A. 数据通信的主要技术有哪些
1、数据传输:
为了实现数据通信,必须进行数据传输,即将位于一地的数据源发出的数据信息通过传输信道传送到另一地的数据接收设备。数据传输用的信道可以是实线基带电路,也可以是频分模拟电路或时分数字电路。
由于电话网的发展历史长,通信容量大,覆盖面广,因而利用它来提供数据传输信道在经济上和技术上都是比较合适的,是一种常用的方式。但是利用电话电路作数据传输信道时,必须采取一定的措施使之适应传输数据信号的要求。
2、数据交换及通信协议
在数据通信系统或计算机网中,所用传输信道可以是固定的,也可以由交换网提供的。数据交换的方式主要有两种:电路交换与分组交换,其中分组交换在实际的数据网中较多采用。
在一个采用分组交换的数据网中,除了在相邻交换节点之间需实现数据传输与数据链路控制规程所要求的各项功能外,在每一交换节点上尚需完成数据分组的存储与转发;路由选择、流量控制、拥塞控制、用户入网连接以及有关网路维护、管理等多方面的工作。与此相应,在与数据交换网相连接的端系统中也需实现某些相关的功能。
所有这些与构成数据交换网相关的功能均以通信协议的形式来加以规定,它们也包括端系统与网的接口协议。所谓协议,就是通信双方为准确有效地进行通信所必须遵循规则和约定。它们在数据通信中具有重要意义,上面提到的数据链路控制规程实际上也是一种数据通信协议。
(1)操作系统信息的传输方式有哪些扩展阅读
数据通信的发展趋势集中表现为:
1、应用范围与应用规模的扩大,新的应用业务如电子数据互换(EDI),多媒体通信等不断涌现。
2、随着通信量增大,网路日益向高速、宽带、数字传输与综合利用的方向发展。例如光纤高速局域网、城域网、宽带综合业务数字网、中继、快速分组交换等许多新技术迅速发展,有的已进入实用化阶段。
3、与移动通信的发展相配合,移动式数据通信正获得迅速发展。
4、随着网路与系统规模的不断扩大,不同类型的网路与系统的互连(也包括对互连网路的操作与管理)的重要性日趋突出。
5、通信协议标准大量增加,协议工程技术日益发展。
B. CPU与I/O设备之间的数据传送有哪几种方式
一、CPU与I/O设备之间的数据传送方式及特点:
1、查询控制方式:
CPU通过程序主动读取状态寄存器以了解接口情况,并完成相应的数据操作。查询操作需要在时钟周期较少的间隔内重复进行,因而CPU效率低。
2、中断控制方式:
当程序常规运行中,若外部有优先级更高的事件出现,则通过中断请求通知CPU,CPU再读取状态寄存器确定事件的种类,以便执行不同的分支处理。这种方式CPU效率高且实时性好。
3、DMA(Direct Memory Access)控制方式:
顾名思义,直接内存存取即数据传送的具体过程直接由硬件(DMA控制器)在内存和IO之间完成,CPU只在开始时将控制权暂时交予DMA,直到数据传输结束。这种方式传送速度比通过CPU快,尤其是在批量传送时效率很高。
4、通道控制方式:
基本方法同上述的DMA控制方式,只是DMA通过DMA控制器完成,通道控制方式有专门通讯传输的通道总线完成。效率比DMA更高。
二、端口介绍:
"端口"是英文port的意译,可以认为是设备与外界通讯交流的出口。端口可分为虚拟端口和物理端口,其中虚拟端口指计算机内部或交换机路由器内的端口,不可见。例如计算机中的80端口、21端口、23端口等。
物理端口又称为接口,是可见端口,计算机背板的RJ45网口,交换机路由器集线器等RJ45端口。电话使用RJ11插口也属于物理端口的范畴。
三、I/O端口的编址方式及特点:
1、统一编址方式
统一编址方式是从存储器空间划出一部分地址空间给I/O设备,把I/O接口中的端口当作存储器单元一样进行访问,不设置专门的I/O指令,有一部分对存储器使用的指令也可用于端口。
