导航:首页 > 信息系统 > 信息可视化绘画风格有哪些

信息可视化绘画风格有哪些

发布时间:2023-01-02 09:11:07

A. 深入浅出丨带你看懂数据可视化“美”的历程

深入浅出丨带你看懂数据可视化“美”的历程
古人说:“人不可貌相”,但从古至今,人类却是一群感性动物,容易受到外在表象影响,先感性才理性。
《韩非子》里提到,春秋末期鲁国人澹台灭明,天生异像,“额低口窄,鼻梁低矮,不具大器形貌”,拜孔子为师,孔子没有拒绝,但对他不上心,爱答不理,让他坐冷板凳。于是,他毅然决然地离开孔子,自学成才,独辟蹊径,游历讲学,积极传播儒家学说,并培养出很多人才,深受老百姓爱戴。孔子听闻他的事迹之后,幡然醒悟。
在今天,好看这件事也一样是很重要的。“颜值即正义”,长得好看的人,似乎更容易受到欢迎和优待。
但古人也说过:“相由心生”,从一个人的外表和精神状态可以大概知道这个人的内在状况,相反,一个人的内心思想状态,也会投射到形象外表。
因此,我们要注重自身内在涵养的健康发展,也要学会对外在美的表达与审视。
同样地,好的设计也应该是兼具内容与形式。
信息时代让人们的生活节奏加快,人们每一天都变得匆忙,时间被碎片化,甚至没有多少时间完整看完一段文字。文字的力量是有限的。只有借助可视化,信息才能高效地传播。
数据可视化是数据领域一个重要的分支,目的是“让数据说话”,展现数据之美。好的图表会说话,好的图表可以抓住用户的心。
一、历史篇:人类对世界的认知与表达从图画开始
研究发现,人脑处理图片信息是同步进行的,而处理文字信息则是一步一步循序渐进的,而且一篇文字下来,大部分人只记住了其中的20%;人在看报纸时,99%的文字信息会自动被过滤掉,脑子里只残留了可怜的1%;人脑处理图片的速度是处理文字的6000倍。也就是说,如果一篇6000字的文章需要10分钟看完,而压缩成一张图片则只需要10/6000分钟的时间。
图片可以表达的内容要比文字更丰富,同时也可以给人留下很大的想象空间 ,可以体现真实性(有图有真相),可以让人赏心悦目。
其实,在远古时期,我们遥远的祖先——智人就已经学会画画,基于自己对周边生活环境的认知,将人、鸟、兽、草、木等事物以及狩猎、耕种、出行、征战、搏斗、祭祀甚至男女交媾等日常活动刻画在岩石上、石壁上、洞穴里......到目前为止,欧洲、亚洲、美洲、大洋洲的70多个国家150多个地区发现岩画遗址,而仅非洲和澳洲少数族群目前还存有岩画制作的传统,例如着名的岩画遗址拉斯科洞窟壁画、阿尔塔米拉洞窟壁画、大麦地岩画、拉文特岩画、平图拉斯河手洞壁画、非洲大象岩刻、将军崖岩画等。
岩画学家埃马努埃尔·阿纳蒂在《世界岩画:原初语言》一书中提到:随着智人技术水平的提高、抽象和感知能力的增强,促使了复杂语言和艺术的产生,而岩画正是这种语言的一种记录形式;目前所知的70%岩画都是狩猎采集社会的作品,剩余30%是游牧和农耕时期的作品,在这些岩画的结构中存在着共同的记忆和普遍性的认知模式。岩画是象形文字,是无文字时代的写作,是人类隐没记忆的见证。
可见,人类对世界的认知与表达是从图画开始的。

图1. 远古时代的岩画
人类造出文字之前,还经历过“结绳记事”、“图画记事”等阶段。
但随着社会的发展,人类发生了“农业革命”,不再单纯依靠狩猎为生,制造和使用工具更加娴熟,剩余产品逐渐增加,社会组织逐步成熟。这时,社会组织不断产生大量的信息,除法令条纹外,还必须记录各种交易、税收、商品库存、节假日以及打胜仗的日期等。在此之前,人类虽然可以利用图画记事,但更多的还是用自己的大脑记录信息。随着信息的大量产生,容易产生记忆过载,于是就有了文字。
象形文字是由原始的图画发展而来的。由于社会的发展,加上图画效率低,难以满足社会化需求,于是人们逐渐从图画中抽离出一个个元素,形成象形文字。象形文字是一种最原始的造字方法,纯粹利用图形来作文字使用,而这些文字又与所代表的东西在形状上很相像,图画性质减弱,象征性质增强。苏美尔楔形文字、甲骨文、古埃及象形文字、玛雅文字都是独立地从原始社会最简单的图画和花纹产生出来的。
但象形文字也有很大的局限性,因为有些实体事物和抽象事物是画不出来的,而且写起来很慢又难读懂。

图2. 世界四大古文字
随着社会的进一步发展,文字也得到了很大的发展,在象形文字的基础上逐步分化出“表音”和“表意”两种文字。文字是用来记录和传播语言的,而记录和传播只有两种途径,或“表音”,或“表意”。就汉字来说,其发展脉络大致是:结绳记事—图画文字—象形文字—形意文字—意音文字。
社会的发展,推动了文字的发展,使得人们在对事物的表达上可以更加丰富多样,可以指事、象形、形声、会意、转注、假借。人们对世界的认知和表达在广度和深度上也都有了很大的延伸。反过来,由于更多样化的文字,人们能够更加准确、生动、深刻、灵活地记录下所见所闻和所思所想,加快了知识的传播与传承,推动了社会的大发展。
文字即使再丰富,也有难以突破的局限性。文字需要理解,不能一目了然,对抽象事物及个体的表达,还不够形象、到位。因此,在出现文字之后的时代,许多文献就以图文结合的形式流传下来。例如,在1912年发现的伏尼契手稿中,字母和语言至今无人破解,但其中的植物、天体出浴美女等许多图片,甚至出现了构造精致的精美图案,一目了然,让人惊叹。

