1. 怎么编一个简单的运算程序
/*简易计算器.cpp 你自己找个c++编译器就可以运行*/
#include<iostream>#include<string>using
namespace
std;int
main(){ float
a,b; char
str; cout<<"a="; cin>>a;
//输入两个数 cout<<"
b="; cin>>b;
cout<<"请输入+,-,*,/
其中一个运算符"<<endl;
cout<<"你所选的运算符是:";fflush(stdin);
//清空输入缓冲区,通常是为了确保不影响后面的数据读取
str=getchar();
cout<<endl;
switch(str)
{
case
'+':cout<<"a+b="<<a+b;break;
case
'-':cout<<"a-b="<<a-b;break;
case
'*':cout<<"a*b="<<a*b;break; case
'/':cout<<"a/b="<<a/b;break; defaut:cout<<"error";
} return
0; }
2. c语言的一个小程序应该如何计算
递归调用函数f,每次加8。y从6到1,共6个8相加,结果是48。
3. 程序中的时间复杂度是怎么计算的
算法复杂度的介绍,见网络:
http://ke..com/view/7527.htm
时间复杂度
时间频度
一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
计算方法
1. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))
分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
2. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))
例:算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //该步骤属于基本操作 ,执行次数:n的平方 次
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 ,执行次数:n的三次方 次
}
}
则有 T(n)= n的平方+n的三次方,根据上面括号里的同数量级,我们可以确定 n的三次方 为T(n)的同数量级
则有f(n)= n的三次方,然后根据T(n)/f(n)求极限可得到常数c
则该算法的 时间复杂度:T(n)=O(n^3) 注:n^3即是n的3次方。
3.在pascal中比较容易理解,容易计算的方法是:看看有几重for循环,只有一重则时间复杂度为O(n),二重则为O(n^2),依此类推,如果有二分则为O(logn),二分例如快速幂、二分查找,如果一个for循环套一个二分,那么时间复杂度则为O(nlogn)。
分类
按数量级递增排列,常见的时间复杂度有:
常数阶O(1),对数阶O(log2n),线性阶O(n),
线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,
k次方阶O(n^k), 指数阶O(2^n) 。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。
关于对其的理解
《数据结构(C语言版)》------严蔚敏 吴伟民编着 第15页有句话"整个算法的执行时间与基本操作重复执行的次数成正比。"
基本操作重复执行的次数是问题规模n的某个函数f(n),于是算法的时间量度可以记为:T(n) = O( f(n) )
如果按照这么推断,T(n)应该表示的是算法的时间量度,也就是算法执行的时间。
而该页对“语句频度”也有定义:指的是该语句重复执行的次数。
如果是基本操作所在语句重复执行的次数,那么就该是f(n)。
上边的n都表示的问题规模。
以下来自网络知道:
对于这些算法
(1) for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
s++;
(2) for(i=1;i<=n;i++)
for(j=i;j<=n;j++)
s++;
(3) for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
s++;
(4) i=1;k=0;
while(i<=n-1){
k+=10*i;
i++;
}
(5) for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
for(k=1;k<=j;k++)
x=x+1;
对应的时间复杂度为:
1.时间复杂度O(n^2)
2.时间复杂度O(n^2)
3.时间复杂度O(n^2)
4.时间复杂度O(n)
5.时间复杂度O(n^3)
一般来说,时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)
比如:一般总运算次数表达式类似于这样:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a<>0时,时间复杂度就是O(2^n);
a=0,b<>0 =>O(n^3);
a,b=0,c<>0 =>O(n^2)依此类推
那么,总运算次数又是如何计算出的呢?
