物基因的调控正从多方面探讨。如异染色质化与染色质活化;DNA的构象变化与化学修饰;DNA上调节序列如加强子和调制子的作用;RNA加工以及转译过程中的调控等。

ATP在光合、代谢和遗传之间架起了桥梁

方法学

在生物化学的发展中,许多重大的进展均得力于方法上的突破。例如同位素示踪技术用于代谢研究和结构分析;层析,特别是70年代以来全面地大幅度地提高体系性能的高效液相层析以及各种电泳技术用于蛋白质和核酸的分离纯化和一级结构测定;X射线衍射技术用于蛋白质和核酸晶体结构的测定;高分辨率二维核磁共振技术用于溶液中生物大分子的构象分析;酶促等方法用于DNA序列测定;单克隆抗体和杂交瘤技术用于蛋白质的分离纯化以及蛋白质分子中抗原决定因子的研究等。70年代以来计算机技术广泛而迅速地向生物化学各个领域渗透,不仅使许多分析仪器的自动化程度和效率大大提高,而且为生物大分子的结构分析,结构预测以及结构功能关系研究提供了全新的手段。生物化学今后的继续发展无疑还要得益于技术和方法的革新。

Ⅳ 常用生物化学领域的四大技术分别有哪些应用

基因工程(质粒载体的构建、克隆等),核酸(southern/northern)、蛋白质(western)、PCR 。大致就是这些吧。。。

Ⅳ 简述生物化学四大基本实验技术及其概念

离心,电泳,层析,比色

Ⅵ 生物化学实验有哪些技术

生物化学实验的基本技术,包括沉淀技术、色谱技术、电泳技术、离心技术、固定化技术、免疫化学技术、分光光度法等

Ⅶ 生物化学技术的分类

重要的现代生物化学实验技术,按其目的和性质大致可分为三大类。
一是按不同的物理化学性质进行分析鉴定和分离制备,其中又可分为五类:①根据分子的大小进行分辨者,有凝胶过滤法、超速离心法、超滤法、 SDS电泳分析等。②根据分子荷电情况进行分辨者,有等电聚焦电泳法、离子交换层析法等。③根据吸收光谱和放射性等性质进行分辨者,有紫外/红外/荧光分光光度法、X射线结构分析法、电子顺磁共振,电子自旋共振和核磁共振法,以及放射性核素示踪和放射免疫分析法等。④根据疏水相互作用或氢键形成的引力进行分辨者,有反相高效液相层析、分子杂交技术等。⑤根据特异相互作用进行分辨者,有亲和层析、免疫化学分析法等。
二是经一系列不同的化学和物理方法处理,以求得差异分辨,或按指令合成不同的高分子物质。如氨基酸序列分析和序列合成、核苷酸序列分析和序列合成等。
三是有目的地对 DNA进行剪切拼接,引入细胞中的(或分子克隆技术)和等。
为使这些生物化学技术实现高效自动化、灵敏精确重复性好、特异性高,人们设计了一系列有微机控制的高性能仪器,使生物化学实验技术更臻完美。必须强调指出的是,技术方法是十分重要的实验手段,但更重要的是科学家运筹帷幄的战略设计。只有巧妙地利用不同的生物化学实验技术,方能达到预期的研究目的。

Ⅷ 生物化学与分子生物学最常用的实验技术包括什么

分子生物学实验技术,是进行分子生物学理论和应用研究的技术,主要有核酸分离纯化或合成、核苷酸顺序测定、分子杂交和DNA人工重组技术。核心是DNA人工重组技术—核酸分离纯化或合成、核苷酸顺序测定和分子杂交技术都服务于DNA重组技术。

Ⅸ 目前生物科技有哪些先进技术

目前生物科技有什么最新发展成果


1.我国科学家发现阿尔茨海默症致病的新机制
2006年11月19日,国际着名学术期刊《自然·医学》网络版在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所研究组关于β淀粉样蛋白产生过程新机制的最新研究成果。这项成果揭示了阿尔茨海默症致病的新机制,并且提示β2-肾上腺素受体有可能成为研发阿尔茨海默症的治疗药物的新靶点。