图3. 伏尼契手稿
二、发展篇:进入了“百花齐放、百家争鸣”的时代
计算机出现之前,人们已经能够灵活地运用柱形图、线图、饼图等基本图表来展示数据,而且也衍生了很多新型、创意的数据图表。
大家应该都知道南丁格尔(国际上以她的生日命名了护士节),但很多人应该不知道南丁格尔玫瑰图(下图)就是她创造的。在克里米亚战争期间,南丁格尔通过搜集数据,发现很多死亡原因并非是“战死沙场”,而是在战场外感染疾病,或是在战场上受伤,却没有得到适当的护理而致死。为了解释这个原因,降低英国士兵死亡率,她画了这个着名的图表,于1858年递交到维多利亚女王手中。(这么漂亮的图表,想必女王一定很受感动)

图4. 南丁格尔玫瑰图
世界着名的绘图大师米纳德,开创了许多重要的主题绘图技巧,改良了其他技术。他是首个把饼图和地图结合在一起的人,并将流线放入地图中。以下图表是米纳德最广为人知的作品,被EdwardTufte认为是史上最杰出的统计图。它描绘了拿破仑的军队自离开波兰-俄罗斯边界后军力损失的状况,在一张图中通过两个维度呈现了六种维度信息:拿破仑军队人数、行军距离、温度、经纬度、移动方向以及时间-地域关系。

图5. 拿破仑行军图
计算机出现后,特别是互联网的兴起,人类社会以“摩尔定律”的速度,进入一个全新的时代,科学技术也得到了前所未有的革新与发展,同时也给人们带来了很多新思维。
技术的进步,让我们能够采集到比以前多得多的信息,数据规模不断成指数量级的增长,数据的内容和类型也比以前要丰富得多,改变了人们分析和研究世界的方式,也给人们提供了新的可视化素材,推动了数据可视化领域的发展。
与以前相比,数据可视化领域发生了很多的变化,得到了很大的发展。
1. 可视化的表现形式和场景更丰富
在当今信息时代,信息出现了“泛滥”与“过载”,人们每天都受到各种信息的“轰炸”。当我们打开网页或手机APP时,首先进入我们视野的就是各种弹出的广告信息。这些信息从内容到形式,都经过了精心设计。我们走在大街上,映入我们眼球的则是满大街的广告海报,还时常有人站在街边向路人派发传单。我们不仅仅只从书上看到了可视化的图表,还从海报、信息图、PPT、数据产品、大屏等获取到了大量的可视化信息。

图6. 可视化的表现形式
2. 可视化展现方式更多样和灵活
数据图表是最常用的可视化元素。除柱形图、条形图、饼图、环形图、线图、散点图、面积图、雷达图、K线图、地图等基本图表外,现在也出现了更多新式的图表,如山峰图、雷达图、气泡图、热力图、漏斗图、树图、箱形图、瀑布图、河流图、词云图、仪表盘、南丁格尔玫瑰图、旭日图、和弦图、桑基图、3D图,等等。另外,智慧的人们也常常创意性地将各种图表混搭,例如下图,地图和饼图、散点图、柱形图等搭配使用。

图7. 各种图表的混搭
除图表外,对图片和图标的灵活运用,使得可视化更加美观、形象、贴切。

图9. 图标的灵活运用
3. 从静态到动态
由于技术的发展,实时数据采集、实时数据传输以及实时数据计算得以实现,人们终于得以欣赏到数据的灵动之美。以前人们只能看到事后数据形成的分析结果,看到的是数据的过去式,领略的是数据的静态之美。而现在,通过实时计算及数据可视化,人们可以知道“当前时刻发生了什么”,看到了数据的变化,看到了数据的动态之美。
4. 设计上更注重用户体验
由“信息泛滥”引起“信息过载”,从而导致“信息焦虑”。无论是风格、元素、配色、文字、交互上还是细节上,人们的可视化作品都越来越注重用户的视觉体验,希望能让用户一目了然,不多花一点儿时间去理解。在设计风格上,从3D拟物化到简洁扁平化再到拟物扁平化的发展变化,也在不断地为用户“做减法”。
三、原则篇:关于设计的四大原则
“别忘了,你是为读者进行可视化设计。”
——《数据之美:一本书学会可视化设计》
所有的设计细节,都必须经过精心构思,都必须站在用户角度来思考。
颜值高或者打扮好看的人,总能牢牢地吸引别人的目光,相反,衣着邋遢不修边幅的人,却往往是别人瞅一眼就嫌弃。那些聪明的人,必然深谙这样的秘诀:好看的PPT报告,总能在第一时间吸引受众,再加上生动的演讲,就会收到很多好评;广告牌做得越好,就越吸引路人的注意力,越能让路人记住,广告效果也就越好。
当你看到别人的可视化作品时,你是否总觉得不好,但怎么也说不出到底哪些地方不好?如果你熟悉以下基本原则,就算不是一个专业的设计人员,你也可以快速看出哪里出了问题并提出非常中肯的建议。如果你还能熟练运用这些原则,那你的可视化作品将焕然一新,更加专业、好看、有趣,也将收获更多读者的赞赏。
亲密性(分组)
在生活中,几乎每件事都有逻辑,人们也喜欢遵循一定的逻辑去理解世间之事,例如时间先后、空间、因果、总-分-总等逻辑结构。
在做可视化设计的时候,我们所要表达的内容一定不能是一些无序呈现,这样会给读者造成理解上的混乱。我们的可视化作品应当能够遵循多数读者所能理解的思维逻辑,将内容分成几部分按顺序一步一步地表达出来。
相同部分的内容,彼此相关,应当靠近,放在一起。这样阅读起来才能被理解成为同一单元的内容,而不是多个孤立的不相关的内容。不同部分的内容,应当明显地区隔开来,例如上下部分内容之间用一空行隔开或者间距放大。这样有助于组织信息,减少混乱,为读者提供清晰的结构。

