㈠ 三维数据分析有哪些好的方法与软件
三维数据处理软件都包含哪些模块
三维数据处理软件,一般包含三个模块:数据管理和处理,三维渲染,UI。 这与图形学的三个经典问题是相对应的:建模,渲染和交互。与一般常见的数据处理软件,比如图像视频处理,不同的是,这里的数据展示模块需要三维渲染。与之对应的UI操作,也变成了一些三维空间的变换,比如模型的旋转缩放等。
如何搭建一个简单的三维数据处理软件
那么如何快速的搭建一个三维数据处理软件呢?采用搭积木的方式,每个模块都有很多现成的开发包可以选择。比如UI模块处,一般常见的有MFC,QT,MyGUI(Magic3D使用的UI)等。数据处理算法方面,常见的有Geometry++,CGAL,OpenMesh,PCL等。渲染模块,可以使用OpenGL或者Direct3D,也可以使用渲染引擎,如OGRE,OSG等。
如何选择几何算法开发包
几何算法模块,一般有三种选择:自主开发,使用开源库,使用商业库。如何选择呢?开发包API的生命周期,大概分为开发,维护和升级。对于一个算法,几乎不可能开发出放之四海皆准的API。它的绝大部分时间都在维护和升级。开发包的选择,其实就是一个成本问题。开发阶段主要是时间成本,如何快速的实现目标功能是最关键的问题。维护和升级阶段需要尽量低的成本开销。所谓开源库免费,其实只是在开发阶段免费,而开发阶段最看重的却是时间成本。有了源代码就需要人去维护,没有人维护的源代码是没有用处的。商业库的主要优势就是有专业的团队来维护和升级这些API,并且成本会比个人做得更低。如果想清楚API的生命周期以及每个阶段的成本开销后,根据自身具体情况,就能很容易的做出选择了。
数字几何处理是什么
数字几何处理,一般是指点云网格数据的处理。和传统的NURBS正向建模的模型相比,数字几何处理的对象一般是三维扫描仪采集的数据,是曲面的离散表达,也就是数字化的。它的研究内容包括数据的获取,存储,表示,编辑,可视化等等。
OpenGL是什么
OpenGL是一套跨平台的图形绘制API,它通过一系列API把三维模型渲染到2D屏幕上。OpenGL采用了流水线机制,其绘制过程也称为渲染流水线。此外还有OpenGLES,主要用于嵌入式系统,或者移动平台;WebGL主要用于Web浏览器里的图形绘制。
OpenGL流水线
OpenGL通过一系列API可以设置渲染流水线的状态,所以OpenGL也是一个状态机。三维模型通过一些处理,最终渲染到2D屏幕上:
模型离散为三角面片:所有模型都需要离散为三角面片,OpenGL只接受三角面片输入。注意,虽然OpenGL也可以接受四边形,NURBS等输入,其本质最后都是三角面片的绘制。
Vertex Shader把三维三角片转化到屏幕坐标系下的2D三角片:这个过程包含了变换,裁剪等操作
2D三角片的光栅化:2D三角片被离散化,用屏幕坐标系的像素来表示,这也叫光栅化。
Pixel Shader为光栅化后的模型像素着色。
上面是渲染流水线的大致描述,其中还有很多细节,不同的API也有些细节上的差别。最早的OpenGL是固定的流水线,也就是只能通过API来设置一些流水线中的状态。现代的OpenGL开放出了一些Shader,用户可以自己为Shader写代码,利用Shader可以写出各式各样的渲染效果。
渲染模块使用OpenGL还是渲染引擎
如果渲染模块不是主要业务,建议使用渲染引擎。因为引擎内有很多现成的工具可以使用,减少开发的时间成本。
㈡ 成矿信息三维定量分析与提取技术
成矿信息三维定量分析与提取的步骤:①研究矿体定位规律与定位模型;②导入地质体块体模型数据作为成矿信息提取的原始数据;③定义地质空间和划分立体单元;④建立控矿地质因素场模型,实现控矿地质因素的三维栅格模型表达;⑤定量分析矿化分布与控矿地质因素的关联关系,构建控矿因素指标集。
㈢ 地下三维数据获取方式
地下三维数据主要有以下三种获取方法:
1、钻孔勘探技术;
2、应用地球物理技术;
3、三维地震技术。
㈣ cad2017如何批量提取三维多段线坐标高程
用插件吧。
搜图片,的名字。 勉 费的
㈤ origin中怎么把三维等高图中的数据提取
打开origin,将图片导入鼠标点击左侧工具栏的screen reader按钮在图片上取点即可。
将图片复制粘贴到Digitizer。按照提示的选择方法:点击选点,双击点确定,或按Enter键确定。
使用origin提取数据主要用到Digitizer。在2015年之前的版本,是需要安装一个单独的digitizer的插件的。
㈥ 三维测量技术的方法及应用
三维测量,顾名思义就是被测物进行全方位测量,确定被测物的三维坐标测量数据。其测量原理分为测距、角位移、扫描、定向四个方面。根据三维技术原理研发的仪器包括拍照式(结构光)三维扫描仪、激光三维扫描仪和三坐标测量机三种测量仪器。
三维测量可定义为“一种具有可作三个方向移动的探测器,可在三个相互垂直的导轨上移动,此探测器以接触或非接触等方式传送讯号,三个轴的位移测量系统 经数据处理器或计算机等计算出工件的各点坐标(X、Y、Z)及各项功能的测量”。 三维测量的测量功能应包括尺寸精度、定位精度、几何精度及轮廓精度等。
