⑴ 怎么学习大数据工程
第1阶段:掌握Java Web数据可视化
你需要掌握Java服务器端技术,前端可视化技术,数据库技术,这个阶段主要是储备大数据的前置技能,当然你已经可以从事数据可视化工程师的工作了,但还不能算真正入门大数据。
第2阶段:学会 Hadoop 核心及生态圈技术栈
这部分涵盖的技术比较多,像 HDFS 分布式存储、MapRece、Zookeeper、Kafka等你都得掌握,掌握后可以去从事 ETL 工程师等一些大数据的岗位,但是知识储备还不够完整。
第3阶段:搞定计算引擎及分析算法
计算引擎我建议是 Spark 和 Flink 都能熟练使用,虽然现在一些企业还在用 Spark,但未来 Flink 一定会成为主流。学到这,你已经具备相对完整的大数据技能,能从事一些高薪的岗位了,像大数据研发工程师、推荐系统工程师、用户画像工程师等。
⑵ 想要学习大数据,应该怎么入门
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
⑶ 零基础应该如何学习大数据
首先,学习大数据我们就要认识大数据,大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。 大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(真实性)。
其次,学习有关大数据课程的内容,第一阶段:Java语言基础(只只需要学习Java的标准版JavaSE就可以了,做大数据不需要很深的Java 技术,当然Java怎么连接数据库还是要知道);
第二阶段:Linux精讲(因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑);
第三阶段:Hadoop生态系统(这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。)
第四阶段:strom实时开发(torm是一个免费并开源的分布式实时计算系统。利用Storm可以很容易做到可靠地处理无限的数据流,像Hadoop批量处理大数据一样,Storm可以实时处理数据。Storm简单,可以使用任何编程语言。)
第五阶段:Spark生态体系(它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。);
第六阶段:大数据项目实战(大数据实战项目可以帮助大家对大数据所学知识更加深刻的了解、认识,提高大数据实践技术)。
关于零基础应该如何学习大数据,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
⑷ 怎样学习大数据
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
⑸ 如何进入大数据领域,学习路线是什么
主要学习一些Java语言的概念,如字符、流程控制、面向对象、进程线程、枚举反射等,学习MySQL数据库的安装卸载及相关操作,学习JDBC的实现原理以及Linux基础知识,是大数据刚入门阶段。
主要讲解CAP理论、数据分布方式、一致性、2PC和3PC、大数据集成架构。涉及的知识点有Consistency一致性、Availability可用性、Partition tolerance分区容忍性、数据量分布、2PC流程、3PC流程、哈希方式、一致性哈希等。
主要讲解协调服务ZK(1T)、数据存储hdfs(2T)、数据存储alluxio(1T)、数据采集flume、数据采集logstash、数据同步Sqoop(0.5T)、数据同步datax(0.5T)、数据同步mysql-binlog(1T)、计算模型MR与DAG(1T)、hive(5T)、Impala(1T)、任务调度Azkaban、任务调度airflow等。
主要讲解数仓仓库的历史背景、离线数仓项目-伴我汽车(5T)架构技术解析、多维数据模型处理kylin(3.5T)部署安装、离线数仓项目-伴我汽车升级后加入kylin进行多维分析等;
主要讲解计算引擎、scala语言、spark、数据存储hbase、redis、ku,并通过某p2p平台项目实现spark多数据源读写。
主要讲解数据通道Kafka、实时数仓druid、流式数据处理flink、SparkStreaming,并通过讲解某交通大数让你可以将知识点融会贯通。
主要讲解elasticsearch,包括全文搜索技术、ES安装操作、index、创建索引、增删改查、索引、映射、过滤等。