一般来说,我们经常使用for循环,就像刚才五个题,我们就以它们为例
1.循环了n*n次,当然是O(n^2)
2.循环了(n+n-1+n-2+...+1)≈(n^2)/2,因为时间复杂度是不考虑系数的,所以也是O(n^2)
3.循环了(1+2+3+...+n)≈(n^2)/2,当然也是O(n^2)
4.循环了n-1≈n次,所以是O(n)
5.循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(这个公式要记住哦)≈(n^3)/3,不考虑系数,自然是O(n^3)
另外,在时间复杂度中,log(2,n)(以2为底)与lg(n)(以10为底)是等价的,因为对数换底公式:
log(a,b)=log(c,b)/log(c,a)
所以,log(2,n)=log(2,10)*lg(n),忽略掉系数,二者当然是等价的
4. 设计一个计算1×3×5×7×…×99的算法,并写出程序。
解:算法步骤如下: 第一步:S=1; 第二步:i=3; 第三步:S=S×i; 第四步:i=i+2; 第五步:判断i是否大于99,若是转到第六步;否则返第三步,继续执行第三步,第四步,第五步; 第六步:输出S; 第七步:算法结束。 相应的程序框图如图所示: 。 |
5. 程序员开发用到的十大基本算法
算法一:快速排序算法
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
算法步骤:
1 从数列中挑出一个元素,称为 “基准”(pivot),
2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
算法二:堆排序算法
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序的平均时间复杂度为Ο(nlogn) 。
算法步骤:
1.创建一个堆H[0..n-1]
2.把堆首(最大值)和堆尾互换
3.把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置
4.重复步骤2,直到堆的尺寸为1
算法三:归并排序
归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
算法步骤:
算法四:二分查找算法
二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜 素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组 为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。
算法五:BFPRT(线性查找算法)
BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂 度,五位算法作者做了精妙的处理。
算法步骤:
终止条件:n=1时,返回的即是i小元素。
算法六:DFS(深度优先搜索)
深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分 支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发 现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。
深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。
算法步骤:
上述描述可能比较抽象,举个实例:
DFS 在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;再从 w1 出发,访问与 w1邻 接但还没有访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止。
接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。
算法七:BFS(广度优先搜索)
广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。
算法步骤:
算法八:Dijkstra算法
戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。
该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想象成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。
算法步骤:
重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止
算法九:动态规划算法
动态规划(Dynamic programming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。
动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。 通常许多 子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量: 一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个 子问题解之时直接查表。 这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。
关于动态规划最经典的问题当属背包问题。
算法步骤:
算法十:朴素贝叶斯分类算法
朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下, 如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。
朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。
尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果。
6. 如何查看一个程序的算法请详细介绍。
这是看不出来的,只能靠你自己去分析程序… 如果程序的算法你不会当然是看不懂的了…如果程序有注释,那程序的可读性就强了…
7. 怒了,求高人解释程序算法,很简短的一个程序
外星人计算Pi的程序
一、源程序
本文分析下面这个很流行的计算PI的小程序。下面这个程序初看起来似乎摸不到头脑,
不过不用担心,当你读完本文的时候就能够基本读懂它了。
程序一:很牛的计算Pi的程序
int a=10000,b,c=2800,d,e,f[2801],g;
main() {
for(;b-c;)
f[b++]=a/5;
for(;d=0,g=c*2;c -=14,printf("%.4d",e+d/a),e=d%a)
for(b=c; d+=f[b]*a,f[b]=d%--g,d/=g--,--b; d*=b);
}
二、数学公式
数学家们研究了数不清的方法来计算PI,这个程序所用的公式如下:
1 2 3 k
pi = 2 + --- * (2 + --- * (2 + --- * (2 + ... (2 + ---- * (2 + ... ))...)))
3 5 7 2k+1
至于这个公式为什么能够计算出PI,已经超出了本文的能力范围。
下面要做的事情就是要分析清楚程序是如何实现这个公式的。
我们先来验证一下这个公式:
程序二:Pi公式验证程序
#include "stdio.h"
void main()
{
float pi=2;
int i;
for(i=100;i>=1;i--)
pi=pi*(float)i/(2*i+1)+2;
printf("%f\n",pi);
getchar();
}
上面这个程序的结果是3.141593。
三、程序展开
在正式分析程序之前,我们需要对程序一进行一下展开。我们可以看出程序一都是使用
for循环来完成计算的,这样做虽然可以使得程序短小,但是却很难读懂。根据for循环
的运行顺序,我们可以把它展开为如下while循环的程序:
程序三:for转换为while之后的程序
int a=10000,b,c=2800,d,e,f[2801],g;
main() {
int i;
for(i=0;i<c;i++)
f[i]=a/5;
while(c!=0)
{
d=0;
g=c*2;
b=c;
while(1)
{
d=d+f[b]*a;
g--;
f[b]=d%g;
d=d/g;
g--;
b--;
if(b==0) break;
d=d*b;
}
c=c-14;
printf("%.4d",e+d/a);
e=d%a;
}
}
注:
for([1];[2];[3]) {[4];}
的运行顺序是[1],[2],[4],[3]。如果有逗号操作符,例如:d=0,g=c*2,则先运行d=0,
然后运行g=c*2,并且最终的结果是最后一个表达式的值,也就是这里的c*2。
下面我们就针对展开后的程序来分析。
四、程序分析
要想计算出无限精度的PI,我们需要上述的迭代公式运行无数次,并且其中每个分数也
是完全精确的,这在计算机中自然是无法实现的。那么基本实现思想就是迭代足够多次
,并且每个分数也足够精确,这样就能够计算出PI的前n位来。上面这个程序计算800位
,迭代公式一共迭代2800次。
int a=10000,b,c=2800,d,e,f[2801],g;
这句话中的2800就是迭代次数。
由于float或者double的精度远远不够,因此程序中使用整数类型(实际是长整型),分
段运算(每次计算4位)。我们可以看到输出语句 printf("%.4d",e+d/a); 其中%.4就是
把计算出来的4位输出,我们看到c每次减少14( c=c-14;),而c的初始大小为2800,因
此一共就分了200段运算,并且每次输出4位,所以一共输出了800位。
由于使用整型数运算,因此有必要乘上一个系数,在这个程序中系数为1000,也就是说
,公式如下:
1 2 3 k
1000*pi = 2k+ --- * (2k+ --- * (2k+ --- * (2k+ ... (2k+ ---- * (2k+ ... )).
