‘壹’ 你了解哪些数据加密技术 结合相关资料进行简单介绍
加密技术是电子商务采取的主要安全保密措施,是最常用的安全保密手段,利用技术手段把重要的数据变为乱码(加密)传送,到达目的地后再用相同或不同的手段还原(解密)。常见加密技术分类有:对称加密、非对称加密、专用密钥、公开密钥。
1.对称加密。
对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥,即加密密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法,对称加密算法使用起来简单快捷,密钥较短,且破译困难。
除了数据加密标准(DES),另一个对称密钥加密系统是国际数据加密算法(IDEA),它比DES的加密性好,而且对计算机功能要求也没有那么高。IDEA加密标准由PGP(Pretty Good Privacy)系统使用。
2.加密技术非对称。
1976年,美国学者Dime和Henman为解决信息公开传送和密钥管理问题,提出一种新的密钥交换协议,允许在不安全的媒体上的通讯双方交换信息,安全地达成一致的密钥,这就是“公开密钥系统”。相对于“对称加密算法”这种方法也叫做“非对称加密算法”。
与对称加密算法不同,非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥 (privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。
(1)河源信息加密有哪些扩展阅读:
常规密码的优点是有很强的保密强度,且经受住时间的检验和攻击,但其密钥必须通过安全的途径传送。因此,其密钥管理成为系统安全的重要因素。
在公钥密码中,收信方和发信方使用的密钥互不相同,而且几乎不可能从加密密钥推导解密密钥。比较着名的公钥密码算法有:RSA、背包密码、McEliece密码、Diffe,Hellman、Rabin、Ong?Fiat?Shamir、零知识证明的算法、椭圆曲线、EIGamal算法等等。最有影响的公钥密码算法是RSA,它能抵抗到目前为止已知的所有密码攻击。
‘贰’ 目前常用的加密方法主要有哪两种
私有密钥加密和公开密钥加密。加密是以某种特殊的算法改变原有的信息数据,使得未授权的用户即使获得了已加密的信息,到2022年常用的加密方法主要有私有密钥加密和公开密钥加密两种,按照网络层次的不同,数据加密方式划分,主要有链路加密、节点加密、端到端的加密三种。
‘叁’ 数据加密主要有哪些方式
主要有两种方式:“对称式”和“非对称式”。
对称式加密就是加密和解密使用同一个密钥,通常称之为“Session Key ”这种加密技术目前被广泛采用,如美国政府所采用的DES加密标准就是一种典型的“对称式”加密法,它的Session Key长度为56Bits。
非对称式加密就是加密和解密所使用的不是同一个密钥,通常有两个密钥,称为“公钥”和“私钥”,它们两个必需配对使用,否则不能打开加密文件。这里的“公钥”是指可以对外公布的,“私钥”则不能,只能由持有人一个人知道。它的优越性就在这里,因为对称式的加密方法如果是在网络上传输加密文件就很难把密钥告诉对方,不管用什么方法都有可能被别窃听到。而非对称式的加密方法有两个密钥,且其中的“公钥”是可以公开的,也就不怕别人知道,收件人解密时只要用自己的私钥即可以,这样就很好地避免了密钥的传输安全性问题。
一般的数据加密可以在通信的三个层次来实现:链路加密、节点加密和端到端加密。(3)
链路加密
