⑴ 单片机延时程序是怎么实现的
延时是靠CPU执行无关指令,把时间浪费掉。
具体来说,DJNZ指令需要2个周期,循环250次就是500个周期,两层循环就是500*500个周期,你调用一次DELAY子程序,CPU就空转250000个周期(注意这个计算不精确),如果晶振是12MHz,那就意味着时间过去了250ms,也就是延时250ms
⑵ 51 单片机延时程序
我以2ms为例说明一下:
单片机的晶振周期为12hz,则执行一条代码为一个机器周期,为1微妙(ua),所以2ms=10*200(ua),
对r2赋值200(4位二进制数最大值为256,所以只能取到200)即#c8h。再对r2循环20次就实现了2ms延时。至于100ms、
200ms、
1s等等方法类似,只是调整相应的初值。多设置几次循环就行。
程序代码如下:
delay:
mov
r1,#0ah
;赋值r1为10次
delay1:
mov
r2,#c8h
;赋值r2为200次
delay2:
djnz
r2,$
;r2自减到0,不到0继续等待
djnz
r1,delay1
;r2减到0后r1自减1,重新给r2赋初值后继续循环,直到r1到0为止,延时结束
ret
⑶ 单片机C语言延迟程序
下面的延时的基本程序(中断加计数器)
********
void
T0_int(void)
interrupt
1
{
TH0
=
0x4C;
//重新装载,50MS定时器初值
TL0
=
0x00;
T0_count++;
if(T0_count==20)
//1S到
{
T0_count
=
0;
//在这写程序
}
}
main()
{
TMOD
=
0x01;//定时器0,工作方式1,16位计数
TH0
=
0x4C;
//50MS定时器初值
TL0
=
0x00;
IE
=
0x82;
//开总中断,开T0中断
EA
=
1;
ET0
=
1;
TR0
=
1;
T0_count
=
0;
i
=
0;
loop:
goto
loop;
}
还有:
for(us=0;us<60;us++);
/*延时500us*/
for(us=0;us<1;us++);
/*
延时15微秒*/
for(us=0;us<5;us++);
/*
延时51微秒*/
⑷ 51单片机用c语言怎么写延时函数
延时时间的计算与单片机的晶振频率有关。若晶振频率为12Mhz,那么单片机每震动一次所需要的时间是1/12M s。那么再来看看单片机执行一次自减所需要的振动次数是96次,假如我们对时间要求不是特别精确的话,可以约等于100来计算。现在通过上面两个数据可以得出:单片机每执行一次自减所需要的时间是1/12M *100(s),即1/120000 s,逆向计算一下,每1ms需要自减多少次?120次对吧。所以一个简单的延时功能就诞生了,我们只需要自减120次,就可以延时1ms,如果我们要延时50ms呢,那就自减50*120=6000次。那么在程序上如何表达呢?我们可以用两套for循环
void delay(int i){
int x,y;
for(x=i;x>0;x--){
for(y=120;y>0;y--)
}
}
参数 i 代表该函数延时多少ms
⑸ 请帮忙在51系列单片机系统中,编写一个延时1ms的子程序。谢谢。。
1、首先,在电脑中打开keil软件,创建好工程,然后添加c文件,如下图所示。
⑹ 如何用单片机的delay实现延时
单片机中的delay()的单位时间不是系统提供的,而是用户自己编制的。
如果用循环语句实现的循环,没法计算,但是可以通过软件仿真看到具体时间,但是一般精精确延时是没法用循环语句实现的。
如果想精确延时,一般需要用到定时器,延时时间与晶振有关系,单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。
最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。
(6)单片机如何实现延时程序代码扩展阅读
单片机C语言程序中延时函数delay的原理是:仅仅执行一些,没有实质性影响的所谓“无意义指令”,比如做比大小啊,做某个int的自加运算啊之类的。
单片机的有些程序需要调用延时程序,合理的安排循环次数以及空操作的个数方法:用汇编的话就根据你的当前晶振频率去推算你的指令周期,然后结合需要延迟的时间。
编写延迟程序,用C的话还是要看最后生成的汇编码是什么样的了。最简单的方法就是写好程序以后再编译器里软仿真看时间。
单片机C语言延时需注意的问题:
标准的C语言中没有空语句。但在单片机的C语言编程中,经常需要用几个空指令产生短延时的效果。这在汇编语言中很容易实现,写几个nop就行了。
在keil C51中,直接调用库函数:
#include // 声明了void _nop_(void);
_nop_(); // 产生一条NOP指令
作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒。NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M晶振,延时1uS。对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。
⑺ 单片机汇编程序延时0.3秒和0.5秒怎么写
延时0.3秒程序(12M):
DELAY3:
MOVR2,#200
DL1:
MOVR3,#250
DJNZR3,$
MOVR3,#250
DJNZR3,$
MOVR3,#250
DJNZR3,$
DJNZR2,DL1
RET
延时0.5秒程序:
DELAY5:
MOVR2,#5
DLY1:
MOVR3,#200
DLY2:
MOVR4,#250
DJNZR4,$
DJNZR3,DLY2
DJNZR2,DLY1
RET
⑻ 51单片机中延时程序
1. sleep()是以毫秒计算的,延时5秒是sleep(5*1000);,延时5分是sleep(5*1000*60);
2.包含的头文件看你用的什么编辑软件。
3.我用的VC++是用包含在#include<windows.h>头文件中。
#include<stdio.h>#include<windows.h>//Sleep()的头文件 main() { int i;
int n=10;for(i=1;i<=n;i++) {printf("%d",i);Sleep(5*1000*60);} //
这里修改延时时间,
有些人说是用#include<dos.h>做头文件你自己试下吧。
还用Sleep的S是大写的,不是小写的。
⑼ 51单片机中怎么得到精确延时
