Ⅰ 材料的常用力学性能指标是什么
材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等。
(1)强度 强度是指金属材料在外力作用下对变形或断裂的抗力。强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2和抗拉强度σb,高温下工作时,还要考虑蠕变极限σn和持久强度σD。
(2)塑性 塑性是指金属材料在断裂前发生塑性变形的能力。塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,即试件被弯曲到受拉面出现第一条裂纹时所测得的角度。
(3)韧性 韧性是指金属材料抵抗冲击负荷的能力。韧性常用冲击功Ak和冲击韧性值αk表示。Αk值或αk值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化。而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性。
表示材料韧性的一个新的指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力。
(4)硬度 硬度是衡量材料软硬程度的一个性能指标。硬 度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力。而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。
Ⅱ 注塑成型工艺中,最重要的参数有哪些如何进行有效地控制
最佳成型的参数设定步骤
注塑成型一般都是连续不问断地进行生产,要保证生产的正
常进行,现场工程师就要提前制订出合理的、科学的工艺规程和
操作规范。塑料注塑成型的操作人员需要严格按照每个零件的成
型工艺规程和操作规范操作。
正确的工艺编制,除需要掌握注塑成型工艺、设备、模具、
高分子物理、高分子化学、化学热力学、化学动力学等方面的知
识,还需要掌握使用的塑料的工艺性能、设备液压及电气系统原
理、模具结构、操作人员的知识结构和操作习惯、工艺中各参数
的调节方法及作用、环境温度等因素对成型的影响。
最佳成型工艺应满足最低的废品和尽可能高的生产效率。在
科学合理的工艺条件下,在适宜的设备上生产,废品率均可控制
在0.5%以下。生产效率直接关系到工厂的经济效益,在保证最低
废品率的前提下,通过成型工艺的编制,达到提高经济效益的目
的。
注塑生产要达到一个比较稳定的状态是有一个过程的,这个
过程就是工艺人员对所生产产品质量控制方法不断加深的过程,
在这个过程中可能伴随着工艺条件的调整,这些工艺条件如经确
认都需纳入产品质量控制的工艺文件中,所以注塑工艺文件的编
制也是有一个逐步完善的过程。一般注塑厂根据产品的类型,工
艺人员制订出统一的工艺文件格式,通过正确的成型工艺编制程
序编制出产品的工艺规程来指导生产。
图3-1 编制注塑成型工艺的一般步骤
2.工艺文件编制各步骤的工作内容
(1)收集材料性能参数的途径,主要有材质证明、进厂样条
测试的工艺参数、材料性能手册等。进厂性能测试可以根据需要
对熔融指数、拉伸强度、冲击强度、硬度、阻燃性、杂质等指标
选择进行。
(2)初步设定成型参数,可以对照塑料注塑成型工艺卡进行,
塑料成型工艺卡可以包括以下内容。
①产品的名称、图号。
②使用材料的名称、牌号、形状、颜色。
③产品净重、水口重量、每模件数、
⑧工艺规范:模具温度(冷却水的进出路线、连接方式)、机
筒温度、喷嘴温度、合模压力、压力、保压压力、背压、注
射时间、保压时间、速度、开模速度等。
(3)试生产调试,按照材料性能参数设定烘料工艺、机筒温
度、模具温度、给设备加温;根据形态类似产品设定成型时间、
压力等参数;根据模具厚度和结构设定开、合模限位及顶出方式。
待温度升到设定数值,启动油电动机,空转3~5min,低速试运
行,观察设备、模具运行状况,待满足正常工作条件时,半自动
成型。
(4)确定最佳工艺参数,最佳工艺参数是指既能满足产品质
量要求,又具有较高经济性能的工艺参数。最佳工艺参数包括温
度的设定、锁模力参数的设定、开合模参数的设定、顶出参数的
