导航:首页 > 软件知识 > 什么是递归程序

什么是递归程序

发布时间:2022-02-01 11:42:43

❶ 递归程序

while(w>0)
{pro(w-10);
printf("%d",w);
pro(w-1);
}

当w=1时,这个while中的w始终没有变化,当然是死循环。

❷ 递归程序和非递归程序的优缺点是什么

递归代码少,设计到递推和回归两个过程,逻辑理解困难, 务必避免调用层次过多,和调用堆栈使用的栈内存过大,可能导致stack overflow
非递归就是正常写法了,递归的都能改成非递归的
递归算法必须写的很精确,否则容易造成死循环

❸ 什么是递归的概念

递归是一种重要的编程技术。该方法用于让一个函数从其内部调用其自身。一个示例就是计算阶乘。0 的阶乘被特别地定义为 1。 更大数的阶乘是通过计算 1 * 2 * ...来求得的,每次增加 1,直至达到要计算其阶乘的那个数。

下面的段落是用文字定义的计算阶乘的一个函数。

“如果这个数小于零,则拒绝接收。如果不是一个整数,则将其向下舍入为相邻的整数。如果这个数为 0,则其阶乘为 1。如果这个数大于 0,则将其与相邻较小的数的阶乘相乘。”

要计算任何大于 0 的数的阶乘,至少需要计算一个其他数的阶乘。用来实现这个功能的函数就是已经位于其中的函数;该函数在执行当前的这个数之前,必须调用它本身来计算相邻的较小数的阶乘。这就是一个递归示例。

递归和迭代(循环)是密切相关的 — 能用递归处理的算法也都可以采用迭代,反之亦然。确定的算法通常可以用几种方法实现,您只需选择最自然贴切的方法,或者您觉得用起来最轻松的一种即可。

显然,这样有可能会出现问题。可以很容易地创建一个递归函数,但该函数不能得到一个确定的结果,并且不能达到一个终点。这样的递归将导致计算机执行一个“无限”循环。下面就是一个示例:在计算阶乘的文字描述中遗漏了第一条规则(对负数的处理) ,并试图计算任何负数的阶乘。这将导致失败,因为按顺序计算 -24 的阶乘时,首先不得不计算 -25 的阶乘;然而这样又不得不计算 -26 的阶乘;如此继续。很明显,这样永远也不会到达一个终止点。

因此在设计递归函数时应特别仔细。如果怀疑其中存在着无限递归的可能,则可以让该函数记录它调用自身的次数。如果该函数调用自身的次数太多,即使您已决定了它应调用多少次,就自动退出。

所以你说的那个不是递归,顶多能算作递推或迭代
int sum(int value)
{
if(value==0)return 0;
else return sum(value-1)+value;
}
main()
{
int result;
result=sum(100);
}
上面这才是递归

❹ 什么是递归

递归:
递归是一种重要的编程技术。该方法用于让一个函数从其内部调用其自身。一个示例就是计算阶乘。0 的阶乘被特别地定义为 1。 更大数的阶乘是通过计算 1 * 2 * ...来求得的,每次增加 1,直至达到要计算其阶乘的那个数。

下面的段落是用文字定义的计算阶乘的一个函数。

“如果这个数小于零,则拒绝接收。如果不是一个整数,则将其向下舍入为相邻的整数。如果这个数为 0,则其阶乘为 1。如果这个数大于 0,则将其与相邻较小的数的阶乘相乘。”

要计算任何大于 0 的数的阶乘,至少需要计算一个其他数的阶乘。用来实现这个功能的函数就是已经位于其中的函数;该函数在执行当前的飧鍪��埃�匦氲饔盟�旧砝醇扑阆嗔诘慕闲∈�慕壮恕U饩褪且桓龅莨槭纠�?