主要讲解数据标准、数据分类、数据建模、图存储与查询、元数据、血缘与数据质量、Hive Hook、Spark Listener等。
主要讲解Superset、Graphna两大技术,包括基本简介、安装、数据源创建、表操作以及数据探索分析。
主要讲解机器学习中的数学体系、Spark Mlib机器学习算法库、Python scikit-learn机器学习算法库、机器学习结合大数据项目。
⑹ 电脑大数据怎么学
如何学习大数据技术?大数据怎么入门?怎么做大数据分析?数据科学需要学习那些技术?大数据的应用前景等等问题。由于大数据技术涉及内容太庞杂,大数据应用领域广泛,而且各领域和方向采用的关键技术差异性也会较大,难以三言两语说清楚,本文来说说到底要怎么学习它,以及怎么避免大数据学习的误区,以供参考。
大数据要怎么学:数据科学特点与大数据学习误区
(1)大数据学习要业务驱动,不要技术驱动:数据科学的核心能力是解决问题。
大数据的核心目标是数据驱动的智能化,要解决具体的问题,不管是科学研究问题,还是商业决策问题,抑或是政府管理问题。
所以学习之前要明确问题,理解问题,所谓问题导向、目标导向,这个明确之后再研究和选择合适的技术加以应用,这样才有针对性,言必hadoop,spark的大数据分析是不严谨的。
不同的业务领域需要不同方向理论、技术和工具的支持。如文本、网页要自然语言建模,随时间变化数据流需要序列建模,图像音频和视频多是时空混合建模;大数据处理如采集需要爬虫、倒入导出和预处理等支持,存储需要分布式云存储、云计算资源管理等支持,计算需要分类、预测、描述等模型支持,应用需要可视化、知识库、决策评价等支持。所以是业务决定技术,而不是根据技术来考虑业务,这是大数据学习要避免的第一个误区。
(2)大数据学习要善用开源,不要重复造轮子:数据科学的技术基因在于开源。IT前沿领域的开源化已成不可逆转的趋势,Android开源让智能手机平民化,让我们跨入了移动互联网时代,智能硬件开源将带领跨入物联网时代,以Hadoop和Spark为代表的大数据开源生态加速了去IOE(IBM、ORACLE、EMC)进程,倒逼传统IT巨头拥抱开源,谷歌和OpenAI联盟的深度学习开源(以Tensorflow,Torch,Caffe等为代表)正在加速人工智能技术的发展。
数据科学的标配语言R和Python更是因开源而生,因开源而繁荣,诺基亚因没把握开源大势而衰落。为什么要开源,这得益于IT发展的工业化和构件化,各大领域的基础技术栈和工具库已经很成熟,下一阶段就是怎么快速组合、快速搭积木、快速产出的问题,不管是linux,anroid还是tensorflow,其基础构件库基本就是利用已有开源库,结合新的技术方法实现,组合构建而成,很少在重复造轮子。
另外,开源这种众包开发模式,是一种集体智慧编程的体现,一个公司无法积聚全球工程师的开发智力,而一个GitHub上的明星开源项目可以,所以要善用开源和集体智慧编程,而不要重复造轮子,这是大数据学习要避免的第二个误区。
(3)大数据学习要以点带面,不贪大求全:数据科学要把握好碎片化与系统性。根据前文的大数据技术体系分析,我们可以看到大数据技术的深度和广度都是传统信息技术难以比拟的。
我们的精力很有限,短时间内很难掌握多个领域的大数据理论和技术,数据科学要把握好碎片化和系统性的关系。
何为碎片化,这个碎片化包括业务层面和技术层面,大数据不只是谷歌,亚马逊,BAT等互联网企业,每一个行业、企业里面都有它去关注数据的痕迹:一条生产线上的实时传感器数据,车辆身上的传感数据,高铁设备的运行状态数据,交通部门的监控数据,医疗机构的病例数据,政府部门的海量数据等等,大数据的业务场景和分析目标是碎片化的,而且相互之间分析目标的差异很大;另外,技术层面来讲,大数据技术就是万金油,一切服务于数据分析和决策的技术都属于这个范畴,其技术体系也是碎片化的。
那怎么把握系统性呢,不同领域的大数据应用有其共性关键技术,其系统技术架构也有相通的地方,如系统的高度可扩展性,能进行横向数据大规模扩张,纵向业务大规模扩展,高容错性和多源异构环境的支持,对原有系统的兼容和集成等等,每个大数据系统都应该考虑上述问题。如何把握大数据的碎片化学习和系统性设计,离不开前面提出的两点误区,建议从应用切入、以点带面,先从一个实际的应用领域需求出发,搞定一个一个技术点,有一定功底之后,再举一反三横向扩展逐步理解其系统性技术。
(4)大数据学习要勇于实践,不要纸上谈兵:数据科学还是数据工程?