设定、抽芯参数的设定、参数的设定、保压切换方式的选择
与设定、冷却时间的设定、塑化参数的设定。
温度的设定主要包括机筒温度、模具温度、液压油温度的设
定。机筒温度一般高于物料的熔融温度,低于其分解温度。为了
提高生产效率,在满足制品外观质量的前提下,温度设定应尽可
能偏低,出的熔体温度高于熔融温度20。C左右即可。
锁模力对成型高精度的产品、保护模具、延长模具寿命、降
低模具及设备维修成本具有重要意义。锁模力要与压力相匹
配。
开合模行程要合理,速度要科学适宜,顶出速度、压力、行
程符合制品要求。抽芯到位,稳定可靠。
时间、压力、速度满足成型要求。
保压切换的选择根据需要选择位置、压力、时间切换方式。
冷却时间根据工艺要求选择冷却介质、方式和时间。
塑化参数的设定,包括塑化压力、螺杆转速的选择。螺杆松
退(抽胶)距离,塑化背压的设定,要考虑成型材料的特性。
(5)做好生产记录。生产记录包括试模记录、生产工艺记录、
首件产品检验记录等。生产中除了要注重产品的外观质量,还要
注重产品的尺寸及质量变化情况。
产品的外观质量主要包括:缺料(欠注)、飞边(披锋)、缩
痕、变色、暗纹、熔接痕、银丝(水纹)、起皮(分层)、流痕
(水波纹)、喷射纹(蛇行纹)、变形(翘曲)、光洁度差、龟裂、
气泡(空洞)、透明度差、白化等。产品的尺寸要根据产品的使用
条件,重点控制关键尺寸(配合尺寸)。对产品进行称重是一种控
制尺寸的快速有效的方法。
(6)对参数进一步修订。生产过程中若连续出现两件废品,
要及时对工艺进行修订,并对影响因素进行记录,纳人生产操作
要领。
操作要领包括:产品生产中可能出现或出现过的缺陷以及采
取的相应对策;对制品正常生产必不可少的操作要求,如产品缺
陷的处理方法,交接班时不能停机等。生产中交接班停机会造成
很大的浪费,因材料受热时间长要老化分解,在交接班的时候由
于种种原因,很容易造成操作者停机,因此,在工厂生产管理及
操作规范中一定要加以明确。
(7)纳入工艺文件。对已经过确认可以稳定生产的工艺,编
制成正式工艺文件,经审批、会签、标准化、批准后归档。
Ⅲ 钢材的主要力学性能指标有哪些各指标可以用来衡量钢材哪方面的性能
1、韧性:金属材料抵抗冲击载荷而不被破坏的能力。
2、硬度:金属材料表面抵抗比他更硬的物体压入的能力。
3、塑性:金属材料在载荷作用下产生永久变形而不破坏的能力。
4、强度:金属材料在静载荷作用下抵抗永久变形或断裂的能力。
5、脆性:脆性是指材料在损坏之前没有发生塑性变形的一种特性。
6、疲劳强度:材料零件和结构零件对疲劳破坏的抗力。
7、屈服点或屈服应力:屈服点或屈服应力是金属的应力水平,用MPa度量。
8、延展性:延展性是指材料在拉应力或压应力的作用下,材料断裂前承受一定塑性变形的特性。
9、刚性:刚性是金属材料承受较高应力而没有发生很大应变的特性。
10、弹性:弹性是指金属材料在外力消失时,能使材料恢复原先尺寸的一种特性。
(3)材料成型有哪些技术指标扩展阅读:
按化学成分分类钢铁:
一、碳素钢 碳素钢是指钢中除铁、碳外,还含有少量锰、硅、硫、磷等元素的铁碳合金,按其含碳量的不同,可分为:
1、低碳钢--含碳量wc≤0.25%。
2、中碳钢--含碳量wc>0.25%≤0.60%。
3、高碳钢--含碳量wc>0.60%高碳钢一般在军工业和工业医疗业比较多。
二、合金钢为了改善钢的性能,在冶炼碳素钢的基础上,加入一些合金元素而炼成的钢,如铬钢、锰钢、铬锰钢、铬镍钢等。按其合金元素的总含量,可分为:
1、低合金钢--合金元素的总含量≤5%。
2、中合金钢--合金元素的总含量5%~10%。
3、高合金钢--合金元素的总含量>10%。
Ⅳ 1.材料的性能指标包括哪些
一、金属材料:
金属材料的性能一般可分为使用性能和工艺性能两大类
使用性能是指材料在工作条件下所必须具备的性能,它包括物理性能、化学性能和力学性能.
物理性能是指金属材料在各种物理条件任用下所表现出的性能.包括:密度、熔点、导热性、导电性、热膨胀性和磁性等.
化学性能是指金属在室温或高温条件下抵抗外界介质化学侵蚀的能力.包括:耐蚀性和抗氧化性.
力学性能是金属材料最主要的使用性能,所谓金属力学性能是指金属在力学作用下所显示与弹性和非弹性反应相关或涉及应力—应变关系的性能.