图10. 亲密性原则
对齐
在版式布局上,任何元素的摆放,都可能会影响甚至主导用户的视觉流程。因此,任何元素都不能随意摆放,否则会造成混乱,而混乱会令人不适。对齐,使每个元素都与其它元素建立起某种视觉联系。对齐,也让可视化作品更加清晰、精巧、清爽。
对齐,不仅包括左对齐、右对齐、顶端对齐、低端对齐,还包括水平居中、垂直居中、横向分布、纵向分布,等。

图11. 对齐原则
重复/统一
我们都有“先入为主”的“陋习”,当看到与之前不和谐不一致的东西,常感突兀,甚至本能抗拒。因此,在可视化作品中反复使用一些视觉要素,建立上下文之间的联系,增加条理性,保持视觉上的统一。
任何视觉元素都可以在同一作品中重复使用,例如颜色、形状、材质、空间关系、线宽、字体、大小和图片,等等。

图12. 重复原则
对比/强调
在做可视化设计时,我们的初心是以图文的形式把所要表达的信息清晰的传递给用户,让用户一目了然,尽量不需要太多思考和理解。为了达到这个目的,我们需要强调重点,弱化次要,避免作品中所有的元素看起来重要程度都是一样的。如果所有的东西都同等重要,那就相当于所有的东西都不重要。

图13. 强调重点,弱化必要
如果你想突出某些信息要点,那就让对应的元素(字体、颜色、大小、线宽、形状、空间等)与其它元素不相同,让它们截然不同,让用户首先能够关注到它们。

图14. 对比原则
表达,力求准确、到位、简洁、易懂
当用户看到我们的可视化作品时,我们最好要保证所表达的信息能被用户正确理解。除使用上面几个原则外,我们还要附加一些辅助信息,例如文字、箭头等。在可视化作品中,文字必不可少,但篇幅要加以控制。
文字的表达,要准确、到位、简洁、易懂,要能引导用户正确地理解图表的意思,要能不引起任何歧义。

图15. 表达,要准确、到位
四、流程篇:要有数据可视化的正确姿势
没有什么比亲手创造美这件事更给人带来成就感了。
当我们满怀激动地开始数据可视化时,请不要马上钻入某个细节里,不要急着考虑用什么酷炫的图表来展现,也不要纠结于用什么颜色、什么字体。我们要有数据可视化的正确打开姿势。
不同形式的数据可视化流程有所不同,这里主要讲重要且相通的部分。
(一) 了解你的需求
关于需求,在实现之前,一定要听清楚做什么,想清楚怎么做,说清楚怎么做。
了解与分析数据可视化需求,主要围绕以下几点来展开:
1. 看什么,即哪些内容需要可视化。
很少需求方能够准确、全面地说出他们真正想要什么。他们只能描述出大概的样子,因此需要不断引导他们以明确真正详细的需求。
· 可视化的目的是什么,用户是谁,在哪里看,什么情况下看,多久看一次;
· 了解数据,看看有哪些指标,哪些指标可以直接取,哪些需要复杂计算,哪些可以实时,哪些只能离线;
· 哪些指标必须展现,哪些指标不展现,哪些指标可展现可不展现;
· 展现的维度有哪些,按时间、部门、地域、指标,看实时数据还是历史数据;
· 通过可视化,期望从中知道哪些信息,等等。
2. 谁看,即用户是谁。
如果面对的是求真务实的老板,那可能需要侧重于内容,追求逻辑的合理性和数据的准确性;如果是来访参观的贵客,那可能为了展示公司实力与形象而追求高大上的图表设计;如果是不懂技术的业务人员,在可视化时可能需要避免过于技术性。
3. 在哪里看,即有哪些可视化形式。
一次性的工作汇报,可使用PPT,如果老板嫌弃做PPT太慢,可以直接用Excel,或者其它工具,如脑图;如果为很多用户提供周期性计算的指标数据,且满足不同条件下的查看,那适合做一款数据产品或者可视化报表;向来访的贵客介绍公司情况时,如果想给客人们提供一种赏心悦目的视觉享受,用大屏可视化数据再合适不过了;如果想给公司各部门同事普及知识、介绍成果、通知活动等,做一张可视化信息图,并在线发布,图文结合,有趣生动,既吸引更多读者关注,提升阅读体验。
4. 什么情况下看。
“第一印象”肯定是重要的。用户“第一眼”感觉不好,当然就没有了然后,就不会有“第二眼”、“第三眼”,也就不会再往下看了。所以,要带给用户“第一眼”足够良好的视觉体验,就要多想想用户会在什么场景下去看你的可视化作品。
例如,打开手机,多数情形下,用户只会根据标题有选择地浏览少量文章,因此,取一个生动、有趣、亮眼的标题,比普通标题更有视觉冲击力,会让你的文章从众多内容中脱颖而出,赢得更多用户点击阅读。