递归和迭代(循环)是密切相关的 — 能用递归处理的算法也都可以采用迭代,反之亦然。确定的算法通常可以用几种方法实现,您只需选择最自然贴切的方法,或者您觉得用起来最轻松的一种即可。

显然,这样有可能会出现问题。可以很容易地创建一个递归函数,但该函数不能得到一个确定的结果,并且不能达到一个终点。这样的递归将导致计算机执行一个“无限”循环。下面就是一个示例:在计算阶乘的文字描述中遗漏了第一条规则(对负数的处理) ,并试图计算任何负数的阶乘。这将导致失败,因为按顺序计算 -24 的阶乘时,首先不得不计算 -25 的阶乘;然而这样又不得不计算 -26 的阶乘;如此继续。很明显,这样永远也不会到达一个终止点。

因此在设计递归函数时应特别仔细。如果怀疑其中存在着无限递归的可能,则可以让该函数记录它调用自身的次数。如果该函数调用自身的次数太多,即使您已决定了它应调用多少次,就自动退出。

下面仍然是阶乘函数,这次是用 JScript 代码编写的。

// 计算阶乘的函数。如果传递了
// 无效的数值(例如小于零),
// 将返回 -1,表明发生了错误。若数值有效,
// 把数值转换为最相近的整数,并
// 返回阶乘。
function factorial(aNumber) {
aNumber = Math.floor(aNumber); // 如果这个数不是一个整数,则向下舍入。
if (aNumber < 0) { // 如果这个数小于 0,拒绝接收。
return -1;
}
if (aNumber == 0) { // 如果为 0,则其阶乘为 1。
return 1;
}
else return (aNumber * factorial(aNumber - 1)); // 否则,递归直至完成。
}

详见:http://61.50.172.137/shengc/java/java2tutorial/chapter6/chapter6-6.htm

❺ 递归是什么意思

程序调用自身的编程技巧称为递归( recursion)。

构成递归需具备的条件有:

1、子问题须与原始问题为同样的事,且更为简单。

2、不能无限制地调用本身,须有个出口,化简为非递归状况处理。

递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。

(5)什么是递归程序扩展阅读:

递归一般用于解决三类问题:

1、数据的定义是按递归定义的。(Fibonacci函数,n的阶乘)

2、问题解法按递归实现。(回溯)

3、数据的结构形式是按递归定义的。(二叉树的遍历,图的搜索)

递归的缺点:

递归解题相对常用的算法如普通循环等,运行效率较低。因此,应该尽量避免使用递归,除非没有更好的算法或者某种特定情况,递归更为适合的时候。在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储,因此递归次数过多容易造成栈溢出。

❻ 什么是递归调用,详细点

C通过运行时堆栈支持递归函数的实现。递归函数就是直接或间接调用自身的函数。
许多教科书都把计算机阶乘和菲波那契数列用来说明递归,非常不幸我们可爱的着名的老潭老师的《C语言程序设计》一书中就是从阶乘的计算开始的函数递归。导致读过这本经书的同学们,看到阶乘计算第一个想法就是递归。但是在阶乘的计算里,递归并没有提供任何优越之处。在菲波那契数列中,它的效率更是低的非常恐怖。
这里有一个简单的程序,可用于说明递归。程序的目的是把一个整数从二进制形式转换为可打印的字符形式。例如:给出一个值4267,我们需要依次产生字符‘4’,‘2’,‘6’,和‘7’。就如在printf函数中使用了%d格式码,它就会执行类似处理。
我们采用的策略是把这个值反复除以10,并打印各个余数。例如,4267除10的余数是7,但是我们不能直接打印这个余数。我们需要打印的是机器字符集中表示数字‘7’的值。在ASCII码中,字符‘7’的值是55,所以我们需要在余数上加上48来获得正确的字符,但是,使用字符常量而不是整型常量可以提高程序的可移植性。‘0’的ASCII码是48,所以我们用余数加上‘0’,所以有下面的关系:
‘0’+ 0 =‘0’
‘0’+ 1 =‘1’
‘0’+ 2 =‘2’
...