它包括:强度、塑性、硬度、韧性及疲劳强度等.
金属材料的工艺性能直接影响零件加工后的工艺质量,是选材和制定零件加工工艺路线时必须考虑的因素之一.它包括铸造性能、压力加工性能、焊接性能、切削加工性能和热处理性能等。
二、陶瓷材料:
陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料.它具有高熔点、高硬度、高耐磨性、耐氧化等优点.可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料.
力学特性
陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上。陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差。
热特性
陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料。同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。
电特性
大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV~110kV)的绝缘器件。铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等。少数陶瓷还具有半导体的特性,可作整流器。
化学特性
陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。
光学特性
陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等。磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途。
三、 合成材料:
合成材料品种很多,塑料、合成纤维和合成橡胶就是通常所说的三大合成材料,此外,还有近年来发展起来的黏合剂、涂料等物质。
一)合成材料主要品种的性质
塑料的主要成分是合成树脂,以及某些特定用途的添加剂,如增塑剂、防老化剂等。
1.塑料
分类原则 类型 特征性质和实例
按树脂受热时的特征分 热塑性塑料 以热塑性树脂为基本成分,受热软化,可反复塑制。如聚乙烯、聚氯乙烯、聚苯乙烯等。
热固性塑料 以热固性树脂为基本成分,加工成型后变为不熔状态。如酚醛塑料、氨基塑料等。
按应用范围及材料性能特点分 通用塑料 通用性强,用途广泛,产量大,价格低。主要有聚乙烯、聚氯乙烯、聚苯乙烯、聚丙烯等。
工程塑料 机械性能较好,高强度,可以代替金属用作工程结构材料。如聚酯、聚酰胺、聚碳酸酯、氟塑料。
其他 其他分类分为通用、工程、耐高温特种塑料四大类;或通用、工程和其他塑料三大类。
2.合成纤维
合成纤维是化学纤维之一,是指利用石油、天然气、煤和农副产品为原料制成的纤维材料。
类型 性质特征和实例
合成纤维 具有强度高、弹性好、耐磨、耐化学腐蚀、不发霉、不怕虫蛀、不缩水等优点。如涤纶、锦纶、腈纶、丙纶、维纶和氯纶等。
特种合成纤维 具有某些特殊性能。如芳纶纤维、碳纤维、耐辐射纤维、光导纤维和防火纤维等。
3.合成橡胶
合成橡胶是除天然橡胶以外的以石油、天然气为原料,以二烯烃和烯烃为单体聚合而成的橡胶制品。它具有高弹性、绝缘性、气密性、耐油、耐高温或者耐低温等性能。常见类型有通用橡胶(如丁苯橡胶、顺丁橡胶、氯丁橡胶等)和特种橡胶(如聚硫橡胶、硅橡胶等)等两大类。
二)有机高分子化合物的结构特点和基本性质
1.结构特点
有机高分子化合物具有线型结构和体型结构。线型结构呈长链状,可以带支链,也可不带支链。高分子链间以分子间作用力紧密结合。如果高分子链上还有能起反应的官能团,当它跟别的单体或别的物质反应时,高分子链之间将形成化学键,产生一些交联,形成网状结构。交疗养的程度越大,材料的强度越大。
2.基本性质
有机高分子化合物具有不同于小分子物质的性质。主要有:(1)溶解性。线型结构的有机高分子能溶解在适当的溶剂里,但溶解过程比小分子慢。体型结构 的有机高分子则不容易溶解,只是有一定程度的胀大。(2)热塑造性和热固性。线型高分子具有热塑造性,体型高分子具有热固性。(3)强度。高分子材料的强度一般都比较大。(4)电绝缘性。高分子材料通常是很好的电绝缘材料。