2.我国抗糖尿病新药研究取得开创性进展
中科院上海药物所科学家2006年在非肽类小分子胰高血糖素样肽-1受体激动剂的研究领域取得了重要进展,相关成果于2007年元月第一周发表在国际权威科学期刊《美国科学院院刊(PNAS)》网络版上。美国科学院院刊编辑部在向媒体的书面新闻发布中指出,这类口服有效的非肽类小分子激动剂有可能成为糖尿病、肥胖症和其他相关代谢性疾病的一种新型疗法。

3.揭示果蝇记忆奥秘,探索记忆的神经生物学基础
中科院生物物理研究所研究组关于果蝇的最新研究成果,揭示了果蝇的脑中并不存在一个通用的记忆中心,而是不同感觉记忆储藏在不同的区域里,并且像人类能记住图像的高度、大小、颜色等不同参数一样,果蝇的图像记忆也有对应的不同参数。通过对果蝇记忆基因的研究,可进一步运用到小白鼠、哺乳动物甚至人类身上,从而解决人类失眠、老年痴呆等精神性疾病。

4.饮用水质安全风险的末端控制技术与应用
为及时评价水质状况及应对突发事件,中科院生态环境研究中心和中科院广州地球化学研究所合作开发出适合末端水质监控的生物在线监测与预警技术,建立并完善生物毒性测试方法,在分子、细胞水平上形成一套适用于水质评估的技术体系。研究中开发的关键技术拥有自主知识产权,共产生发明专利22项,发表论文61 篇,其中SCI收录论文23篇。

5.美国科学家制出“仿生眼”助盲人恢复视力
美国科学家说,将可在两年内提供“仿生眼睛”植入手术,帮助数百万盲人恢复视力。
美国的研究人员已获准于两年内在五个治疗中心为50到70名病人安装这种“仿生眼睛”。
以希腊神话中百眼巨人阿古斯(Agrus)命名的“阿古斯二型”系统利用一个安装在眼镜上的照相机,把视觉信号传送到眼睛里的电极。
以前接受不够先进的人工视网膜移植手术的病人能够“看到” 光线、影像和物体的运动。但图像不够清晰。
一名失明者在1999年接受了这种手术,现在他上街时能够避开长的或较低的树枝,但看人时好像是看到一团黑影。
不过美国加州大学的科学家说,他们研造的“仿生眼睛”尝试从相机取得实时的图像,然后把它们变成微弱的电信号,输送到一个接收器后,在通过电极,刺激视网膜的视觉神经向大脑发出信号,让失明者能够“看到”景物。
这种新的装置比传统的人工视网膜更细小,但拥有多达60个电极,使解像度更高。而且面积只有一平方毫米,植入手术也更容易。

阅读全文

与生物化学新技术都有哪些相关的资料

热点内容
信息量大不敢想象怎么办 浏览:871
发信息拒收了怎么回事 浏览:348
亚太财险旗下代理公司有哪个 浏览:787
刚体转动数据保留多少位 浏览:40
微信上的配乐朗诵小程序叫什么 浏览:837
国际货运代理的经营范围包括哪些 浏览:570
收银机的程序在哪里 浏览:982
太原综合市场是什么意思 浏览:226
浏览器移动数据很慢为什么 浏览:526
数据库字段对应的实体类怎么写 浏览:96
连锁市场规划如何列名单 浏览:403
为什么给客户配置存款产品 浏览:693
工业信息局是什么编制 浏览:137
小渔市场怎么样 浏览:873
如何用婉转的话说老公不回信息 浏览:964
淘宝万宝路怎么交易 浏览:624
华中数控程序如何校验 浏览:848
怎么样介绍产品和文字 浏览:363
临沂代理记账多少一年 浏览:417
抚州抖音小程序开发一般多少钱 浏览:518