大数据只有和特定领域的应用结合起来才能产生价值,数据科学还是数据工程是大数据学习要明确的关键问题,搞学术发paper数据科学OK,但要大数据应用落地,如果把数据科学成果转化为数据工程进行落地应用,难度很大,这也是很多企业质疑数据科学价值的原因。且不说这种转化需要一个过程,从业人员自身也是需要审视思考的。
工业界包括政府管理机构如何引入研究智力,数据分析如何转化和价值变现?数据科学研究人员和企业大数据系统开发工程人员都得想想这些关键问题。
目前数据工程要解决的关键问题主线是数据(Data)>知识(Knowledge)>服务(Service),数据采集和管理,挖掘分析获取知识,知识规律进行决策支持和应用转化为持续服务。解决好这三个问题,才算大数据应用落地,那么从学习角度讲,DWS就是大数据学习要解决问题的总目标,特别要注重数据科学的实践应用能力,而且实践要重于理论。从模型,特征,误差,实验,测试到应用,每一步都要考虑是否能解决现实问题,模型是否具备可解释性,要勇于尝试和迭代,模型和软件包本身不是万能的,大数据应用要注重鲁棒性和实效性,温室模型是没有用的,训练集和测试集就OK了吗?
大数据如何走出实验室和工程化落地,一是不能闭门造车,模型收敛了就想当然万事大吉了;二是要走出实验室充分与业界实际决策问题对接;三是关联关系和因果关系都不能少,不能描述因果关系的模型无助于解决现实问题;四是注重模型的迭代和产品化,持续升级和优化,解决新数据增量学习和模型动态调整的问题。
所以,大数据学习一定要清楚我是在做数据科学还是数据工程,各需要哪些方面的技术能力,现在处于哪一个阶段等,不然为了技术而技术,是难以学好和用好大数据的。
⑺ 大数据学习培训如何学
大数据技术想要入门是比较难的,如果是零基础的学员想要入门大数据的还是不太可能事情,最好是找一家靠谱的大数据培训机构进行系统的学习大数据基础,但是大数据的学习也不是谁都可以的,零基础的最好是本科的学历,因为大数据培训学习需要的逻辑思维分析能力比较强,也涉及到一些大学的数学算法,所以学历要求会高些,如果是有Java基础的哪就另当别论了,大数据技术的培训学习,基本都是以Java为基础铺垫的的,有一些Java基础的话,相对来说就容易一些了,如果是直接想学大数据开发的话,Linux基础要有一些,然后就是大数据相关组件的学习和使用,以及他们之间各个有什么作用,数据采集聚合传输处理,各个组件在什么位置,有什么作用等,
一般都是Hadoop+zookeeper+Hive+Flume+Kafka+HBase+Spark+Flink
大数据培训内容:
1、基础部分:JAVA语言 和 LINUX系统。
2、大数据技术部分:HADOOP、HIVE、OOZIE、WEB、FLUME、PYTHON、HBASE、KAFKA、SCALA、SPARK、SPARK调优等,覆盖前沿技术:Hadoop,Spark,Flink,实时数据处理、离线数据处理、机器学习。
大数据学习是一件值得大家投资自己的事情,也是一件从长远发展来看比较不错的行业,但是咋这里小编还是要体提醒大家在决定大数据学习之前,一定要先对大数据和自己都有一个明确的认知,这样更有利于后期大数据的学习。
2021大数据学习路线
⑻ 初学者如何高效学习大数据技术
【导读】大数据的高薪和发展前景,吸引着越来越多的人想要加入大数据行业,而想做大数据,前提是需要掌握相应的技术,才能获得在行业立足的资本。尤其是很多零基础学习者,学习大数据是需要跨过的第一道关卡。那么,初学者如何高效学习大数据技术?