对于在两个网络节点间的某一次通信链路,链路加密能为网上传输的数据提供安全证。对于链路加密(又称在线加密),所有消息在被传输之前进行加密,在每一个节点对接收到消息进行解密,然后先使用下一个链路的密钥对消息进行加密,再进行传输。在到达目的地之前,一条消息可能要经过许多通信链路的传输。
由于在每一个中间传输节点消息均被解密后重新进行加密,因此,包括路由信息在内的链路上的所有数据均以密文形式出现。这样,链路加密就掩盖了被传输消息的源点与终点。由于填充技术的使用以及填充字符在不需要传输数据的情况下就可以进行加密,这使得消息的频率和长度特性得以掩盖,从而可以防止对通信业务进行分析。
尽管链路加密在计算机网络环境中使用得相当普遍,但它并非没有问题。链路加密通常用在点对点的同步或异步线路上,它要求先对在链路两端的加密设备进行同步,然后使用一种链模式对链路上传输的数据进行加密。这就给网络的性能和可管理性带来了副作用。
在线路/信号经常不通的海外或卫星网络中,链路上的加密设备需要频繁地进行同步,带来的后果是数据丢失或重传。另一方面,即使仅一小部分数据需要进行加密,也会使得所有传输数据被加密。
在一个网络节点,链路加密仅在通信链路上提供安全性,消息以明文形式存在,因此所有节点在物理上必须是安全的,否则就会泄漏明文内容。然而保证每一个节点的安全性需要较高的费用,为每一个节点提供加密硬件设备和一个安全的物理环境所需要的费用由以下几部分组成:保护节点物理安全的雇员开销,为确保安全策略和程序的正确执行而进行审计时的费用,以及为防止安全性被破坏时带来损失而参加保险的费用。
在传统的加密算法中,用于解密消息的密钥与用于加密的密钥是相同的,该密钥必须被秘密保存,并按一定规则进行变化。这样,密钥分配在链路加密系统中就成了一个问题,因为每一个节点必须存储与其相连接的所有链路的加密密钥,这就需要对密钥进行物理传送或者建立专用网络设施。而网络节点地理分布的广阔性使得这一过程变得复杂,同时增加了密钥连续分配时的费用。
节点加密
尽管节点加密能给网络数据提供较高的安全性,但它在操作方式上与链路加密是类似的:两者均在通信链路上为传输的消息提供安全性;都在中间节点先对消息进行解密,然后进行加密。因为要对所有传输的数据进行加密,所以加密过程对用户是透明的。
然而,与链路加密不同,节点加密不允许消息在网络节点以明文形式存在,它先把收到的消息进行解密,然后采用另一个不同的密钥进行加密,这一过程是在节点上的一个安全模块中进行。
节点加密要求报头和路由信息以明文形式传输,以便中间节点能得到如何处理消息的信息。因此这种方法对于防止攻击者分析通信业务是脆弱的。
端到端加密
端到端加密允许数据在从源点到终点的传输过程中始终以密文形式存在。采用端到端加密,消息在被传输时到达终点之前不进行解密,因为消息在整个传输过程中均受到保护,所以即使有节点被损坏也不会使消息泄露。
端到端加密系统的价格便宜些,并且与链路加密和节点加密相比更可靠,更容易设计、实现和维护。端到端加密还避免了其它加密系统所固有的同步问题,因为每个报文包均是独立被加密的,所以一个报文包所发生的传输错误不会影响后续的报文包。此外,从用户对安全需求的直觉上讲,端到端加密更自然些。单个用户可能会选用这种加密方法,以便不影响网络上的其他用户,此方法只需要源和目的节点是保密的即可。
端到端加密系统通常不允许对消息的目的地址进行加密,这是因为每一个消息所经过的节点都要用此地址来确定如何传输消息。由于这种加密方法不能掩盖被传输消息的源点与终点,因此它对于防止攻击者分析通信业务是脆弱的。
‘肆’ 河源无线信号ChinaNet-dYAi的密码有谁知道,知道的请告诉我
这个信号是你的手提电脑或者是3G手机附近搜到的吧!
