导航:首页 > 信息系统 > 深度学习算法中如何加入位置信息

深度学习算法中如何加入位置信息

发布时间:2022-10-22 17:24:53

Ⅰ 深度学习算法标签怎么输入

深度学习算法标签输入:买同款读写器当然可以改数据,一般数据是加密的,甚至是非对称的公钥加密体系。所以只用读写工具读数据是无意义的。毕竟要解密还需要算法和密钥。

随机梯度下降法(Stochastic Gradient Descent)——SGD,小批量梯度下降——mini-batch GD动量梯度下降——Momentum,均方根算法(root mean square prop) ——RMSprop,自适应矩估计(Adaptive Moment Estimation)——Adam。

区别于传统的浅层学习,深度学习的不同在于:

(1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点。

(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据丰富的内在信息。

通过设计建立适量的神经元计算节点和多层运算层次结构,选择合适的输人层和输出层,通过网络的学习和调优,建立起从输入到输出的函数关系。

Ⅱ 求解深度学习算法是怎么实现的

Ⅲ 如何用深度学习在图像中定位目标算法

合作目标由目标发生器来产生,或使用靶标,在视场内做已知运动一般采用合作目标进行动态或静态的检测

Ⅳ 深度学习算法是什么

深度学习算法是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。

深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。

区别于传统的浅层学习,深度学习的不同在于:

(1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点。

(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据丰富的内在信息。

Ⅳ 深度学习到底是什么样的概念呢

婡深臫度学头习筿是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。
深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。

背景介绍
机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的学科。
1959年美国的塞缪尔(Samuel)设计了一个下棋程序,这个程序具有学习能力,它可以在不断地对弈中改善自己的棋艺。4年后,这个程序战胜了设计者本人。
又过了3年,这个程序战胜了美国一个保持8年之久的常胜不败的冠军。这个程序向人们展示了机器学习的能力,提出了许多令人深思的社会问题与哲学问题。

Ⅵ NLP自然语言处理

罗素悖论:由所有不包含自身的集合构成的集合

例子:理发师称只给那些不给自己理发的人理发。

基于集合论,理发师无论给自己理发还是不给自己理发都是矛盾的。

因此集合论不是完备的。 即使后面冯罗伊德等科学家提出了各种假定条件。

由于上述的原因,集合率无法很好的描述自然语言,科学家发现通过概率模型可以更好的描述自然语言。

深度学习来处理自然语言属于概率模型

证明最小点位于坐标轴上

h = f+c|x|

由于在x = 0处不可导

h-left'(0)*h-right'(0) = (f'+c)*(f'-c)

那么如果c>|f'(0)|可得,h在0处左右导数异号

0是最值。

那么在损失函数加入L1正则化后,可以得到某些维度容易为0,从而得到稀疏解

几乎所有的最优化手段,都将适用凸优化算法来解决

P(A|B) = P(A and B) / P(B)

if A and B 独立

=》P(A and B| C) = P(A|C)*P(B|C)

也可以推出

=>A(A|B and C) = P(A|C) (B交C不为空)

抛9次硬币,硬币出现正面的概率是0.5,出现k次的概率分布如下如

服从正态分布

x的平均值

E = x*p(x) + ...

x相对于期望的偏离

var = (x-E(x))^2

conv = (x - E(x))*(m - E(m))

描述x,m是否有同分布

按理协方差为0,并不代表x和m没有关系

例如下图

如果点的分布对称的分布,会得到协方差为0,但是其实他们是有关系的。

把每个相关的概率累加,得到联合概率

P(x1=m1,x2=m2...) = n!*P1 m1/m1!*P2 m2/m2!

T(n) = (n-1)!

T(x)用一条曲线逼近n!,进而可以求得非整数的阶乘

由二项式分布推出

P = T(a+b)*x (a-1)*(1-x) (b-1)/(T(a)*T(b))

则正态分布

y为0时,不考虑y‘。y为1时,y'越接近1,越小,越靠近0,越大

把D最小化,迫使y'逼近y

对于一个句子,有若干单词组成。例如

C1: The dog laughs.

C2: He laughs.

那么计算P(C1) = P(The, Dog, laughs)的概率和P(C2) = P(He, laughs)的概率。

根据历史文本的统计学习。

可以得到P(C1)<<P(C2)

P('I love the game') = P('I')*P('love')*P('the')*P('game')

其中P(<work>) = 频率/总单词数

计算一篇文章是积极的还是消极的。

P(y|x) = sigmod(wx)

x是文章内每个单词的频率

y表示积极和消极情感

其中P(xk|x1, x2,..xk-1) = frequence(x1, x2 ,, xk)/frequence(x1, x2..xk-1)

2-gram模型例子

把多个gram的模型进行线性整合

P(y|x1, x2, .. xn) = P(y)*P(x1, x2, ... xn|y) / P(x1, x2, ... xn)

y代表是否是垃圾邮件

x代表单词

广州市长寿路 -》 广州市长|寿路

广州市长寿路 -》 广州市|长寿路

匹配词袋:广州市,广州市长,长寿路

使用最大匹配发,第二个分词更优

通过统计P(A|B),得出各个option的概率,取最大的概率,则为最后的分词

word => [0, 0 , ... 1, ... 0]

word => [0, 1, 0, 1, 0, ...]

