导航:首页 > 软件知识 > 程序员如何做大数据

程序员如何做大数据

发布时间:2023-03-10 00:30:26

1. Java程序员如何转型做大数据

1、技术日渐成熟,应用空间得以拓展

大数据技术,最早于1980年被首次提及,却在近几年才获得突飞猛进的发展。相较于几十年前神经网络算法捉襟见肘的计算能力,如今处理器对大规模数据的高速处理能力无疑发挥了关键性的作用。借助于处理器的高性能,使我们短时间内完成PB 级数据的机器学习和模型训练成为可能,由此为高度依赖深度学习的图像、语音识别产品的快速迭代奠定基础,大数据应用空间得以拓展,也由此催生了提供相关产品与服务的技术公司。

2、重视数据资产,数据挖掘已成必然

现代信息技术使每日产生的数据量呈指数级增长,企业发展再也无法回避对数据价值的挖掘与利用。电商平台利用画像做个性化推荐,互联网金融公司利用高危识别技术管控金融风险,滴滴出行利用交易数据通过实时定价优化利润……这些都是对大数据价值的发掘和利用。随着数据资产意识的加强,数据挖掘也将获得越来越多结合具体行业场景的重视。

3、技术催生业务新模式,蕴含创业新契机

大数据产业链,催生出针对不同版块提供产品和服务的业务组合新模式,无论是利用推荐算法做内容服务的今日头条,还是基于数据整合提供监测服务的 TalkingData,或者是提供底层架构支持的阿里云,无不是发觉了大数据产业链条所蕴含的创业先机。

大数据创业,时至今日热度不减,虽难出BAT那样巨头独大的局面,其提供的相对公平的竞争机会,依然在吸引着新的创业公司加入。

4、市场供不应求,岗位挑战空间大

翻看大数据相关招聘岗位,一方面是供不应求的招聘局面,另一方面是腾讯、华为等大牌互联网公司开出的诱惑薪资,都让普通岗位的程序员跃跃欲试。

再加上这些岗位相比于传统的软件工程,有更高的挑战空间和更大的难度,自然引得更多人才进入到这个领域。

大数据相关岗位有哪些?

1. 偏技术的“算法工程师”

利用算法手段,构建机器学习模型,解决诸如“人脸识别”、“支付风险管控”等高难度问题。它往往既需要工程师在具体问题上有足够的专注力,也需要对相关的算法有足够深度的了解。

2. 偏业务的“数据挖掘工程师”

结合计算机知识,重点攻克复杂业务的算法化和模型化难题。与算法工程师的要求不同,它往往不需要工程师在算法上探索得足够深入,却对知识的广度和技能的交叉度有较高的要求,还需要工程师具备相当和快速的业务理解能力。当然了,对数据的高敏感性也必不可少。

技术 Leader 最想要什么样的人?

1、最好,你是个独当一面的全才

基础条件:扎实的计算机基础、逻辑能力、英文等素质

保障条件:聪明、学习能力强

加分条件:大规模集群开发经验;上层数据应用优化经历;熟悉聚类、分类、推荐、

NLP、神经网络等常见算法;会数据处理,还熟悉聚类、分类、推荐、NLP、神经网络等各种常见算法……

2、退而求其次,有配合团队的长板优势

全才难得,退而求其次,针对不同岗位吸收具有不同特长的人才,以追求团队整体配合的平衡,也不失为一个策略。

计算机视觉领域的大数据公司,往往需要自己的团队中同时具备如下特长的成员。比如精通算法的人才:把图像识别相关算法模型调整到极致;工程实力型人才:高性能实现训练好的算法模型,或者帮团队搭建一整套视频图像数据采集、标注、机器学习、自动化测试、产品实现的平台。

即便同一算法工程团队内部,成员的技能侧重点也要合理搭配,以互为补充。比如,有人专注核心算法研究,就要有人擅长业务分析,专注业务算法模型的实现。

因此,对于想转型大数据的普通程序猿来说,梳理清楚自己现有技能对于新团队的价值非常重要,这是促使新团队决定吸收自己的关键。比如,发挥硬件和底层系统工作经历在算法高速实现上的优势,一旦通过自身擅长的技能切入新团队之后,就有了更多横向发展的机会,帮助自己在大数据相关领域建立更强竞争力。