图16. 取一个有吸引力的标题
例如,在企业内部(特别是人多的公司),海报、信息图形式的内容,每天都大量地以邮件地方式群发给各部门人员,或活动通知、或展现成果、或宣传典型,等等。每个员工都“信息过载”,只能阅读少量的信息。
除标题要吸引人外,还需要注意用户打开邮件的实际场景。不少用户打开这种群发邮件时,常常是下面的情况,一堆的收件人,一堆的抄送人,这已经占据了有限电脑屏幕的一部分,剩下的部分就是点击某个邮件时出现的正文内容的部分。因此,在这一区域完整显示出标题(以及内容摘要),才能吸引用户往下看。

图17. 多想想具体的场景
(二)可视化设计
可视化设计是最重要的环节。只有做好这一环节,后面的事情才会变得简单顺畅。
1. 梳逻辑
我们在阅读时,只要遇到稍微难懂的知识,基本上会本能地第一时间选择退缩,不再看下去。之所以觉得难懂,最主要是因为逻辑不清晰给我们带来理解上的困扰。逻辑就像一棵树的树干,如果我们只见树叶不见树干,就会迷失方向。因此,在可视化设计前,一定要站在用户的角度,梳理出清晰的逻辑结构。这一步,想清楚怎么做,很重要,多花点时间也没关系。
对于数据可视化来说,逻辑就是确定各部分的核心内容,以及内容之间的先后次序和关联关系,即讲什么不讲什么,先讲什么后讲什么。
把逻辑设计得简单一些,清晰一些,用户就能越快明白你的“良苦用心”。
2. 定风格
风格营造一种氛围,驱动用户沉浸式阅读。不同的风格,适合不同的用户不同的场景,例如科技、学院、活泼、严肃、可爱,等等。
3. 排版式
版式设计就是关于如何处理信息重点,因为在任何设计中,最重要的信息需要首先被注意到,然后是次要信息。
好的版式就像导盲犬,合理地对内容进行布局,适当地安排版式中的视觉流程,引导用户第一时间看到最需要被关注的部分,暗示用户“先看什么,后看什么”。
一般来说,可视化作品一般包括标题、正文、图表、说明文字等要素。版式就是基于上述提到的几个原则,确定元素之间的层次结构,合理摆放这几个要素。
4. 选图表
不是越酷炫的图表就越适合。这首先要看展现什么数据。某些图表只适合展现相应格式的数据。其次,也需要对展现数据的图表进行个性化定制,包括样式、风格、颜色、字体,使之契合上下文语境,也让图表更有温度。
不要将就而选择默认设置的图表,不要做那个“Mr.差不多”或“Ms.还行”。如果将默认设置的图表放在可视化作品中,总是显得那么突兀和不协调。另外,对默认设置的弃用,可以强迫自己不断精进,不断提升可视化的能力。
5. 调细节
对单个部分的可视化设计,并不能完全保证整体上的和谐一致。因此,回到整体,根据前面提到的几个原则,发现细节问题,对某些细节进行调整,使之整体上保持一致。例如,各部分视觉元素之间保持对齐,如标题、正文、图表等;在配色、字体或其它细节上,各部分要尽量做到统一;各部分之间要有明显的区隔,等等。
(三)指标计算
巧妇难为五米之炊。有数据,才能谈数据可视化。数据的获取、整合、计算,会占用大量的时间。这一部分工作是相对独立的。
但需要注意的是,模拟数据和真实数据是有区别的。根据模拟数据设计的图表,一定要用真实数据展现与验证,验证图表与真实数据的契合程度。例如下图,模拟数据展示的图表中各部门之间存在明显的差异,但改为用真实数据展示时,却“看起来感觉都一样”,这时候就需要调整图表的设置,凸显视觉上的差异。