像这种信号一般都是家庭里的E家用户和无线路由发
射出的,密码是由用户设置的,所以只有他们才知道
密码,我家也是Chinanet-wrct。
这种问题我帮不了你,只能多少解释你听了!其实你
也可以自己安装一个无线路由啊,方便多了,小新芯。
‘伍’ 目前常用的加密方法主要有两种是什么
目前常用的加密方法主要有两种,分别为:私有密钥加密和公开密钥加密。私有密钥加密法的特点信息发送方与信息接收方均需采用同样的密钥,具有对称性,也称对称加密。公开密钥加密,又称非对称加密,采用一对密钥,一个是私人密钥,另一个则是公开密钥。
私有密钥加密
私有密钥加密,指在计算机网络上甲、乙两用户之间进行通信时,发送方甲为了保护要传输的明文信息不被第三方窃取,采用密钥A对信息进行加密而形成密文M并发送给接收方乙,接收方乙用同样的一把密钥A对收到的密文M进行解密,得到明文信息,从而完成密文通信目的的方法。
这种信息加密传输方式,就称为私有密钥加密法。
私有密钥加密的特点:
私有密钥加密法的一个最大特点是:信息发送方与信息接收方均需采用同样的密钥,具有对称性,所以私有密钥加密又称为对称密钥加密。
私有密钥加密原理:
私有加密算法使用单个私钥来加密和解密数据。由于具有密钥的任意一方都可以使用该密钥解密数据,因此必须保证密钥未被授权的代理得到。
公开密钥加密
公开密钥加密(public-key cryptography),也称为非对称加密(asymmetric cryptography),一种密码学算法类型,在这种密码学方法中,需要一对密钥,一个是私人密钥,另一个则是公开密钥。
这两个密钥是数学相关,用某用户密钥加密后所得的信息,只能用该用户的解密密钥才能解密。如果知道了其中一个,并不能计算出另外一个。因此如果公开了一对密钥中的一个,并不会危害到另外一个的秘密性质。称公开的密钥为公钥;不公开的密钥为私钥。
‘陆’ 数据加密算法有哪些
DES加密算法,AES加密算法,RSA加密算法,Base64加密算法,MD5加密算法,SHA1加密算法。
由于计算机软件的非法复制,通信的泄密、数据安全受到威胁,解密及盗版问题日益严重,甚至引发国际争端,所以在信息安全技术中,加密技术占有不可替代的位置,因此对信息加密技术和加密手段的研究与开发,受到各国计算机界的重视,发展日新月异。
‘柒’ 常用的加密算法有哪些
对称加密算法(秘密钥匙加密)和非对称加密算法(公开密钥加密)。
对称加密算法用来对敏感数据等信息进行加密,常用的算法包括:
DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;
AES
常见的非对称加密算法如下:
RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;
DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准);
ECC(Elliptic Curves Cryptography):椭圆曲线密码编码学。
‘捌’ 加密技术有哪几种
采用密码技术对信息加密,是最常用的安全交易手段。在电子商务中获得广泛应用的加密技术有以下两种:
(1)公共密钥和私用密钥(public key and private key)
这一加密方法亦称为RSA编码法,是由Rivest、Shamir和Adlernan三人所研究发明的。它利用两个很大的质数相乘所产生的乘积来加密。这两个质数无论哪一个先与原文件编码相乘,对文件加密,均可由另一个质数再相乘来解密。但要用一个质数来求出另一个质数,则是十分困难的。因此将这一对质数称为密钥对(Key Pair)。在加密应用时,某个用户总是将一个密钥公开,让需发信的人员将信息用其公共密钥加密后发给该用户,而一旦信息加密后,只有用该用户一个人知道的私用密钥才能解密。具有数字凭证身份的人员的公共密钥可在网上查到,亦可在请对方发信息时主动将公共密钥传给对方,这样保证在Internet上传输信息的保密和安全。
(2)数字摘要(digital digest)