3、相较当前技能水平,扎实的基础和成长空间更被看重

当前技能水平好比是术,而扎实的计算机基础则处于道的层面,诸如Spark等工具性知识通过后期学习便能轻易掌握,而如果缺少了C++/Java基础想进步却绝非易事。比如,如果算法、数据结构比较强,编程语言上对 C++ 理解较深入,在应用层的学习上,就可能会比其他人快很多。

有人将程序猿能力抽象为一个金字塔模型,虽然对计算机语言的精通是每个工程师都注重的能力,但越基础的素养越蕴含了更多的发展潜力。相比单纯苛责当前技能,能利用基础素养胜任一部分基础工作,然后通过1-2年锻炼接受更复杂问题的程序猿,反而更受企业青睐。

TalkingData 大数据招聘负责人曾直言道,相比于对 Spark 了解更多的人,他们更愿意招收那些 Java 学得好的人。因为 Spark 的接口学习起来相对容易,但是要想精通 Java 是一件很难的事情。如果把 Java 或者 C++ 学透了,那么对计算机技术的认识将很不一样。

转型大数据,要点归纳

1、重视基础

2、发挥专长

3、准备充分

4、首选公司内部转岗

2. 程序员如何转型成为大数据工程师

主要是从两者所要求的能力上来分析。首先,编码能力越强的程序员,越有可能成为,优秀的大数据工程师。


其次,大数据工程师需要统计学、与应用数学相关的能力背景,数据挖掘与分析,是需要设计数据模型和算法的,应该说程序员,是有这个基础的,厉害的程序员,一般都不是科班出来的,通常是数学专业,因此提高算法设计能力,是程序员转型大数据工程师的关键因素。


第三,大数据工程师需要具备某一行业的业务知识。大数据的挖掘与分析,最终都要服务于市场,并对产品的销售与企业的发展,起到重大推动作用,那才是有价值的大数分析。


在美国,大数据工程师平均年薪,达 17.5 万美元(折合人民币大概 105 万左右),在中国顶尖的互联网公司里,大数据工程师的薪酬,比同级别的其他职位高出 30% 以上。


DT 时代来得太突然了,国内发展势头很猛,而大数据相关的人才,却非常的有限,在未来若干年内,都会是供不应求的状况,指望大学培养出合格的大数据人才,有如天方夜谭,因此程序员们,你们的春天到了!


关于程序员如何转型成为大数据工程师,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

3. 作为一个Java程序员,该怎么转行做大数据分析师

我也做过好多年Java,去年开始也接触了些大数据的架构。跟你情况类似。我的观点是你可以去动手搭建一下,玩玩,其实并不像你想象的那样高深莫测。都是些工具,我不太喜欢学如何用这些工具,只要能解决我要解决的问题,去用就是了。如果工具的实现感兴趣就去看看代码。工具本身怎么用就是个fact,只是知道和不知道的区别。不要觉得做Java就比别人低一等。你一样可以做的很出色。会用那些大数据工具也并不代表能力有多强

4. 如何运用大数据

1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法

大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统

学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如
果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。

据处理: 自然语言处理(NLP,Natural Language
Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理
解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析:
假设检验、显着性检验、差异分析、相关分析、T检验、 方差分析 、
卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、
因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

据挖掘: 分类
(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity
grouping or association rules)、聚类(Clustering)、描述和可视化、Description and
Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。

大数据的处理
1. 大数据处理之一:采集

数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的
数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除
此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时
有可能会有成千上万的用户
来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间
进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些
海量数据进行有效的分析,还是应该将这
些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使
用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析

计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通
的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于
MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘

前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数
据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于

统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并
且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

5. java 大数据怎么做

Java是编程语言;
大数据是一个概念,包含的技术较多,比如Hadoop、Spark、Storm等;
学习大数据先要学习Java,Java是基础,而大数据比较核心的两个课程是HADOOP、SPARK。

