Ⅰ 什么是量子计算
量子计算是一种基于量子物理学的计算形式。经典计算机依靠位(零或一)进行计算,而量子计算机使用利用量子力学以“叠加”形式存在的量子位(量子位):零和一的组合,每个都有一定的概率。例如,一个量子位可能有 80% 的几率为零,20% 的几率为零。或者 60% 的机会为零,40% 的机会成为 1。等等。
1980 年代,物理学家保罗·贝尼奥夫 (Paul Benioff) 首次提出了量子计算的概念。不久之后,理论物理学家理乍得·费曼和数学家尤里·曼宁率先提模瞎出量子计算机可以解决经典计算机无法解决的问题。事实上,在 1990 年代,数学家 Peter Shor 开发了一种算法,量子计算机可以用它来破解公钥密码学:“ Shor 算法”——如果量子计算机变得足够强大的话。
2019 年 10 月,经过数十年的研究,谷歌正式宣称已达到“量子霸权”。这实质上意味着量子计算机解决了经典计算机无法解决的问题。或者,更具体地说,它在 200 秒内解决了一个问题,即使是最强大的经典超级计算机也需要 10,000 年才能解决。
虽然这是一个重大突破,但量子计算机似乎离运行 Shor 的棚清算法还有很长的路要走。一方面,目前的量子计算机还不够强大,而且不清楚扩大这项技术的难易程度。此外,要真正发挥作用,量子计算机依赖于一种称为“纠错”的技术解决方案,这仍然是一个挑战。
预测这项技术的未来发展很困难,但可以运行 Shor 算法的量子计算机可能需要数年甚至数十年的时间——也许它们根本不可能实现。
如果量子计算机能够运行 Shor 算法并破解公钥密码学,那么比特币确实可能会受到攻击。具体来说,一些硬币可能会被盗。
然而,有些人认为盗窃会受到一定程度的限制。虽然所有硬币都由公钥加密(目前是 ECDSA 算法)保护,但大多数硬币也由 SHA256 散列算法保护。只有当这两种算法都被破解时,所有硬币才能彻底被盗,但目前看来 SHA256(或任何其他哈希算法)似乎无法被量子计算机破解。
也就是说,大量的硬币只能通过公钥密码术来保护。目前的估计表明,如果公钥密码体制被破解,大约 500 万比特币将被盗。以下是比特币可能面临风险的一些情况:
事实上,即使比特币同时受到公钥和哈希的保护,在“量子世界”中安全地使用这种比特币也可能是一个挑战。当用户尝试花费他们的比特币并通过比特币网络传输交易时,攻击者将有机会尝试窃取资金。此时,攻击者可以在交易确认之前尝试破解公钥加密,然后将比特币重新发送到他自己的地址之一。
我只想说,如果量子计算机突然变得比任何人预期的都要强大,比特币就会有问题。
需要注意的是,如果可以运行肖尔算法的量子计算机突然出现,比特币不太可能成为第一个或主要的目标。公钥加密可以保护世界上几乎所有其他数字信息,包括军事情报、银行数据和其他现有金融基础设施、通信网络等。
是的,比特币协议可以升级为抗量子。
简而言之,比特币的签名算法将不得不被量子抗性签名算法所取代。由于隔离见证的激活,比特币的签名算法可以通过向后兼容的软分叉升级相对容易地被替换。(当前的 ECDSA 签名算法可能会在不久的将来通过软分叉被 Schnorr 签名算法部分取代。)
升级后,用户应该将他们的比特币迁移到新地址,以便受到抗量子签名算法的保护。在量子计算机可以运行 Shor 算法之前,没有及时迁移的用户将面旦和空临比特币以某种方式被盗的风险。
如果比特币没有及时转移到安全地址,比特币协议也可能会升级以阻止比特币被消费。这种措施意味着原始所有者也会丢失比特币——但是,当然,无论如何,他们很可能会将比特币丢失给攻击者。(有人建议,这些比特币可能会被其合法所有者通过零知识证明密码术解锁——但这仍然是非常投机的。)
鉴于量子计算的当前发展状况,预计比特币将有足够的提前警告,表明需要进行升级。专家认为,我们还没有接近那个时间点。
量子计算机或许能够比传统计算机更快地挖掘比特币。然而,因为比特币挖掘是基于散列(而不是公钥密码学),所以它可能不会被破坏到任何有意义的程度。
相反,量子计算的出现可能会导致一场新的军备竞赛,以建立最快的采矿硬件,直到找到新的平衡点。当 GPU 取代 CPU 和 ASIC 取代 GPU 时,比特币挖矿格局已经发生了类似的演变。
Ⅱ 量子计算的含义