图18. 用真实数据验证可视化的效果
指标的计算过程,这里略去不讲。
(四)前端开发
数据产品、大屏的可视化实现,还需要前端开发。
理论上来讲,只要设计出的图表,就一定能在前端实现。但这个可能会受到前端开发人员的技术水平和展现工具的限制。所以,可视化设计有时候需要寻求一种关于设计与实现之间的平衡。
可视化设计人员最好事先有所评估,采用复杂图表设计之前最好与开发人员沟通探讨实现的可行性。
五、工具篇:你会用Excel设计图表吗?
Excel是最常用、最基本、最灵活且最应该掌握的图表制作工具。 可以说,大多数图表样式都可以用Excel画出来。如果你认为用Excel画不出来某种样式的图表,有可能是你还未掌握Excel的高阶技巧。
Excel展现的图表是静态的,且支持的数据量比较有限。所以,如果是企业级的动态数据展现,还需要借助专业的大数据可视化工具。
专业可视化工具有很多,大致可分为三类:企业级专业可视化工具、轻量级在线可视化工具、编程式图表工具。
企业级专业可视化工具
ECharts 是国内使用率非常高的开源图表工具,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器,底层依赖轻量级的 Canvas 类库 ZRender,提供直观、生动、可交互、可高度个性化定制的数据可视化图表。ECharts 3 中更是加入了更多丰富的交互功能以及更多的可视化效果,并且对移动端做了深度的优化。
D3.js 是最好的开源数据可视化工具库。D3.js运行在JavaScript上,并使用HTML、CSS和SVG。 D3.js使用数据驱动的方式创建漂亮的网页。 D3.js可实现实时交互。这个JS库将数据以SVG和HTML5格式呈现,所以像IE7和8这样的旧式浏览器不能利用D3.js功能。
Tableau是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。
轻量级在线可视化工具
BDP个人版,类似Tableau的在线免费的数据可视化分析工具,不需要破解、不需要下载安装,在线注册后就能一直使用,操作很简单,只需要拖拽。支持几十种图表类型,也支持制作数据地图(自带坐标纠偏)。除可视化之外,BDP还有数据整合、数据处理、数据分析等功能。
网络图说,基于ECharts,在线图表制作工具,采用Excel式的操作方式制作样式丰富的图表,图表自定义的选项很丰富,使数据呈现的方式更加美观个性,易分享传播。
文图主要用在你要出一份包含文字说明的报告时使用,提供几个确定好风格配色的主题供选择,让整个报告风格统一、简洁美观!文图能够良好地适配移动端。但文图的排版不是很好用。
创客贴,在线平面设计工具,简单,快速,轻松完成在线设计,据说是2016最好的在线设计网站。
编程式图表工具
对于掌握编程语言的程序员来说,设计新颖、令人惊艳的数据图表也可以通过代码来实现。
Python有很多具有画图功能的包,如matplotlib、Seaborn、ggplot、Bokeh、pygal、Plotly、Geoplotlib、Gleam、missingno、Leather,等等。
R语言提供了很多数据可视化工具包,例如ggplot2、ggthemes、ggmap、ggiraph、ggstance、GGally、gganimate、ggradar、ggTimeSeries、ggseas、lattice、rgl、ggvis、htmlwidgets、leaflet、dygraphs,等等。
类似提供强大绘图编程功能的语言还有PHP、HTML、JavaScript、CSS等。
六、技巧篇:刻意练习是提升可视化技能的唯一途径
不断练习,不断精进
提升数据可视化技能的唯一途径就是在理解可视化设计原则和方法论的基础上,不断练习,不断精进。
除此之外,还要有点完美主义。
技巧在于平时的积累。多观察,生活中看到好的设计,多想想为什么人家设计那么好,让你忍不住多看几眼。看到不好的设计,多想想到底哪里不好。看到好看的图表,看到别人介绍的小技巧,动手做一做。
技巧太多,这里不做展开细讲。
“去设施倾向”
“这是章北海看到的另一个以前很少有人想象到的现代技术特色——去设施倾向。这种倾向在地球上还只是初露端倪,但‘去设施化’已成为比地球世界更先进的舰队世界的基本结构。这个世界到处都是简洁空荡的,几乎见不到任何设施,只有在需要时,设施才会出现,而且是在任何需要的位置出现。世界在被技术复杂化后,正在重新变得简洁起来,技术被深深地隐藏在现实的后面。”
——《三体》
科幻小说《三体》里面的这段话,给了我们提示。当我们做分析和可视化数据时,如果不用选项框和菜单栏时,应该隐藏起来,用到时才打开。另外,也尽量让所使用的软件最大化。这样可以让内容信息展现在最大的视野区域内,这样有助于让我们从中获取更全面的信息,指导我们下一步做正确的决策。

图19. 限的视野区域,信息最大化
颜色不宜过多,配色要合理
我们在可视化设计时,最好不要使用超过三种以上的主色调。颜色过多,无形中会分散用户的注意力,使得用户无法聚焦。
颜色的搭配要合理。大自然是最好的色彩家,可以借鉴大自然的色彩搭配。另外,如果你第一眼看到别人的设计,感觉很舒服,赏心悦目,那也可以借鉴作品中的色彩搭配。相信你的直觉,至少你的身体不会欺骗你。

图20.颜色不宜过多,配色要合理

图21.从生活和自然中学习配色技巧

B. 什么是cg绘画

“CG绘画 ”特指依靠电脑、平面设计软件、数位摄影科技和电脑辅助绘画软件等进行数字视觉作品创作的艺术家。

名词释义:

CG是Computer Graphics的缩写,原义为“电脑图形图像”,“CG艺术”是指依靠电脑、平面设计软件、数位摄影科技和电脑辅助绘画软件等进行创作的数字视觉作品。

CG艺术家

随着电脑技术的普及与网络的推广,当今世界越来越多的艺术家把创作载体由传统纸面转移到电脑软件,结合视觉审美、绘画功底及天马行空的想象力,运用软件优势创作出各种新奇的设计及绘画作品。在影视、动画、游戏、广告行业尤为常见。

CG艺术于20世纪90年代在中国出现,正式普及并广泛推广是在2002年左右。如今中国已涌现出大量优秀CG艺术人才,并在国际上获得各种大赛奖项,为中国CG艺术在国际的地位奠定基础,代表人物有“杨雪果”“焉博 ”“肖壮悦”“何德洪”“朱峰”“陈惟”“季诺”等等。

(2)信息可视化绘画风格有哪些扩展阅读

CG”原为Computer Graphics的英文缩写。随着以计算机为主要工具进行视觉设计和生产的一系列相关产业的形成,国际上习惯将利用计算机技术进行视觉设计和生产的领域通称为CG。

它既包括技术也包括艺术,几乎囊括了当今电脑时代中所有的视觉艺术创作活动,如平面印刷品的设计、网页设计、三维动画、影视特效、多媒体技术、以计算机辅助设计为主的建筑设计及工业造型设计等。

计算机动画(Computer Animation),是借助计算机来制作动画的技术。大致可以分为二维动画(2D)和三维动画(3D)两种。

参考资料

网络-CG艺术

网络-CG

C. 可视化思维,思维可视化

                        您知道可视化思维?