从这些关系中,我们很容易看出在余数上加上‘0’就可以产生对应字符的代码。接着就打印出余数。下一步再取商的值,4267/10等于426。然后用这个值重复上述步骤。
这种处理方法存在的唯一问题是它产生的数字次序正好相反,它们是逆向打印的。所以在我们的程序中使用递归来修正这个问题。
我们这个程序中的函数是递归性质的,因为它包含了一个对自身的调用。乍一看,函数似乎永远不会终止。当函数调用时,它将调用自身,第2次调用还将调用自身,以此类推,似乎永远调用下去。这也是我们在刚接触递归时最想不明白的事情。但是,事实上并不会出现这种情况。
这个程序的递归实现了某种类型的螺旋状while循环。while循环在循环体每次执行时必须取得某种进展,逐步迫近循环终止条件。递归函数也是如此,它在每次递归调用后必须越来越接近某种限制条件。当递归函数符合这个限制条件时,它便不在调用自身。
在程序中,递归函数的限制条件就是变量quotient为零。在每次递归调用之前,我们都把quotient除以10,所以每递归调用一次,它的值就越来越接近零。当它最终变成零时,递归便告终止。

/*接受一个整型值(无符号0,把它转换为字符并打印它,前导零被删除*/

#include <stdio.h>

int binary_to_ascii( unsigned int value)
{
unsigned int quotient;

quotient = value / 10;
if( quotient != 0)
binary_to_ascii( quotient);
putchar ( value % 10 + '0' );
}

递归是如何帮助我们以正确的顺序打印这些字符呢?下面是这个函数的工作流程。
1. 将参数值除以10
2. 如果quotient的值为非零,调用binary-to-ascii打印quotient当前值的各位数字

3. 接着,打印步骤1中除法运算的余数
注意在第2个步骤中,我们需要打印的是quotient当前值的各位数字。我们所面临的问题和最初的问题完全相同,只是变量quotient的值变小了。我们用刚刚编写的函数(把整数转换为各个数字字符并打印出来)来解决这个问题。由于quotient的值越来越小,所以递归最终会终止。
一旦你理解了递归,阅读递归函数最容易的方法不是纠缠于它的执行过程,而是相信递归函数会顺利完成它的任务。如果你的每个步骤正确无误,你的限制条件设置正确,并且每次调用之后更接近限制条件,递归函数总是能正确的完成任务。
但是,为了理解递归的工作原理,你需要追踪递归调用的执行过程,所以让我们来进行这项工作。追踪一个递归函数的执行过程的关键是理解函数中所声明的变量是如何存储的。当函数被调用时,它的变量的空间是创建于运行时堆栈上的。以前调用的函数的变量扔保留在堆栈上,但他们被新函数的变量所掩盖,因此是不能被访问的。
当递归函数调用自身时,情况于是如此。每进行一次新的调用,都将创建一批变量,他们将掩盖递归函数前一次调用所创建的变量。当我追踪一个递归函数的执行过程时,必须把分数不同次调用的变量区分开来,以避免混淆。

❼ 什么是递归函数 怎样实现递归

递归就是一个函数在它的函数体内调用它自身。执行递归函数将反复调用其自身,每调用一次就进入新的一层。递归函数必须有结束条件。

当函数在一直递推,直到遇到墙后返回,这个墙就是结束条件。

所以递归要有两个要素,结束条件与递推关系。

递归有两个基本要素:

(1)边界条件:确定递归到何时终止,也称为递归出口。

(2)递归模式:大问题是如何分解为小问题的,也称为递归体。递归函数只有具备了这两个要素,才能在有限次计算后得出结果

在递归函数中,调用函数和被调用函数是同一个函数,需要注意的是递归函数的调用层次,如果把调用递归函数的主函数称为第0层,进入函数后,首次递归调用自身称为第1层调用;从第i层递归调用自身称为第i+1层。反之,退出第i+1层调用应该返回第i层。

一个递归函数的调用过程类似于多个函数的嵌套的调用,只不过调用函数和被调用函数是同一个函数。为了保证递归函数的正确执行,系统需设立一个工作栈。具体地说,递归调用的内部执行过程如下:

(1)运动开始时,首先为递归调用建立一个工作栈,其结构包括值参、局部变量和返回地址;

(2)每次执行递归调用之前,把递归函数的值参和局部变量的当前值以及调用后的返回地址压栈;

(3)每次递归调用结束后,将栈顶元

(7)什么是递归程序扩展阅读:

递归就是某个函数直接或间接地调用了自身,这种调用方式叫做递归调用。说白了,还是函数调用。既然是函数调用,那么就有一个雷打不动的原则:所有被调用的函数都将创建一个副本,各自为调用者服务,而不受其他函数的影响。

你的ff函数,递归多少次,就有多少个副本,再利用内存的栈式管理,反向退出。这个最好找一下“栈”这方面的东西看看,挺容易的,就像子弹匣一样,先进后出。

从某种意义上说,这是不对的,因为就像刚才说的,一旦被调用,他将在内存中复制出一份代码,再被调用就再复制一份,换句话说,你可以吧同一个函数的多次调用理解称谓多个不同函数的一次调用,这样也会会简单些。

再说=1和=0是为什么退出。递归,很需要注意的就是死递归,也就是说,某一个函数进入了无限调用自身的情况,永无止境地消耗内存等资源,这在编程方面是一大忌。

但凡是递归的函数,一定会在某一个地方存在能够返回上一层函数的代码,否则必定死递归。ff函数中,那个else就是返回的出口,你可以这样想,如果没有那个if来进行判断,你递归到什么时候算完?ff是不是会一直调用自己。

因为一旦某个函数A中调用了函数B(或者自己),那么A中的代码会停在调用的位置,而转向B中去执行,同理,如果B又调用函数C,那么B又停在调用的位置,去执行C,如果无限调用,那么程序是永远不会结束的。

当然,也有这种情况,A调用B,然后继续自己的代码,不管B的死活,这种不在我们的讨论范围内,因为那牵扯到另一种编程方式:多线程。

❽ 什么是递归调用

递归调用是一种特殊的嵌套调用,是某个函数调用自己或者是调用其他函数后再次调用自己的,只要函数之间互相调用能产生循环的则一定是递归调用,递归调用一种解决方案,一种是逻辑思想,将一个大工作分为逐渐减小的小工作。

递归函数特点:

1、函数要直接或间接调用自身。

2、要有递归终止条件检查,即递归终止的条件被满足后,则不再调用自身函数。

3、如果不满足递归终止的条件,则调用涉及递归调用的表达式。在调用函数自身时,有关终止条件的参数要发生变化,而且需向递归终止的方向变化。

(8)什么是递归程序扩展阅读:

递归调用的过程:

递归调用之前的语句是从上到下的,函数调用之后的语句呢是从下到上的,因为后面的语句要等最下层或者最里面最后调用的那个函数执行之后不再调用了开始执行,然后返回上一层的时候再执行上一层函数调用后面的语句。并且特别注意的是,每次函数返回后直接就是函数调用后面的语句。

递归其实就是利用了函数调用的一些特点,很巧妙的不断调用自己,把一个很大的问题分成了很多部分,让每一个函数解决一部分,并且上一层的结果编译器给我们保留了起来,返回的时候还能用。

所以递归调用一定要是每深入一层都会把问题变得越来越小,而且最后能解决,不然就会无限制的调用自己,形成一个无限的循环,最后造成栈的溢出,最后程序崩溃。

❾ 什么是递归算法

递归算法就是一个函数通过不断对自己的调用而求得最终结果的一种思维巧妙但是开销很大的算法。
比如:
汉诺塔的递归算法:
void move(char x,char y){
printf("%c-->%c\n",x,y);
}

void hanoi(int n,char one,char two,char three){
/*将n个盘从one座借助two座,移到three座*/
if(n==1) move(one,three);
else{
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
}
}