量子计漏搜液算是一种依照量子力学理论进漏液行的新型计算,量子计算的基础和原理以返物及重要量子算法为在计算速度上超越图灵机模型提供了可能。
Ⅲ 量子计算的力量:它将如何革新信息技术世界
量子计算的力量:它将如何革新信息技术世界?相关内容如下:
子计算是信息技术世界中一个快速发展的领域,有望彻底改变我们处理和操纵信息的方式。
与依赖二进制来表示和操纵信息的传统计算不同,量子计算使用量子比特,或称量子位,以一种更复杂和更强大的方式处理信息。
量子计算有可能彻底改变信息技卖早春术的另一个领域是机器学习和人工智能。 机器学习和人工智能基于计算机分中耐析大量数据并识别数据中的模式和关系的能力。 目前,这是一个缓慢且计算量大的过程,但有了量子计算,机器学习和人工智能算法的速度和效率可以大大提高。
量子计算机还可用于对复杂系统建模,例如化学反应、天气模式,甚至金融市场。 这可能会导致开发新的和更准确的模型,以及新的和更有效的疾病和病症治疗方法。
在金融领域,量子计算有可能彻底改变金融机构管理风险的方式。 通过能够实时处理和分析大量金融数据,量子计算机可以帮助金融机构更有效地识别和降低风险,从而使金融系统更加稳定和安全。
Ⅳ 什么是量子计算机
分类: 电脑/网络
解析:
量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。量子计算机的概念源于对可逆计算机的研究。研究可逆计算机的目的是为了解决计算机中的能耗问题。
20世纪60年代至70年代,人们发现能耗会导致计算机中的芯片发热,极大地影响了芯片的集成度,从而限制了计算机的运行速度。研究发现,能耗来源于计算过程中的不可逆操作。那么,是否计算过程必须要用不可逆操作才能完成呢?问题的答案是:所有经典计算机都可以找到一种对应的可逆计算机,而且不影响运算能裤拍力。既然计算机中的每一步操作都可以改造为可逆操作,那么在量子力学中,它就可以用一个么正变换来表示。早期量子计算机,实际上是用量子力学语言描述的经典计算机,并没有用到量子力学的本质特性,如量子态的叠加性和相干性。在经典计算机中,基本信息单位为比特,运算对象是各种比特序列。与此类似,在量子计算机中,基本信息单位是量子比特,运算对象是量子比特序列。所不同的是,量子比特序列不但可以处于各种正交态的叠加态上,而且还可以处于纠缠态上。这些特殊的量子态,不仅提供了量子并行计算的可能,而且还将带来许多奇妙的性质。与经典计算机不同,量子计算机可以做任意的么正变换,在得到输出态后,进行测量得出计算结果。因此,量子计算对经典计算作了极大的扩充,在数学形式上,经典计算可看作是一类特殊的量子计算。量子计算机对每一个叠加分量进行变换,所有这些变换同时完成,并按一定的概率幅叠加起来,给出结果,这种计算称作量子并行计算。除了进行并行计算外,量子计算机的另一重要用途是模拟量子系统,这项工作是经典计算机无法胜任的。
无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。因此,要使量子计算成为现实,一个核心问题就是克服消相干。而量子编码是迄今发现的克服消相干最有效的方法。主要的几种量子编码方案是:量子纠错码、量子避错码和量子防错码。量子纠错码是经典纠错码的类比,是目前研究的最多的一类编码,其优点为适用范围广,缺点是效率不高。
迄今为止,世界上还没有真正意义上的量子计算机。但是型森,世界各地的许多实验室正在以巨大的热情追寻着这个梦想。如何实现量子计算,方案并不少,问题是在实验上实现对微观量子态的操纵确实太困难了。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。现在还很难说哪一种方案更有前景,只是量子点方案和超导约瑟夫森结方案更适合集成化和小型化。将来也许现有的方案都派不上用场,最后脱颖而出的是一种全新的设计,而这种新设计又是以某种新材料为基础,就像半导体材料对于电子计算机一样胡租羡。研究量子计算机的目的不是要用它来取代现有的计算机。量子计算机使计算的概念焕然一新,这是量子计算机与其他计算机如光计算机和生物计算机等的不同之处。量子计算机的作用远不止是解决一些经典计算机无法解决的问题。
Ⅳ 什么是“量子计算机”对国家的发展有着怎样的重要性