51单片机的几种精确延时实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。 x0dx0ax0dx0a1 使用定时器/计数器实现精确延时 x0dx0ax0dx0a 单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 x0dx0ax0dx0a 在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。 x0dx0ax0dx0a2 软件延时与时间计算 x0dx0ax0dx0a 在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。 x0dx0ax0dx0a2.1 短暂延时 x0dx0ax0dx0a 可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10 μs的延时函数可编写如下: x0dx0ax0dx0a void Delay10us( ) { x0dx0a _NOP_( ); x0dx0a _NOP_( ); x0dx0a _NOP_( ); x0dx0a _NOP_( ); x0dx0a _NOP_( ); x0dx0a _NOP_( ); x0dx0a } x0dx0ax0dx0a Delay10us( )函数中共用了6个_NOP_( )语句,每个语句执行时间为1 μs。主函数调用Delay10us( )时,先执行一个LCALL指令(2 μs),然后执行6个_NOP_( )语句(6 μs),最后执行了一个RET指令(2 μs),所以执行上述函数时共需要10 μs。 可以把这一函数当作基本延时函数,在其他函数中调用,即嵌套调用\[4\],以实现较长时间的延时;但需要注意,如在Delay40us( )中直接调用4次Delay10us( )函数,得到的延时时间将是42 μs,而不是40 μs。这是因为执行Delay40us( )时,先执行了一次LCALL指令(2 μs),然后开始执行第一个Delay10us( ),执行完最后一个Delay10us( )时,直接返回到主程序。依此类推,如果是两层嵌套调用,如在Delay80us( )中两次调用Delay40us( ),则也要先执行一次LCALL指令(2 μs),然后执行两次Delay40us( )函数(84 μs),所以,实际延时时间为86 μs。简言之,只有最内层的函数执行RET指令。该指令直接返回到上级函数或主函数。如在Delay80μs( )中直接调用8次Delay10us( ),此时的延时时间为82 μs。通过修改基本延时函数和适当的组合调用,上述方法可以实现不同时间的延时。 x0dx0ax0dx0a2.2 在C51中嵌套汇编程序段实现延时 x0dx0ax0dx0a 在C51中通过预处理指令#pragma asm和#pragma endasm可以嵌套汇编语言语句。用户编写的汇编语言紧跟在#pragma asm之后,在#pragma endasm之前结束。 x0dx0ax0dx0a 如:#pragma asm x0dx0a ? x0dx0a 汇编语言程序段 x0dx0a ? x0dx0a #pragma endasm x0dx0ax0dx0a 延时函数可设置入口参数,可将参数定义为unsigned char、int或long型。根据参数与返回值的传递规则,这时参数和函数返回值位于R7、R7R6、R7R6R5中。在应用时应注意以下几点: x0dx0ax0dx0a ◆ #pragma asm、#pragma endasm不允许嵌套使用; x0dx0a ◆ 在程序的开头应加上预处理指令#pragma asm,在该指令之前只能有注释或其他预处理指令; x0dx0a ◆ 当使用asm语句时,编译系统并不输出目标模块,而只输出汇编源文件; x0dx0a ◆ asm只能用小写字母,如果把asm写成大写,编译系统就把它作为普通变量; x0dx0a ◆ #pragma asm、#pragma endasm和 asm只能在函数内使用。 x0dx0ax0dx0a 将汇编语言与C51结合起来,充分发挥各自的优势,无疑是单片机开发人员的最佳选择。 x0dx0ax0dx0a2.3 使用示波器确定延时时间 x0dx0ax0dx0a 利用示波器来测定延时程序执行时间。方法如下:编写一个实现延时的函数,在该函数的开始置某个I/O口线如P1.0为高电平,在函数的最后清P1.0为低电平。在主程序中循环调用该延时函数,通过示波器测量P1.0引脚上的高电平时间即可确定延时函数的执行时间。方法如下: x0dx0ax0dx0a sbit T_point = P1^0; x0dx0a void Dly1ms(void) { x0dx0a unsigned int i,j; x0dx0a while (1) { x0dx0a T_point = 1; x0dx0a for(i=0;i<2;i++){ x0dx0a for(j=0;j<124;j++){;} x0dx0a } x0dx0a T_point = 0; x0dx0a for(i=0;i<1;i++){ x0dx0a for(j=0;j<124;j++){;} x0dx0a } x0dx0a } x0dx0a } x0dx0a void main (void) { x0dx0a Dly1ms(); x0dx0a } x0dx0ax0dx0a 把P1.0接入示波器,运行上面的程序,可以看到P1.0输出的波形为周期是3 ms的方波。其中,高电平为2 ms,低电平为1 ms,即for循环结构“for(j=0;j<124;j++) {;}”的执行时间为1 ms。通过改变循环次数,可得到不同时间的延时。当然,也可以不用for循环而用别的语句实现延时。这里讨论的只是确定延时的方法。 x0dx0ax0dx0a2.4 使用反汇编工具计算延时时间 x0dx0ax0dx0a 用Keil C51中的反汇编工具计算延时时间,在反汇编窗口中可用源程序和汇编程序的混合代码或汇编代码显示目标应用程序。为了说明这种方法,还使用“for (i=0;i ⑽ C51单片机延时程序,需要不精确延时2小时,请问大神怎么写延时代码,谢谢!
可以有很多办法,一是调整参数,使其延时5分钟或6分钟,循环24次或20次。二是将延时函数的形参改为长整型(32位)延时时间扩大65536倍。三是使用定时器,每次定时50mS,累计144000次,便是2小时,使用定时器(中断)的好处是在延时期间还可以干许多事情,例如显示剩余时间,检测设备工作状态或者调整延时时间等,而你的纯软件延时期间想干其它事情比较困难。