三)新型有机高分子材料的性能和用途
新型有机高分子材料包括功能高分子材料和复合材料等多种。
1.功能高分子材料
功能高分子材料是指既有传统高分子材料的机械功能,又有某些特殊功能的高分子材料。常见类型有:(1)高分子分离膜。它是用具有特殊分离功能的高分子材料制成的薄膜。它的特点是能让某些物质有选择性地通过,而把另一些物质分离掉。这种分离膜广泛应用于生活污水、工业废水等的处理和回收;海水和苦咸水的淡化;天然果汁和浓缩,乳制品的加工,酿酒等。(2)医用高分子材料。它是具有优异的生物相容性,较少发生排斥,可以满足人工器官对材料的要求,以及某些特殊功能的材料。目前大都使用硅聚合物和聚胺酯等。(3)隐身材料、液晶高分子材料、生物高分子材料等。
2.复合材料
复合材料是指两种或者两种以上材料组合而成一种新型材料,其中一种材料作为基体,另一种作为增强剂。复合材料具有强度高、质量小、耐高温、耐腐蚀等优良性能。主要应用于宇航工业,以及汽车工业、机械工业、体育工业等方面。
四)单体和聚合物的互相推导
1.由单体推导聚合物
(1)加聚反应
①烯烃自聚
②1,3-丁二烯型自聚
③烯烃共聚型
④烯烃和二烯烃共聚型
(2)缩聚反应
①二元酸和二元醇共聚型
②同种羟基酸之间聚合型
③同种氨基酸之间聚合型
④不同种氨基酸之间聚合型
2.由高聚物判断单体
根据加聚反应和缩聚反应的反应机理,采用逆向思维可以判断合成高聚物的单体。
(1)主链中的碳原子之间以C-C键相结合的高聚物,为单烯烃加聚反应的产物。判断单体的方法是将主链中的C-C键两两断开,将C-C键改变为C=C键,即得合成高聚物的单体。如:合成高聚物[CH2-CH2-CH2-CH(Cl)]n的单体为:CH2=CH2和CH2=CHCl。
(2)主链中的碳原子以C-C键和C=C键相结合的高聚物,为加聚反应的产物。判断其单体的方法是以C=C键为中心,向两边各扩展1个C原子后断开C-C键,然后将C=C键变成C-C键,将C-C键变成C=C键,即得合成高聚物的单体。如合成[CH2-CH2-CH2-CH=CH-CH2]的单体为CH2=CH2和CH2=CH-CH=CH2。
(3)主链中含有 原子团或者含有 和O原子的高聚物为醇和羧酸缩聚反应的产物或者羟基酸缩聚反应的产物。其单体的判断方法是:在>C=O基和O原子之间断开,将O原子结合H构成-OH基即成为醇,将>C=O基结合-OH基构成-COOH基即得羧酸。如合成[OCH2CH2O-OCCO]的单体是HOCH2CH2OH和HOOC-COOH。
(4)主链中含有-NH-和 基团或者含有 的高聚物,是氨基酸或者二胺和二酸缩聚反应的产物。判断其单体的方法是:在肽键中间的C=O和NH之间断开,在C=O上加-OH基成为羧酸,在NH基上加上H原子成为-NH2基。如:合成[NH-(CH2)6-NH-CO-(CH2)4CO]的单体为H2N-(CH2)6-NH2和HOOC-(CH2)4-COOH。
Ⅳ 材料的主要强度指标是哪几个
强度指标有:弹性极限、屈服极限和强度极限。
弹性极限:用来表示材料发生纯弹性变形的最大限度。当金属材料单位横截面积受到的拉伸外力达到这一限度以后,材料将发生弹塑性变形。对应于这一限度的应力值。
屈服极限:用来表示材料抵抗微小塑性变形的能力。屈服极限又分为物理屈服极限和条件屈服极限。
强度极限:材料抵抗外力破坏作用的最大能力,称为材料的强度极限。也就是说,当材料横截面上受到的拉应力达到材料的强度极限时,材料就会被拉断。
材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等。
(5)材料成型有哪些技术指标扩展阅读:
材料总是和一定的使用场合相联系,可由一种或若干种物质构成。同一种物质,由于制备方法或加工方法不同,可成为用途迥异的不同类型和性质的材料。
材料往往既是结构材料又是功能材料,如铁、铜、铝等。传统材料是指那些已经成熟且在工业中已批量生产并大量应用的材料,如钢铁、水泥、塑料等。这类材料由于其量大、产值高、涉及面广泛,又是很多支柱产业的基础。
对于长期使用的塑料材料及制品,必须考虑维修及保养费用,若能够大幅度削减维修费用时,即使初期投资较大,但对材料整体看,还是有利的。
另外还要考虑成型加工性能及二次加工性的难易程度,考虑材料在模具中的变化情况。在设计制作轴承、齿轮等重要部件时,还应该进行物理机械性能检验分析;做透明材料时,还应进行光学试验及修正。