目前想要转型做大数据的人群当中,零基础的学习者不在少数,对于零基础学习者,比较中肯的建议是不要自学。大数据作为一门新兴技术,市面上能够找到的学习资料非常有限,并且大数据技术不断在更新迭代,自学很难跟上最新技术趋势。
对于大部分零基础学习者来说,想要学大数据,通过大数据培训是效率最高的方式。而市面上的大数据培训,可以分为线上培训和线下培训两种模式,不管是这些机构课程如何宣传,作为初学者,应该重视的是,如果能够达到高效的学习。
大数据线上培训,有直接卖录制好的视频的,也有视频直播课程,相对来说,视频直播课程具有更好的课堂互动性,如果能坚持下来,那么应当也能有一定的收获。
而大数据线下培训,应该说是各种培训模式下,学习效率和学习效果都最好的方式了。大数据线下培训有完备的教学体系,系统化的大数据课程,资深的专业讲师,三管齐下,能够帮助学习者更快地入门,打下良好的基础。
在大数据的学习中,除了基础技术知识的学习,更重要的是理论与实践的结合,毕竟我们最终还是要将技术知识运用到工作实际中,这也是就业当中的核心竞争力来源。
大数据线下培训,拥有良好的硬件环境支持,在不同的学习阶段,还有相应的实战项目来做联系,大大提升学习者的技术实战能力。
以上就是小编今天给大家整理发送的关于“初学者如何高效学习大数据技术?”的全部内容,希望对大家有所帮助。所谓不做不打无准备之仗,总的来说随着大数据在众多行业中的应用,大数据技术工作能力的工程师和开发人员是很吃香的。希望各位大家在学习之前做好准备,下足功夫不要凭空想象的想要取得优异的成绩。
⑼ 大数据怎么学习
第一阶段:大数据技术入门
1大数据入门:介绍当前流行大数据技术,数据技术原理,并介绍其思想,介绍大数据技术培训课程,概要介绍。
2Linux大数据必备:介绍Lniux常见版本,VMware虚拟机安装Linux系统,虚拟机网络配置,文件基本命令操作,远程连接工具使用,用户和组创建,删除,更改和授权,文件/目录创建,删除,移动,拷贝重命名,编辑器基本使用,文件常用操作,磁盘基本管理命令,内存使用监控命令,软件安装方式,介绍LinuxShell的变量,控制,循环基本语法,LinuxCrontab定时任务使用,对Lniux基础知识,进行阶段性实战训练,这个过程需要动手操作,将理论付诸实践。
3CM&CDHHadoop的Cloudera版:包含Hadoop,HBase,Hiva,Spark,Flume等,介绍CM的安装,CDH的安装,配置,等等。
第二阶段:海量数据高级分析语言
Scala是一门多范式的编程语言,类似于java,设计的初衷是实现可伸缩的语言,并集成面向对象编程和函数式编程的多种特性,介绍其优略势,基础语句,语法和用法, 介绍Scala的函数,函数按名称调用,使用命名参数函数,函数使用可变参数,递归函数,默认参数值,高阶函数,嵌套函数,匿名函数,部分应用函数,柯里函数,闭包,需要进行动手的操作。
第三阶段:海量数据存储分布式存储
1HadoopHDFS分布式存储:HDFS是Hadoop的分布式文件存储系统,是一个高度容错性的系统,适合部署在廉价的机器上,HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用,介绍其的入门基础知识,深入剖析。
2HBase分布式存储:HBase-HadoopDatabase是一个高可靠性,高性能,面向列,可伸缩的分布式存储系统,利用HBase技术可在廉价PC上搭建起大规模结构化存储集群,介绍其入门的基础知识,以及设计原则,需实际操作才能熟练。
第四阶段:海量数据分析分布式计算
1HadoopMapRece分布式计算:是一种编程模型,用于打过莫数据集的并行运算。
2Hiva数据挖掘:对其进行概要性简介,数据定义,创建,修改,删除等操作。
3Spare分布式计算:Spare是类MapRece的通用并行框架。
第五阶段:考试
1技术前瞻:对全球最新的大数据技术进行简介。
2考前辅导:自主选择报考工信部考试,对通过者发放工信部大数据技能认证书。
上面的内容包含了大数据学习的所有的课程,所以,如果有想学大数据的可以从这方面下手,慢慢的了解大数据。
⑽ 零基础学习大数据怎么学
【导语】如今大数据发展得可谓是如日中天,各行各业对于大数据的需求也是与日俱增,越来越多的决策、建议、规划和报告,都要依靠大数据的支撑,学习大数据成了不少人提升或转行的机会,那么零基础学习大数据怎么学呢?
1、学习大数据我们就要认识大数据,大数据(big
data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(真实性)。
2、学习有关大数据课程的内容:
第一阶段:Java语言基础(只只需要学习Java的标准版JavaSE就可以了,做大数据不需要很深的Java
技术,当然Java怎么连接数据库还是要知道);
第二阶段:Linux精讲(因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑);
第三阶段:Hadoop生态系统(这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。)
第四阶段:strom实时开发(torm是一个免费并开源的分布式实时计算系统。利用Storm可以很容易做到可靠地处理无限的数据流,像Hadoop批量处理大数据一样,Storm可以实时处理数据。Storm简单,可以使用任何编程语言。)
第五阶段:Spark生态体系(它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。);
第六阶段:大数据项目实战(大数据实战项目可以帮助大家对大数据所学知识更加深刻的了解、认识,提高大数据实践技术)。
关于零基础学习大数据怎么学,就给大家介绍到这里了,其实想要学好大数据,成为优秀的大数据工程师,还是需要大家多多进行自我技能提升,多多进行日常问题处理,加油!