这一加密方法亦称安全Hash编码法(SHA:Secure Hash Algorithm)或MD5(MD Standards for Message Digest),由Ron Rivest所设计。该编码法采用单向Hash函数将需加密的明文“摘要”成一串128bit的密文,这一串密文亦称为数字指纹(Finger Print),它有固定的长度,且不同的明文摘要成密文,其结果总是不同的,而同样的明文其摘要必定一致。这样这摘要便可成为验证明文是否是“真身”的“指纹”了。
上述两种方法可结合起来使用,数字签名就是上述两法结合使用的实例。
3.2数字签名(digital signature)
在书面文件上签名是确认文件的一种手段,签名的作用有两点,一是因为自己的签名难以否认,从而确认了文件已签署这一事实;二是因为签名不易仿冒,从而确定了文件是真的这一事实。数字签名与书面文件签名有相同之处,采用数字签名,也能确认以下两点:
a. 信息是由签名者发送的。
b. 信息在传输过程中未曾作过任何修改。
这样数字签名就可用来防止电子信息因易被修改而有人作伪;或冒用别人名义发送信息;或发出(收到)信件后又加以否认等情况发生。
数字签名采用了双重加密的方法来实现防伪、防赖。其原理为:
(1) 被发送文件用SHA编码加密产生128bit的数字摘要(见上节)。
(2) 发送方用自己的私用密钥对摘要再加密,这就形成了数字签名。
(3) 将原文和加密的摘要同时传给对方。
(4) 对方用发送方的公共密钥对摘要解密,同时对收到的文件用SHA编码加密产生又一摘要。
(5) 将解密后的摘要和收到的文件在接收方重新加密产生的摘要相互对比。如两者一致,则说明传送过程中信息没有被破坏或篡改过。否则不然。
3.3数字时间戳(digital time-stamp)
交易文件中,时间是十分重要的信息。在书面合同中,文件签署的日期和签名一样均是十分重要的防止文件被伪造和篡改的关键性内容。
在电子交易中,同样需对交易文件的日期和时间信息采取安全措施,而数字时间戳服务(DTS:digital time-stamp service)就能提供电子文件发表时间的安全保护。
数字时间戳服务(DTS)是网上安全服务项目,由专门的机构提供。时间戳(time-stamp)是一个经加密后形成的凭证文档,它包括三个部分:1)需加时间戳的文件的摘要(digest),2)DTS收到文件的日期和时间,3)DTS的数字签名。
时间戳产生的过程为:用户首先将需要加时间戳的文件用HASH编码加密形成摘要,然后将该摘要发送到DTS,DTS在加入了收到文件摘要的日期和时间信息后再对该文件加密(数字签名),然后送回用户。由Bellcore创造的DTS采用如下的过程:加密时将摘要信息归并到二叉树的数据结构;再将二叉树的根值发表在报纸上,这样更有效地为文件发表时间提供了佐证。注意,书面签署文件的时间是由签署人自己写上的,而数字时间戳则不然,它是由认证单位DTS来加的,以DTS收到文件的时间为依据。因此,时间戳也可作为科学家的科学发明文献的时间认证。
3.4数字凭证(digital certificate, digital ID)
数字凭证又称为数字证书,是用电子手段来证实一个用户的身份和对网络资源的访问的权限。在网上的电子交易中,如双方出示了各自的数字凭证,并用它来进行交易操作,那么双方都可不必为对方身份的真伪担心。数字凭证可用于电子邮件、电子商务、群件、电子基金转移等各种用途。
数字凭证的内部格式是由CCITT X.509国际标准所规定的,它包含了以下几点:
(1) 凭证拥有者的姓名,
(2) 凭证拥有者的公共密钥,
(3) 公共密钥的有效期,
(4) 颁发数字凭证的单位,
(5) 数字凭证的序列号(Serial number),
(6) 颁发数字凭证单位的数字签名。
数字凭证有三种类型:
(1) 个人凭证(Personal Digital ID):它仅仅为某一个用户提供凭证,以帮助其个人在网上进行安全交易操作。个人身份的数字凭证通常是安装在客户端的浏览器内的。并通过安全的电子邮件(S/MIME)来进行交易操作。
(2) 企业(服务器)凭证(Server ID):它通常为网上的某个Web服务器提供凭证,拥有Web服务器的企业就可以用具有凭证的万维网站点(Web Site)来进行安全电子交易。有凭证的Web服务器会自动地将其与客户端Web浏览器通信的信息加密。
(3) 软件(开发者)凭证(Developer ID):它通常为Internet中被下载的软件提供凭证,该凭证用于和微软公司Authenticode技术(合法化软件)结合的软件,以使用户在下载软件时能获得所需的信息。