..)))
3 5 7 2k+1
这里的2k表示2000,也就是f[2801]数组初始化以后的数据,a=10000,a/5=2000,所以下面
的程序把f中的每个元素都赋值为2000:
for(i=0;i<c;i++)
f[i]=a/5;
你可能会觉得奇怪,为什么这里要把一个常数储存到数组中去,请继续往下看。
我们先来跟踪一下程序的运行:
while(c!=0) 假设这是第一次运行,c=2800,为迭代次数
{
d=0;
g=c*2; 这里的g是用来做k/(2k+1)中的分子
b=c; 这里的b是用来做k/(2k+1)中的分子
while(1)
{
d=d+f[b]*a; f中的所有的值都为2000,这里在计算时又把系数扩大了
a=10000倍。
这样做的目的稍候介绍,你可以看到
输出的时候是d/a,所以这不影
计算
g--;
f[b]=d%g; 先不管这一行
d=d/g; 第一次运行的g为2*2799+1,你可以看到g做了分母
g--;
b--;
if(b==0) break;
d=d*b; 这里的b为2799,可以看到d做了分子。
}
c=c-14;
printf("%.4d",e+d/a);
e=d%a;
}
只需要粗略的看看上面的程序,我们就大概知道它的确是使用的那个迭代公式来计算Pi
的了,不过不知道到现在为止你是否明白了f数组的用处。如果没有明白,请继续阅读。
d=d/g,这一行的目的是除以2k+1,我们知道之所以程序无法精确计算的原因就是这个除
法。即使用浮点数,答案也是不够精确的,因此直接用来计算800位的Pi是不可能的。那
么不精确的成分在哪里?很明显:就是那个余数d%g。程序用f数组把这个误差储存起来
,再下次计算的时候使用。现在你也应该知道为什么d=d+f[b]*a;中间需要乘上a了吧。
把分子扩大之后,才好把误差精确的算出来。
d如果不乘10000这个系数,则其值为2000,那么运行d=d/g;则是2000/(2*2799+1),这
种整数的除法答案为0,根本无法迭代下去了。
现在我们知道程序就是把余数储存起来,作为下次迭代的时候的参数,那么为什么这么
做就可以使得下次迭代出来的结果为
接下来的4位数呢?
这实际上和我们在纸上作除法很类似:
0142
/——------
7 / 1
10
7
---------------
30
28
---------------
20
14
---------------
60
.....
我们可以发现,在做除法的时候,我们通常把余数扩大之后再来计算,f中既然储存的是
余数,而f[b]*a;则正好把这个余数扩大了a倍,然后如此循环下去,可以计算到任意精
度。
这里要说明的是,事实上每次计算出来的d并不一定只有4位数,例如第一次计算的时候
,d的值为31415926,输出4位时候,把低四位的值储存在e中间,e=d%a,也就是5926。
最后,这个c=c-14不太好理解。事实上没有这条语句,程序计算出来的仍然正确。只是
因为如果迭代2800次,无论分数如何精确,最后Pi的精度只能够达到800。
你可以把程序改为如下形式尝试一下:
for(i=0;i<800;i++)
{
d=0;
g=c*2;
b=c;
while(1)
{
d=d+f[b]*a;
g--;
f[b]=d%g;
d=d/g;
g--;
b--;
if(b==0) break;
d=d*b;
}
// c=c-14; 不要这句话。
printf("%.4d",e+d/a);
e=d%a;
}
最后的答案仍然正确。
不过我们可以看到内循环的次数是c次,也就是说每次迭代计算c次。而每次计算后续位
数的时候,迭代次数减少14,而不影响精度。为什么会这样,我没有研究。另外最后的
e+d/a,和e=d/a的作用就由读者自己考虑吧。
--
8. 设计一个算法计算1×2×3×…×100,画出程序框图.
第一步:设i的值为1;
第二步:设S的值为1;×
第三步:如果i≤100执行第四步,
否则转去执行第七步;
第四步:计算S×i并将结果代替S;
第五步:计算i+1并将结果代替i;
第六步:转去执行第三步;
第七步:输出S的值并结束算法.
9. 设计一个计算 的算法,并画出它的程序流程图.
程序流程图是程序分析中最基本、最重要的分析技术,它是进行程序流程分析过程中最基本的工具。它运用工序图示符号对生产现场的整个制造过程做详细的记录,以便对零部件、产品在整个制造过程中的生产、加工、检验、储存等环节待作详细的研究与分析,特别适用于分析生产过程中的成本浪费,提高经济效益。