6. Java工程师转大数据难度高吗

Java程序员转大数据工程师有很好的基础条件
对于Java程序员,大数据的主流平台hadoop是基于Java开发的,所以Java程序员往大数据开发方向转行从语言环境上更为顺畅,另外很多基于大数据的应用框架也是Java的,所以在很多大数据项目里Java语言的确是可以派上用场的。所以,Java程序员转大数据工程师是具备很好的基础条件的。 当然,hadoop核心价值在于提供了分布式文件系统和分布式计算引擎,对于大部分公司而言,并不需要对这个引擎进行修改。这时候除了熟悉编程,你通常还需要学习数据处理和数据挖掘的一些知识。尤其是往数据挖掘工程师方向发展,则你需要掌握更多的工具和知识。
Java程序员转大数据职位的学习路线图:
第一步:分布式计算框架
掌握hadoop和spark分布式计算框架,了解文件系统、消息队列和Nosql数据库,学习相关组件如hadoop、MR、spark、hive、hbase、redies、kafka等;
第二步:算法和工具
学习了解各种数据挖掘算法,如分类、聚类、关联规则、回归、决策树、神经网络等,熟练掌握一门数据挖掘编程工具:Python或者Scala。目前主流平台和框架已经提供了算法库,如hadoop上的Mahout和spark上的Mllib,你也可以从学习这些接口和脚本语言开始学习这些算法。
第三步:数学
补充数学知识:高数、概率论和线代
第四步:项目实践
1)开源项目:tensorflow:Google的开源库,已经有40000多个star,非常惊人,支持移动设备;
2)参加数据竞赛:Kaggle和国内天池数据竞赛
3)通过企业实习获取项目经验
如果你仅仅是做大数据开发和运维,则可以跳过第二步和第三步,如果你是侧重于应用已有算法进行数据挖掘,那么第三步也可以先跳过。
总结:
Java工程师可以更容易理解hadoop的框架和生态,很多大数据saas级产品也是Java开发的,因此Java基础是转行大数据的一个很好的起点。但大数据是一个更为宽广的领域,具有跨界知识和能力的人才会更受企业青睐。随着人工智能时代的到来,大数据将迎来黄金发展的10年,如果你已经做好准备,那么就立即开始行动吧!

7. 小白想转行做大数据,怎么入行

大数据现在这么火,想往大数据方面发展,但是英文、数学不好的可以吗?? 学习大数据该学哪些技术??大数据和程序员比哪个要好学点??等等。。。很多人学大数据的原因就是大数据找工作好找,薪资很高,,当然,为了这个原因也是可以的,毕竟这个时代就业压力确实很大,为了一个好的工作学一门技术,,但是我想问下你,你的专业是什么呢??对于计算机/软件,你的兴趣是什么?是计算机专业,对操作系统、硬件、网络、服务器感兴趣?是软件专业,对软件开发、编程、写代码感兴趣?还是数学、统计学专业,对数据和数字特别感兴趣。。

二、更高效的WordCount

首先,你得先学习SQL,访问、查询数据库的基本语言还是要懂的。。然后SQL On Hadoop之Hive,Hive是数据仓库工具,数据仓库是逻辑上的概念,底层使用的是数据库,数据仓库的特点:数据全(海量)、稳定;所谓稳定,比如数据库的数据经常要更新,而数据仓库的数据是不会被更新,只会被查询,所以说Hive适合做数据仓库。最后就是了解hive的工作原理,学会Hive的工作命令。

三、把别处的数据搞到Hadoop上

四、把Hadoop上的数据搞到别处去

五、实例分析

六、实时数据

七、更新查询数据

八、高大上的机器学习

完成了第一、二,说明你已经快步入大数据的行列了,写的不好也请多多包涵。

详细了解 可登录网址:网页链接

阅读全文

与程序员如何做大数据相关的资料

热点内容
天津生发产品怎么选 浏览:306
技术文件如何下载 浏览:995
深圳牛杂市场有哪些 浏览:701
mcgs如何嵌入新的程序 浏览:747
数据线有多少a的说法吗 浏览:589
九江五金市场有哪些 浏览:519
技术实验班是什么意思 浏览:700
微信满多少收不到信息 浏览:524
为什么我的微信扫不成小程序 浏览:753
广东工业产品抄数怎么样 浏览:756
护肤品代理商怎么找货源 浏览:289
市场有哪些共同特点从狭义上讲 浏览:154
淘宝数据包如何精细化 浏览:343
压缩包中哪个是java的程序 浏览:114
建筑基础数据怎么算 浏览:358
哪个程序语言好用 浏览:511
健身馆开发小程序有什么用 浏览:602
台江海鲜市场在哪里 浏览:742
从技术角度如何开发app 浏览:623
日职职业技术学院大一开学带什么 浏览:471