上述三类凭证中前二类是常用的凭证,第三类则用于较特殊的场合,大部分认证中心提供前两类凭证,能提供各类凭证的认证中心并不普遍
‘玖’ 数据加密方式有哪些
对称加密:三重DES、AES、SM4等
非对称加密:RSA、SM2等
其他的保护数据隐私的方法还有同态加密、差分隐私、安全多方计算等
目前我们公司一直和上海安策信息合作的,安策信息研发了好几种数据加密工具,包括加密狗、加密机、动态口令、加密工具等网络也有很多相关资料。
‘拾’ 常用的加密算法有哪些
对称密钥加密
对称密钥加密 Symmetric Key Algorithm 又称为对称加密、私钥加密、共享密钥加密:这类算法在加密和解密时使用相同的密钥,或是使用两个可以简单的相互推算的密钥,对称加密的速度一般都很快。
分组密码
分组密码 Block Cipher 又称为“分块加密”或“块加密”,将明文分成多个等长的模块,使用确定的算法和对称密钥对每组分别加密解密。这也就意味着分组密码的一个优点在于可以实现同步加密,因为各分组间可以相对独立。
与此相对应的是流密码:利用密钥由密钥流发生器产生密钥流,对明文串进行加密。与分组密码的不同之处在于加密输出的结果不仅与单独明文相关,而是与一组明文相关。
DES、3DES
数据加密标准 DES Data Encryption Standard 是由IBM在美国国家安全局NSA授权下研制的一种使用56位密钥的分组密码算法,并于1977年被美国国家标准局NBS公布成为美国商用加密标准。但是因为DES固定的密钥长度,渐渐不再符合在开放式网络中的安全要求,已经于1998年被移出商用加密标准,被更安全的AES标准替代。
DES使用的Feistel Network网络属于对称的密码结构,对信息的加密和解密的过程极为相似或趋同,使得相应的编码量和线路传输的要求也减半。
DES是块加密算法,将消息分成64位,即16个十六进制数为一组进行加密,加密后返回相同大小的密码块,这样,从数学上来说,64位0或1组合,就有2^64种可能排列。DES密钥的长度同样为64位,但在加密算法中,每逢第8位,相应位会被用于奇偶校验而被算法丢弃,所以DES的密钥强度实为56位。
3DES Triple DES,使用不同Key重复三次DES加密,加密强度更高,当然速度也就相应的降低。
AES
高级加密标准 AES Advanced Encryption Standard 为新一代数据加密标准,速度快,安全级别高。由美国国家标准技术研究所NIST选取Rijndael于2000年成为新一代的数据加密标准。
AES的区块长度固定为128位,密钥长度可以是128位、192位或256位。AES算法基于Substitution Permutation Network代换置列网络,将明文块和密钥块作为输入,并通过交错的若干轮代换"Substitution"和置换"Permutation"操作产生密文块。
AES加密过程是在一个4*4的字节矩阵(或称为体State)上运作,初始值为一个明文区块,其中一个元素大小就是明文区块中的一个Byte,加密时,基本上各轮加密循环均包含这四个步骤:
ECC
ECC即 Elliptic Curve Cryptography 椭圆曲线密码学,是基于椭圆曲线数学建立公开密钥加密的算法。ECC的主要优势是在提供相当的安全等级情况下,密钥长度更小。
ECC的原理是根据有限域上的椭圆曲线上的点群中的离散对数问题ECDLP,而ECDLP是比因式分解问题更难的问题,是指数级的难度。而ECDLP定义为:给定素数p和椭圆曲线E,对Q=kP,在已知P,Q 的情况下求出小于p的正整数k。可以证明由k和P计算Q比较容易,而由Q和P计算k则比较困难。
数字签名
数字签名 Digital Signature 又称公钥数字签名是一种用来确保数字消息或文档真实性的数学方案。一个有效的数字签名需要给接收者充足的理由来信任消息的可靠来源,而发送者也无法否认这个签名,并且这个消息在传输过程中确保没有发生变动。
数字签名的原理在于利用公钥加密技术,签名者将消息用私钥加密,然后公布公钥,验证者就使用这个公钥将加密信息解密并对比消息。一般而言,会使用消息的散列值来作为签名对象。