                          ——可视化思维,让思维无所遁形

        可视化思维(Thinking visualization)是指运用一系列图示或图示组合把本来不可见的思维(思考路径及思考方法)呈现出来,使其清晰可见的过程,这是一种高效工作和学习的策略。被可视化的“思维”更有利于理解和记忆,可以有效提高信息加工及信息传递的效能。简单地来说就是“一图胜万字”,也就是说我们能从图示里面获取更多的信息。

为什么要重视思维可视化?

心理学的研究表明,思维是隐性的,传递和学习思维的难度要远远大于纯粹的知识。如果我们能够把“不可视的”思维的过程和方法清晰地呈现出来,自然就能更好地理解、记忆和运用。有人总结过应当重视思维可视化的十大依据:

1.人与人之间93%的交流是靠非言语行为,而在非言语的环境下,视觉在我们接收信息、传递感情时扮演的角色尤为重要。

2.你的大脑将近50%的精力是在进行视觉处理,这是一个相当大的比例。

3. 70%的感觉接收器都集中在你的眼睛中,因此我们更容易吸收视觉上的信息。

4.我们可以在每1/10秒内获得一个视觉信息,这比通过阅读、消化和理解一段文字要快得多。

5.通过使用悦人眼目的、恰当的颜色在可视化信息中,人们更容易去阅读,更愿意去阅读。

6.商品介绍图文并茂时,人们会更好地理解,大家看淘宝上的商品介绍就能够证明这一点。

7.在人们辨别方位时,带有插图的路标对路人起到的帮助比不带插图的纯文字路标高出323%

8.当信息以可视化的形式呈现,个人的效率普遍提高17%,且减少使用20%的脑力资源。

9.在团队工作项目中使用可视化工具,可节约10%的脑力资源,且在整体的效率上有8%的提高

10.“A picture is worth ten thousand words(一张图片胜过一万字)。”--华盛顿邮报,1925年7月26日

对于学生来说,"知识的加工"和"问题的解决"的思维过程几乎都是不可视的,而且大多数教师和学生都把目光聚焦到了答案上,几乎忽视了答案的解决过程。其实学生思维的培养并不等于"答案的积累",而是来自于"得出答案的思维方法和过程"。答案的累积只能让学生在再次面对相似的情景时,做出经验性的结果处理方式,而不能进行理性的判断处理。所以当题目或题型不再熟悉,学生便无法应对,因为"感性经验"和所面对的情景已经风马牛不相及了。所以要提高学生学习的效能,我们就必须从"关注答案"向"关注答案的生成过程"进行转变,从依靠感性经验解决问题向理性思考解决问题的方式进行转变。而要达到这种转变就必须要把"不可视的"思维的过程和方法清晰地呈现出来,以便更好地理解、记忆和运用。

那当学生拥有可视化的思维之后会有哪些优势呢?首先是每个孩子都要学习“语数外物化生政史地”这么多科的学科知识,个人处理信息和管理时间的能力就略显不足了,这时候可视化的思维就起到了不可磨灭的作用,这也是当今优等生和大多数学生之间的差异之一;其次拥有可视化的思维方式会使得学生处理具体事情的思维方式不同,如果掌握可视化的思维技巧,那么在完成小组合作或者班干部进行管理时,孩子的管理力和领导力会得到明显的提升,等等。

可视化思维代表名人

爱因斯坦曾经说过:“我的所有点子都是通过画图得来的。语言只不过是我用来向别人解释我的想法的工具。可见,爱因斯坦一直把“可视化思维”当作他强大的工具。他在他所在的时代就已经掌握了“可视化思维”的精髓,只是他并没有把这种思维进行系统的解释和深入。

达·芬奇将思维可视化运用得淋漓精致,在他的着作《哈默手稿》中约15000页的笔记与绘画全是混合艺术与科学所组成可视化思维图示。这本着作包含了物理工程学,机械动力学,生物工程学,人体解剖学,天文学和建筑学等一系列自然科学。也被誉为“人类智力的顶峰”

福尔摩斯利用记忆宫殿和演绎法将案情还原,将一系列破碎的细节,进行现场的模拟还原,再运用场景的推理技术侦破出案件的本质,就是在自己的脑海中建立可视化思维场景。

拿破仑这位天才的军事家,更是运用可视化思维,将“纵队战法”演练得出神入化,带领法国军队驰骋在整个欧洲战场,屡次以弱胜强却保持40多场战争胜利的传奇。

世界首富比尔盖茨在他的着作《未来之路》中过说“可视化思维将是下一个舞台中我们获取信息的主要方法。比尔·盖茨说:可视化思维能够将众多的知识和想法连接起来,从而最大限度地实现创新。