首先我们要了解到什么量子计算机,量子计算机(quantum computer)是遵循量子力学规律进行高速数学和逻辑运算、存储,以及处理量子信息的物理装置。简单来说,对于一台普通的计算机来说根据它的性能找东西相对慢,而量子计算机根据量子力学能快速准确敏捷计算出怎么找东西花费的时间少。
现在中国的科技创新突飞猛进,随着在国际上地位的提高,一定未来可期。
Ⅵ 什么是量子计算,它如何改变信息技术
量子,指的了光子的数量,最近有国外正在开始证实量子力学不成立...,我想这量子计算技术大约也就像有的人只是在使用量子的名词去 "扩展" 量子的使用范围。
电子的速度比光子的速度只差到0.1%以下,所以我感觉但不确定是不是被他们所术量子计算给坑了, 就像有中纤让国有的企业根本造不出芯片,肾紫有的企业厅竖运直接扮梁买国外的cpu贴上自已的标,但一直在坑国家的芯片补贴。
Ⅶ 量子技术是什么意思
量子信息技术是量子物理与信息技术相结合发展起来的新学科,主要包括量子通信和量子计算2个领域。量子通信主要研究量子密码、量子隐形传态、远距离量子通信的技术等等。量子计算主要研究量子计算机和适合于量子计算机的量子算法。
量子计算:
具体而言,1965年,英特尔公司的创始人之一戈登·摩尔针对电子计算机技术的发展提出了“每18个月计算能力翻倍”的摩尔定律。然而,由于传统技术的物理局限性,这一能力或将在未来10~20年之内达到极限。
据保守估计,2018年芯片制造业就将步入16纳米的工艺流程,业内专家则认为,16纳米制程已经是普通硅芯片的尽头。事实上,当芯片的制程小于20纳米之后,量子效应就将严重影响芯片的设计和生产,单纯通过减小制程将无法继续遵循摩尔定律,而突破的希望恰在于量子计算。
Ⅷ 量子计算含义
量子计算机是一种使用量子逻辑进行通用计算的设备。 通用的量子计算机,其理论模型是用量子力学规律重新诠释的通用图灵机。从可计算的问题来看,量子计算机只能解决传统计算机所能解决的问题,但是从计算的效率上,由于量子力学叠加性的存在,目前某些已知的量子算法在处理问题时,速度要快于传统的通用计算机。
量子力学态叠加原理使得量子信息单元的状态可以处于多种可能性的叠加状态,从而导致量子信息处理从效率上相比于经典信息处理具有更大潜力。普通计算机中的2位寄存器在某顷禅一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四种状态的叠加状态。随着量子比特数目的增加,对于n个量子比特而言,量子信息可以处于2种可能状态的叠加,配合量子力学演化的并行性,可以展现比传统计算机更快的处理速度。
量橘乎嫌子位
量子位(qubit)是量子计算的理论基石。在常规计算机中,信息单元用二进制的 1 个位来表示,它不是处于“ 0” 态就是处于“ 1” 态. 在二进制量子计算机中,信息单元称为量子位,它除了处于“ 0” 态或“ 1” 态外,还可处于叠加态(superposed state)。
叠加态是“ 0” 态和“ 1” 态的任意线性叠加,它既可以是“ 0” 态又可以是“ 1” 态,“ 0” 态和“ 1” 态各以一定的概率同时存在. 通过测量或与其它物体发生相互作用而呈现出“ 0” 态或 “ 1” 态.任何两态的量子系统都可用来实现量子位,例如氢原子中的电子的基态(ground state)和第 1激发态(first excited state)、 质子自旋在任意方向的+ 1/ 2 分量和- 1/ 2 分量、圆偏振光的左旋和右旋等。
一个量子系统包含若干粒子,这些粒子按照量子力学的规律运动,称此系统处于态空间的某种量子态。这里所说的态空间是指由多个本征态(eigenstate) (即基本的量子态)所张成的矢量空间,基本量子态简称基本态(basic state)或基矢(basic vector) . 态空间可用Hilbert 空间(线性复向量空间)来表述,即Hilbert 空间可以表述量子系统的各种可能的量子态.为了便于表示和运算,Dirac提出用符号|x〉 来表示量子态,|x〉 是一个列向量,称为ket ;它的共轭转置(conjugate t ranspose) 用〈x|表示,〈x|是一个行向量,称为bra.一个量子位的叠加态可用二维Hilbert 空间(即二维复向量空间)的单位向量来描述,其简化的示意图如右图所示.