Ⅵ 钢材的主要机械性能及衡量各种性能的指标是什么
钢材常见的力学性能通俗解释归为四项,即:强度、硬度、塑性、韧性。简单的可这样解释:
强度,是指材料抵抗变形或断裂的能力。有二种:屈服强度σb、抗拉强度σs。强度指标是衡量结构钢的重要指标,强度越高说明钢材承受的力(也叫载荷)越大;
硬度,是指材料表面抵抗硬物压人的能力。常见有三种:布氏硬度HBS、洛氏硬度HRC、维氏硬度HV。硬度是衡量钢材表面变形能力的指标,硬度越高,说明钢的耐磨性越好;即不容易磨损;
塑性,是指材料产生变形而不断裂的能力。有两种表示方法:伸长率δ、断面收缩率ψ。塑性是衡量钢材成型能力的指标,塑性越高,说明钢材的延展性越好,即容易拉丝或轧板;
韧性也叫冲击韧性,是指材料抵抗冲击变形的能力,表示方法为冲击值αk。冲击韧性是衡量钢材抗冲击能力的指标,数值越高,说明钢材抵抗运动载荷的能力越强。
一般情况下,强度低的钢材,硬度也低,塑性和韧性就高,例如钢板、型材,就是由强度较低的钢材生产的;而强度较高的钢材,硬度也高,但塑性和韧性就差,例如生产机械零件的中碳钢、高碳钢,就很少看到轧成板或拉成丝。
Ⅶ 金属材料的常用力学性能指标主要包括
金属材料的常用力学性能指标主要包括:弹性和刚度、强度、塑性、硬度、冲击韧度、断裂韧度及疲劳强度等,它们是衡量材料性能极其重要的指标。
1、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。
2、屈服点(бs):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生0.2%L。时应力值,单位用牛顿/毫米2(N/mm2)表示。
3、抗拉强度(бb)也叫强度极限指材料在拉断前承受最大应力值。单位用牛顿/毫米2(N/mm2)表示。如铝锂合金抗拉强度可达689.5MPa。
4、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。工程上常将δ≥5%的材料称为塑性材料,如常温静载的低碳钢、铝、铜等;而把δ≤5%的材料称为脆性材料,如常温静载下的铸铁、玻璃、陶瓷等。
5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。
6、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度(HBS、HBW)和洛氏硬度(HKA、HKB、HRC)。
7、冲击韧性(Ak):材料抵抗冲击载荷的能力,单位为焦耳/厘米2(J/cm2)。
(7)材料成型有哪些技术指标扩展阅读:
由于硬度试验仅在金属材料表面局部体积内产生很小的压痕,所以用硬度试验还可以检查金属材料表面层质量,如脱碳与增碳。在实际生产中作为紧固件产品质量检查、制订合理加工工艺的最常用的重要试验方法。在产品设计图样的技术条件中,硬度也是一项主要技术指标。
常见不规范表达有:HRC32、HV385。常用的硬度试验方法有布氏硬度、洛氏硬度、维氏硬度、表面洛氏和显微硬度等。根据被测工件的直径、规格、材料种类和标准规范,把维氏硬度试验作为机械和物理性能中的仲裁检验项目,在机械装备行业中使用很广泛。
如紧固件行业测定螺栓表面硬度,在头部平面、紧固件末端或无螺纹杆部,测定时用最小载荷为98N,即HV10;测定螺栓表面硬度与心部硬度之间误差,用最小载荷为29.4N,即HV0.3;测定螺母表面硬度用最小载荷为294N,即HV30。
但是,由于维氏硬度对试样表面要求高,压痕对角线长度d的测定较麻烦,工作效率不如洛氏硬度高,不适于大批量测试。为此,洛氏硬度则使用较广泛,它的优点是测量迅速、简便,压痕较小,可用于测量成品、半成品,不损坏工件。
同时由于压痕较小,测量的硬度值不够准确,数据重复性差,对试验结果应进行正确处理,并认真分析影响硬度试验结果的主要因素,才能大大提高硬度测试的准确性,保证检测数据的真实性和有效性。
Ⅷ 评价材料铸造性能的主要指标是什么
指金属或合金是否适合铸造的一些工艺性能,主要包括流动性、充型能力;收缩性铸件凝固时体积收缩的能力;偏析 指化学成分不均性;吸气性 在熔炼和浇注时吸收气体的性能。
合金铸造成型,获得优质铸件的能力。
铸造性能:流动性、体收缩、线收缩、热裂倾向。