达尔文在他的着作《物种起源》中,运用可视化思维,将晦涩难懂的生物进化理论用形象和生动的形式表现出来,让人类第一次真正对自己的来源有了彻底的了解。

中国有一个独特的名族——苗族,历史上历经多次的迁徙,文字失传,他们将名族生活的历史、文化、习俗等运用可视化思维的原则镶嵌进入了自己的服饰和首饰中。也因而誉为和穿在身上的“史书”。

经典物理学的奠基人牛顿,很早就开始运用可视化思维做笔记,牛顿一生涉及广泛,物理学、数学、天文学、哲学无一不精,被誉为“网络全书式的全才”。在他的手稿中,有着大量的研究实验和数据,牛顿通常都将自己的研究用思维可视化的方式记录下来。 

爱迪生一生拥有超过2000项发明,1000多项专利,在爱迪生的发明历史里,可视化思维是一项重要的能力,在爱迪生的发明中很多都有体现,爱迪生最早发明留声机时就是通过在制作出视图,最后才制造出了机器。

(部分素材借鉴于网络)

D. 这种漂亮的网络关系图怎么画的用什么软件画出来的

推荐比较常用的几个工具,

一个是 python 的 NetworkX 库

另一个是 Gephi 这个软件。

NetworkX

这是一款Python的软件包,用于创造、操作复杂网络,以及学习复杂网络的结构、动力学及其功能。

有了NetworkX你就可以用标准或者不标准的数据格式加载或者存储网络,它可以产生许多种类的随机网络或经典网络,也可以分析网络结构,建立网络模型,设计新的网络算法,绘制网络等等。可以查看官方文档


望采纳,谢谢~

E. 有哪些值得推荐的数据可视化工具

数据可视化就是利用计算机的图形处理技术,把一些数据通过图表等形式在电脑屏幕上面展现出来,然后在进行一些处理等方面的技术问题。

那么首先要推荐的就是Excel。Excel的数据可视化功能是非常的厉害的,而且在生活中应用的也是非常广泛。因为操作简单,理解起来比较的容易,所以被大多数人所接受。Excel的数据可视化就是将在列表中的数据转换成一个个的图形,这其中经常用到的像饼图,直方图,柱形图等等各种各样的图形,带个我们的是一种直观的感受。

第三个要推荐的就是spss。spss是一款相对来说有一定难度的数据分析工具,利用spss将数据可视化是它的一个基本功能。spss里面集成了不少数据可视化的工作,你想画出什么样的图形也都是可以在里面找到的,这其中也包含了一些高级的图形,是利用Excel等普通的办公软件做不出来的。

第四个要推荐的就是R语言。相信了解数据分析的人都应该知道R语言这一强大的数据分析软件,R语言的数据可视化功能可以绘画出你所想要的任何一种图形,只要你能够想得到,那么R就能够绘画出来,前提是你有一定的能力编写出来这么一个R图形包,或者是找到适合你用的R图形包,那么你才能施展你的手脚。数据可视化也只是R的一个简单的功能,但是它的规范性是前面几个数据可视化工具所不能比的。

F. 数据可视化编辑,那些年我们画过的错误的图表!

《经济学人》杂志除了色彩鲜明的文章之外,其在数据可视化方面也有着自己独特的风格,许多绝妙的颜色搭配、风格鲜明的图表总是能够让读者过目不忘。然而正如图表编辑编辑Sarah Leo在一篇博客中介绍到,虽然对于每一张图表,他们都尽量准确地以最能支持故事表达的方式来可视化数字,但有时候也会犯错。

为了能够做的更好,从错误中不断总结教训,不断的自我改进。深入了解记录后,找到了几个有用的例子,并将针对数据可视化的问题分为三类:

1. 误导性图表

2. 模糊的图表

3. 未能说明问题的图表

以误导的方式呈现数据是数据可视化中最严重的问题,虽然从不故意这样去呈现结果和数据,但是实际情况误导的方式呈现数据是确实时不时发生,让我们来看看三个例子:

1. 错误:截断标尺

此图表显示了政治左翼Facebook页面上帖子的点赞平均数量,这张图表的重点是显示Corbyn先生与其他帖子之间的差异。原始图表不仅低估了Corbyn先生帖子的数量,还夸大了其他帖子的数量,而在重新设计的版本中,我们完整地展示了Corbyn先生的数据并保证所有其他数据长条仍然可见。

另一个奇怪的是颜色的选择,为了模仿工党的配色方案,原图使用了三种橙色/红色色调来区分Jeremy Corbyn与其他国会议员和政党。虽然颜色背后的逻辑对许多读者来说可能是显而易见的,但对于那些不太熟悉英国政治的人来说,这可能没什么意义。

2. 错误:通过故意操纵坐标轴来假装存在相关关系

上面的图表附有一个关于狗重量下降的故事,乍一看图表呈现的是难得的完美关联,似乎狗的体重和颈部大小完全相关。但这是真的吗?但事实情况其实并不是很相关。

在原始图表中,两个坐标轴的跨度均为三个单位,左边坐标轴数值是21到18,右边坐标轴数值是45到42;按百分比计算,左边的比例下降了14%而右边则下降了7%。在重新设计的图表中,保留了双坐标轴的设计,但调整了它们的范围以反映可比较的比例变化。

考虑到这个图表的休闲主题,这个错误可能看起来并没有那么重要。毕竟,图表的信息在两个版本中都是相同的,但从中学到的事情很重要:如果两个变量过于紧密相关,那么再仔细观察一下坐标轴尺度可能是一个好主意。