1.将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,这项技术就是三坐标测量机的原理。三坐标测量机是测量和获得尺寸数据的最有效的方法之一,可以替代多种表面测量工具,减少复杂的测量任务所需的时间,为操作者提供关于生产过程状况的有用信息。
2.三维激光扫描仪是通过发射激光来扫描被测物,以获取被测物体表面的三维坐标。三维激光扫描技术又被称为实景复制技术,具有高效率、高精度的测量优势。有人说,三维激光扫描是继GPS技术以来测绘领域的又一次技术革命。三维激光扫描仪被广泛应用于结构测量、建筑测量、船舶制造、铁路以及工程的建设等领域,近些年来,三维激光扫描仪已经从固定朝移动方向发展,最具代表性的就是车载三维激光扫描仪和机载三维激光雷达。
3.拍照式三维扫描仪采用一种结合结构光技术、相位测量技术、计算机视觉技术的复合三维非接触式测量技术。这种测量原理,使得对物体进行照相测量成为可能。所谓拍照测量,就是类似于照相机对视野内的物体进行照相,不同的是照相机摄取的是物体的二维图象,而研制的测量仪获得的是物体的三维信息。
机械、汽车、航空、军工、家具、工具原型等测量高精度的几何零部件以及测量复杂形状的机械零部件。
三维测量技术的应用领域:
三维激光扫描技术不断发展并日渐成熟,三维扫描设备也逐渐商业化,三维激光扫描仪的巨大优势就在于可以快速扫描被测物体,不需反射棱镜即可直接获得高精度的扫描点云数据。这样一来可以高效地对真实世界进行三维建模和虚拟重现。因此,其已经成为当前研究的热点之一,并在文物数字化保护、土木工程、工业测量、自然灾害调查、数字城市地形可视化、城乡规划等领域有广泛的应用。
(1)测绘工程领域:大坝和电站基础地形测量、公路测绘,铁路测绘,河道测绘,桥梁、建筑物地基等测绘、隧道的检测及变形监测、大坝的变形监测、隧道地下工程结构、测量矿山及体积计算。
(2)结构测量方面:桥梁改扩建工程、桥梁结构测量、结构检测、监测、几何尺寸测量、空间位置冲突测量、空间面积、体积测量、三维高保真建模、海上平台、测量造船厂、电厂、化工厂等大型工业企业内部设备的测量;管道、线路测量、各类机械制造安装。
(3)建筑、古迹测量方面:建筑物内部及外观的测量保真、古迹(古建筑、雕像等)的保护测量、文物修复,古建筑测量、资料保存等古迹保护,遗址测绘,赝品成像,现场虚拟模型,现场保护性影像记录。
(4)紧急服务业:反恐怖主义,陆地侦察和攻击测绘,监视,移动侦察,灾害估计,交通事故正射图,犯罪现场正射图,森林火灾监控,滑坡泥石流预警,灾害预警和现场监测,核泄露监测。
(5)娱乐业:用于电影产品的设计,为电影演员和场景进行的设计,3D游戏的开发,虚拟博物馆,虚拟旅游指导,人工成像,场景虚拟,现场虚拟。
㈦ Vlisp怎样获得CAD 三维实体模型的数据
随着CAD技术的发展,出现了许多种三维模型的表达方法,其中常见的有以下几种:1)构造型立体几何表达法(ConstructiveSolidGeometry,简称CSG法)它采用布尔运算法则(并、交、减),将一些简单的三维几何基元(如立方体、圆柱体、环、锥体)加以组合、变化成复杂的三维模型实体,这种方法的优点是,易于控制存储的信息量,所得到的实体真实有效,并且能方便地修改它的形状。此方法的缺点是、可用于产生和修改实体的算法有限,构成图形的计算量很大,比较费时。2)边界表达法(Boundary/Representation,简称Brep)它根据顶点、边和面构成的表面来精确地描述三维模型实体。这种方法的优点是,能快速地绘制立体或线框模型。此方法的缺点是、它的数据是以表格形式出现的,空间占用量大,修改设计不如CGS法简单,例如,要修改实心立方体上的一个简单孔的尺勺,必须先用填实来删除这个孔,然后才能绘制一个新孔;所得到的实体不一定总是真实有效,可能出现错误的孔洞和颠倒现象,描述缺乏唯一性。3)参数表达法(ParameterRepresentation)对于自由曲面,难于用传统的几何基元来进行描述,可用参数表达法。这些方法借助参数化样条、贝塞尔b(ezier)曲线和B样条来描述自由曲面,它的每一个X、Y、Z坐标都呈参数化形式。各种参数表达格式的差别仅在于对曲线的控制水平,即局部修改曲线而不影响临近部分的能力,以及建立几何体模型的能力。其中较好的一种是非一致有理B样条法,它能表达复杂的自由曲面,允许局部修改曲率,能准确地描述几何基元。为了综合以上方法的优点,目前,许多CAD系统常采用CSG、Brep和参数表达法的组合表达法。4)单元表达法(CellRepresentation)单元表达法起源于分析(如有限元分析)软件,在这些软件中,要求将表面离散成单元。典型的单元有三角形、正方形或多边形,在快速成型技术中采用的三角形近似(将三维模型转化成STL格式文件),就是一种单元表达法在三维面的应用形式。