叠加原理
把量子考虑成磁场中的电子。电子的旋转可能圆手与磁场一致,称为上旋转状态,或者与磁场相反,称为下旋状态。如果我们能在消除外界影响的前提下,用一份能量脉冲能将下自旋态翻转为上自旋态;那么,我们用一半的能量脉冲,将会把下自旋状态制备到一种下自旋与上自旋叠加的状态上(处在每种状态上的几率为二分之一)。对于n个量子比特而言,它可以承载2的n次方个状态的叠加状态。而量子计算机的操作过程被称为幺正演化,幺正演化将保证每种可能的状态都以并行的方式演化。这意味着量子计算机如果有500个量子比特,则量子计算的每一步会对2^500种可能性同时做出了操作。2^500是一个可怕的数,它比地球上已知的原子数还要多(这是真正的并行处理,当今的经典计算机,所谓的并行处理器仍然是一次只做一件事情)。
Ⅸ 量子计算机是个什么东西为什么说它可以改变世界
您认为您的付款程序绝对安全吗?全球首台量子计算机的出现,使传统计算机在保密过程中的安全性受到了严重挑战。量子电脑是什么?关于这件事,你知道多少?说到量子,你可能首先想到的是量子力学中的各种理论,比如薛定谔的猫,量子纠缠等。正是由于这些理论,量子计算机才能颠覆传统计算机。现在就从比特开始,一步一步地揭开量子计算机的神秘。
理论上,量子力学具有模拟任何自然系统的能力,是人工智能发展的关键。由于量子计算机具有强大的并行操作能力,它可以快速完成经典计算机无法完成的计算。这一优点在加密、解码等领域有很大的应用。
(1)天气预报:如果我们用量子计算机同时分析所有的资料,并得出结果,我们就可以准确地知道天气变化的方向,从而避免巨大的经济损失。
(2)药物发展:量子计算机还具有开发新药物的巨大优势,它可以绘制万兆计的分子构成图,并从中挑选出它们中最有可能的方法,从而加快发明新药的速度,并能对药理分析更加个性化。
(3)交通调度:量子计算机可以根据现有的交通状况预测交通状况,完成深入分析,化交通调度。
(4)保密通信:不仅在我们生活的相似方面,而且由于不可克隆的原则,量子计算机对加密通信的加密不能在入侵者不被发现的情况下进行翻译和窃听,这取决于量子计算机本身的特性。
量子计算机的理论运行速度远远超出任何传统的超级计算机。这种计算机或将使得人们在原子层面对物质状态进行模拟成为可能,从而可以重塑新材料技术;它们也可以通过无穷的算例破解现有的任何加密算法,重新定义网络安全;它们甚至能够通过对海量数据的有效地处理来增强人工智能的水平。它量子计算机所具备的强大能力,未来可能会在更多领域中得到应用,过去的几十年中,量子计算领域发展极为迅猛,在量子计算的加持下,人类科学还能发展成什么样,让未来告诉我们。