3. 错误:选择错误的可视化方法

在每日新闻应用Espresso中发布了此投票图表,它显示了民众对欧盟公投结果的态度,并以折线图绘制。从数据来看,似乎受访者对公投结果的看法相当不稳定,每周都会增加或减少几个百分点。这是因为并未使用平滑曲线绘制单个民意调查来显示趋势,而是连接每个民意调查的实际值。

此图表中需要注意的另一件事是坐标轴如何起点的方式。原始图表将数据扩展到全部空间。而在重新设计的版本中,在坐标轴开始的部位和最小数据点之间留下了更多空间。为此制定了一个很好的规则:应当试着在一个不从零开始的折线图下留出至少33%的空白区域。

虽然模糊的图表没有误导性图表那么严重,但是一份难以阅读的图表还是表明可视化工作做得很糟糕。

1. 错误:“发散性思维”过于发散了

人们总是被鼓励创造“发散性思维”,但是有时候,在工作和呈现结果的过程中会显得有点太过分了。上边左图显示了美国的商品贸易逆差和制造业就业人数,该图表非常难以阅读。

它有两个主要问题。首先,一个变量(贸易逆差)的值完全是负数,而另一变量(制造业就业)都是正数。将这些差异结合在一个图表中而不平坦化任一变量非常不合理。有一个显而易见的解决方案,但这却会导致第二个问题:两个变量不共享共同基线。贸易赤字的基线位于图表的顶部(通过图表左半边那截红线突出显示),而右半部分的基线则位于底部。

重新设计的图表显示其实并没有必要组合这两个数据系列,贸易逆差与制造业就业之间的关系仍然很明显,而这一图表并没有额外占据多少空间。

2. 错误:莫名其妙的颜色使用

该图表明政府在养老金福利方面的支出与国家65岁以上人口比例进行了比较,并特别关注了巴西的情况。为了使图表占据较小版面,可视化工具仅标记了部分国家/地区,并以电蓝色突出显示,经合组织的平均值则以淡蓝色突出显示。

可视化者忽略了这样一个事实,即不同颜色通常意味着不同分类,这个图表似乎也是如此,所有电蓝色似乎属于与深蓝色不同的组合。但其实压根不是这样的,区别只是一个有打上国家标签,一个没有而已。

在重新设计的版本中,所有国家/地区的圆圈颜色保持不变。将没有标签的数据点的透明度调高了。剩下的就靠排版了:巴西是重点国家所以用字体加粗;而经合组织则用斜体字表示。

最后一类的错误不太明显,像这样的图表不会误导读者,也不会让人感到困惑,他们只是没有证明他们存在的合理性。通常是因为可视化不合理,或者因为非要在小版面内塞进过多信息。

1. 错误:包含太多细节

在德国预算盈余的专栏中公布的这张图表,它显示了10个欧元区国家的预算余额和活期账户余额。有这么多颜色,而且其中一些很难被区分。

另外,因为对应的值太小了,压根没有办法得到任何图表信息。它只会让你眼前一愣然后赶紧转移视线。而且更重要的是,由于没有绘制所有欧元区国家,因此堆叠数据没有任何意义。

回过头看看有没有办法简化这个图表,该专栏提到德国、希腊、荷兰、西班牙以及欧元区总数,所以在重新设计的图表版本中,则需要只强调这些。为了解决仅堆叠部分国家的问题,添加了另一个类别(“其他”),其中包括所有其他欧元区国家。(由于欧盟统计局进行了数据修订,重新设计的图表中的流动账户余额总额低于原始图表。)

2. 错误:大量数据,空间不足

受到有限版面空间的限制,我们经常试图将所有数据一股脑儿塞进图表中。虽然这可以节省页面上的宝贵空间,但它还是会有负面影响。比如这张2017年三月的图表,它是关于科学界的论文发表是如何由男性主导的。所有数据点都同样有趣且与主旨紧密相关。但是,一下子提供如此多的数据(四个研究领域类别以及发表人的比例)这些信息很难一起被接受。

如果要保留所有数据,那么图表就会变得过于复杂而不简洁。在这种情况下,削减一些内容会更好。或者,可以展示某种平均化的衡量标准,例如所有领域的女性发表作品的平均比例。

总的来说好的数据可视化能都使人阅读更加顺畅,但同样的未处理好的数据可视化也会误导甚至欺骗读者的认识,所以在实际操作中数据的呈现仍旧是一个需要深入学习,并且不停反省调优的过程。

----------------------

阅读全文

与信息可视化绘画风格有哪些相关的资料

热点内容
别人问我产品真假怎么回答 浏览:545
怎么做代理油漆 浏览:632
彩妆属于什么产品大类 浏览:281
泉州货运代理进口食品价格多少 浏览:71
头条为什么没有房产信息 浏览:59
qq飞车手游赛车数据怎么查看 浏览:676
二手房交易后银行多久清算 浏览:528
义乌外企税务代理多少钱一个月 浏览:801
宁夏资质化工产品有哪些 浏览:836
纳米技术与技术的简称是什么 浏览:987
汽修厂如何做代理 浏览:731
和房主直接交易需要交什么费 浏览:585
三星a7程序锁在哪里 浏览:234
oppo数据线接口发黄是怎么回事 浏览:351
看国漫用什么小程序 浏览:147
惠州政府支持哪些技术院校 浏览:968
5gran设备技术特点有哪些 浏览:487
mate10如何关闭后台运行程序 浏览:213
一点点那个点餐小程序怎么做的 浏览:132
软件程序如何驱动硬件的 浏览:529