统一编址优点是指令类型多、功能齐全,不仅使访问I/O端口可实现输入/输出操作而且可对端口进行算数逻辑运算、移位等;另外能给端口较大的编址空间。缺点是端口占用了存储器的地址空间,使存储器容量减小,另外指令长度比专门I/O指令长,因而执行速度较慢。
2、独立编址方式
独立编址方式使接口中的端口地址单独编址而不和存储空间合在一起。
独立编址方式的优点是I/O端口地址不占用存储空间;使用专门的I/O指令对端口进行操作,I/O指令短执行速度快;并且由于专门I/O指令与存储器访问指令有明显的区别,使程序中I/O操作合存储器操作层次清晰,程序的可读性强。
缺点是指令少,只有输入与输出功能。是从存储器空间划出一部分地址空间给I/O设备,把I/O接口中的端口当作存储器单元一样进行访问,不设置专门的I/O指令,有一部分对存储器使用的指令也可用于端口。
四、CPU 与I/O接口电路之间传送的信息与表示的含义:
CPU 与I/O接口电路之间传送的信息有数据信息,包括三种形式:数字量、模拟量 、开关量。
状态信息是外设通过接口往 CPU 传送的,如:“准备好” (READY) 信号、“忙”( BUSY )信号。控制信息 是CPU通过接口传送给外设的,如:外设的启动信号、停止信号就是常见的控制信息。
CPU与外设之间的数据交换必须通过接口来完成,通常I/O设备接口有以下一些功能:
(1)设置数据的寄存、缓冲逻辑,以适应CPU与外设之间的速度差异,接口通常由一些寄存器或RAM芯片组成,如果芯片足够大还可以实现批量数据的传输;
(2)能够进行信息格式的转换,例如串行和并行的转换;
(3)能够协调CPU和外设两者在信息的类型和电平的差异,如电平转换驱动器、数/模或模/数转换器等;
(4)协调时序差异;
(5)地址译码和设备选择功能;
(6)设置中断和DMA控制逻辑,以保证在中断和DMA允许的情况下产生中断和DMA请求信号,并在接受到中断和DMA应答之后完成中断处理和DMA传输。
C. 微型计算机与外部设备之间的信息传输方式有
微型计算机与外部设备之间的信息传输方式有串行传输和并行传输。
1、串行传输
各条机器指令按顺序串行执行,即执行完一条指令后,才取出下一条指令来执行。一条机器指令执行过程中备个微操作亦按顺序执行(如先进行指令译码,然后形成有效地址、取操作数、执行运算,最后迭运算结果),这种工作方式叫做串行工作方式。
2、并行传输
并行传送方式,计算机的一种数据信息传送方式。在这种传送方式下,机器数码的每一位都用一根传送线同时进行传送,计算机的字长有多少位就应有多少根传送线。这种传送方式就如军队进行队列训练时的一路横队并肩行进一样。
一个并行连接通过多个通道(例如导线、印制电路布线和光纤)在同一时间内传播多个数据流;而串行在同一时间内只连接传输一个数据流。
虽然串行连接单个时钟周期能够传输的数据比并行数据更少,前者传输能力看起来比后者要弱一些,实际的情况却常常是,串行通信可以比并行通信更容易提高通信时钟频率,从而提高数据的传输速率。
(3)操作系统信息的传输方式有哪些扩展阅读:
微型计算机系统从全局到局部存在三个层次:微型计算机系统、微型计算机、微处理器(CPU)。单纯的微处理器和单纯的微型计算机都不能独立工作,只有微型计算机系统才是完整的信息处理系统,才具有实用意义。
一个完整的微型计算机系统包括硬件系统和软件系统两大部分。硬件系统由运算器、控制器、存储器( 含内存、外存和缓存)、各种输入输出设备组成,采用“ 指令驱动”方式工作。
软件系统可分为系统软件和应用软件。系统软件是指管理、监控和维护计算机资源(包括硬件和软件)的软件。它主要包括:操作系统、各种语言处理程序、数据库管理系统以及各种工具软件等。