可以解决词相似性问题

计算附近词的频率

word => [0, 3, 0, 1, 0, ...]

w是附近词的one-hot encoding

score是词的one-hot encoding

最后一层通过softmax,取拟合文本

最终中间层则为词向量

输入为词one-hot encoding

输出为附近此的one-hot encoding

最后通过softmax预测附近词

最后中间层则为结果词向量

混合模型是一种统计模型,问题中包含若干个子问题,每个子问题是一个概率分布,那么总问题就是若干个子问题的组合,也就是若干个子分部的组合,这样就形成了混合模型。

有红黑两种硬币,把它们放在盒子里,从盒子里随机抽取一个硬币并投币,抽到红色的概率是p,红色硬币正面的概率是q,黑色硬币正面的概率是m,假设我们没办法看到抽取出的硬币的颜色,只能看到最终是正面或者反面的结果,例如HTTHTTTTHHH (H:正面 T: 反面)。需要估计p,q,m三个参数。

此时可以计算出

通过EM算法迭代如下:

随机p q m

迭代以下过程:

计算上面table

p = (aC(正)+cC(反))/total

q = aC(正)/(aC正+cC正)

m = bC(正)/(bC正 + dC正)

假设有上述数据,需要用混合模型来逼近,通过分析,红色和蓝色数据分别为高斯正态分布,N(u, v)

此时可以得到如下表

p = pN红x/(pN红x+(1-p)N蓝x)

u = pN红x/n

v = pN红(x-u)^2/n

词性转换概率

词性到单词的转换概率

通过EM递归算法,训练以上参数,得到隐马尔可夫模型

PLSA主题模型

只统计词的频率,不计算词的相对位置

计算文档和单词频率的矩阵

进行奇异矩阵分解

得到A矩阵的压缩U,U中的k则为k个主题

通过分析,LSA得到的主题是跟现实无法关联,它只是一个量,而没有明显的意义。

PLSA为了解决此问题,引入概率模型,先确定主题个数

然后通过构建Doc->topic的概率table,和topic->word的概率table。

然后通过EM模型,得到这两个table的所有概率值。

进而得到文档的主题表示

PLSA的缺陷是,对于预测未知的doc,无法计算此文档的相关概率。随着doc数量的增加,PLSA模型的参数会线性增加,从而会造成过拟合。

LDA通过引入先验概率来克服PLSA的问题。

类似于编译原理的上下文无法句法分析,一颗语法树

通过对CFG引入概率参数

有了概率,可以计算每颗语法树的极大似然概率,并取最大概率的树为最终输出

上一个状态中间层的输出作为下一隐层的输入

类似于HMM的2-gram模型。t状态受到t-1时刻输出的影响,受t-k的输出的k越大,影响越小

由于RNN几乎只受到上一时刻的影响,而忽略了久远信息的影响。从而造成了一定的局限性。

LSTM通过引入长短记忆方法,来维持长记忆的信息。

通过训练核内的sigmod函数,使得LSTM可以根据不同的句子,有条件的保留和过滤历史信息,从而达到长记忆的功能。

GRU是LSTM的简化版,它只需要处理两个sigmod函数的训练,而LSTM需要三个sigmod函数的训练,减少了训练的参数,加快了训练的速度,但也损失了一部分模型的复杂,在处理较复杂问题时,没有LSTM那么好。

auto-encoder-decoder的特点是输出的单元数是固定的。对于一般自然语言处理,例如机器翻译,输入的单元个数跟输出单元的个数并不是一一对应的,此时就需要动态的生成输出单元。Seq2Seq通过动态的输出结束符,代表是否输出完成,达到可以动态的根据输入输出不同的单元个数。

seq2seq的缺点是,所有的输入序列都转化为单一的单元c,导致很多信息都将消失,对于不同的输出yi,它可能依赖的输入xj有可能不一样,此时通过加入注意力模型,通过对xi进行softmax处理,并加入到y权重的训练中,可以让不同的y,有不同的x对它进行影响

softmax的输入为输入单元x,和上一个输出单元y,联合产生softmax的权重,进而对不同的序列,对于同一个x,会有不同的注意力到输出

q = Wq(x)

k = Wk(x)

v = Wv(x)

x为词向量

通过训练,得到权重w,从而学习到这一层的softmax注意力参数

R是前一次encoder的输出

通过增加w的数量,产生多个z,并进行堆叠,通过前馈网络,最后产生z

在使用self attention处理句子时,是没有考虑单词在句子中的位置信息的。为了让模型可以加入考虑单词的位置信息,加入了位置编码的向量

计算如下:

pos为单词在句子中的位置

i为词向量的位置

d为句子的长度

位置编码加上词向量形成tranformer的输入

加入了归一化和残差网络

最终通过softmax,输出每个单词的概率,并最终输出单词

阅读全文

与深度学习算法中如何加入位置信息相关的资料

热点内容
聚多生活如何分享商品到小程序 浏览:302
新工资系统如何录数据 浏览:20
如何调出电脑主程序界面 浏览:254
微波遥感采用什么技术 浏览:516
三菱plc改程序怎么写 浏览:107
交易猫苹果区如何填写 浏览:887
武昌东湖技术开发区在哪里 浏览:142
spss年级属于什么类型的数据 浏览:37
如何看好市场龙头 浏览:296
如何申请水果交易平台 浏览:358
如何在钉钉上用小闲小程序查成绩 浏览:766
柳州铁道职业技术学院哪些专业可以专升本 浏览:140
ajax不返回数据怎么办 浏览:792
抖音小程序怎么放在视频下方 浏览:628
坏道硬盘的数据怎么导出 浏览:932
昆明西山区玩具批发市场在哪里 浏览:678
程序员发布会是什么 浏览:629
如何让小程序有黏性 浏览:983
碧水源属于哪个交易所 浏览:312
二手房交易哪些证 浏览:381