main(){
int n;
printf("input the number of diskes:");
scanf("%d",&n);
printf("The step to moving %3d diskes:\n",n);
hanoi(n,'A','B','C');
}
我说下递归的理解方法
首先:对于递归这一类函数,你不要纠结于他是干什么的,只要知道他的一个模糊功能是什么就行,等于把他想象成一个能实现某项功能的黑盒子,而不去管它的内部操作先,好,我们来看下汉诺塔是怎么样解决的
首先按我上面说的把递归函数想象成某个功能的黑盒子,void hanoi(int n,char one,char two,char three); 这个递归函数的功能是:能将n个由小到大放置的小长方形从one 位置,经过two位置 移动到three位置。那么你的主程序要解决的问题是要将m个的"汉诺块"由A借助B移动到C,根据我们上面说的汉诺塔的功能,我相信傻子也知道在主函数中写道:hanoi(m,A,B,C)就能实现将m个块由A借助B码放到C,对吧?所以,mian函数里面有hanoi(m,'A','C','B');这个调用。
接下来我们看看要实现hannoi的这个功能,hannoi函数应该干些什么?
在hannoi函数里有这么三行
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
同样以黑盒子的思想看待他,要想把n个块由A经过B搬到C去,是不是可以分为上面三步呢?
这三部是:第一步将除了最后最长的那一块以外的n-1块由one位置经由three搬到two 也就是从A由C搬到B 然后把最下面最长那一块用move函数把他从A直接搬到C 完事后 第三步再次将刚刚的n-1块借助hannoi函数的功能从B由A搬回到C 这样的三步实习了n块由A经过B到C这样一个功能,同样你不用纠结于hanoi函数到底如何实现这个功能的,只要知道他有这么一个神奇的功能就行
最后:递归都有收尾的时候对吧,收尾就是当只有一块的时候汉诺塔怎么个玩法呢?很简单吧,直接把那一块有Amove到C我们就完成了,所以hanoni这个函数最后还要加上 if(n==1)move(one,three);(当只有一块时,直接有Amove到C位置就行)这么一个条件就能实现hanoin函数n>=1时将n个块由A经由B搬到C的完整功能了。
递归这个复杂的思想就是这样简单解决的,呵呵 不知道你看懂没?纯手打,希望能帮你理解递归
总结起来就是不要管递归的具体实现细节步骤,只要知道他的功能是什么,然后利用他自己的功能通过调用他自己去解决自己的功能(好绕口啊,日)最后加上一个极限情况的条件即可,比如上面说的1个的情况。

❿ 什么是递归程序

很简单,自己调用自己,我们最常说的:
从前有座山,山里有座庙,庙里有个老和尚,有一天,老和尚给小和尚故事:
从前有座山,山里有座庙,庙里有个老和尚,有一天,老和尚给小和尚故事:
从前有座山,山里有座庙,庙里有个老和·····················
这就是一个标准的递归!
注意:必须要有结束的条件,这个例子就是没有结束条件,成死循环了·····
可以加个,计数的,比如:n++,如果n==10,break或者return。
望采纳!全手打!

阅读全文

与什么是递归程序相关的资料

热点内容
代理记账在国标行业属于什么 浏览:938
期末如何算产品成本 浏览:967
大众刷程序有什么好处 浏览:221
千牛怎么看产品客群 浏览:347
小程序如何让老赖还钱 浏览:531
武汉经济技术开发区哪些超市 浏览:484
有plc程序怎么写出触摸屏程序 浏览:179
7HTA63什么程序 浏览:46
交易猫店铺进货怎么卖 浏览:330
为什么电脑运行程序突然变得很慢 浏览:559
市场上卖大饼的为什么好吃又松软 浏览:162
井下技术有哪些 浏览:150
nhf是什么地方的产品 浏览:736
哪些金融app推广代理权 浏览:570
水车摩托车如何交易 浏览:877
产品还没生产完叫什么 浏览:922
查录取状态显示数据维护中是什么意思 浏览:136
深圳买房在哪里摇号小程序 浏览:422
如何运行数控程序 浏览:381
赣州信息价在哪里看 浏览:462