1. 数据分析师需要具备哪些能力
1、业务能力
数据分析工作的重中之重就是业务能力,只要真正的在实践领域从事过,就会真正的明白业务知识是你分析的根本。而业务知识的学习是需要时间积累的。业务知识的培养是将远远超过技术工具的学习。数据分析其实就是基于业务之上的更深层次的思考和总结。
2、思考能力
当我们拿到一份数据报表的时候,整个数据就摆在面前,它不会主动开口告诉你。这就需要我们去推演和分析,从中找到规律,迅速评估问题的关键属性和决定因素,形成自己的独有见解,总结报告。所谓心思缜密,滴水不漏,没有思考逻辑,就没有分析思维。
3、沟通能力
数据分析贯穿企业整个工作流程链,你需要面对不同的岗位,不同的角色,这个时候,就需要你良好的沟通能力,采用不同的语言和表达方式,来获取你想要的东西。沟通能力就是数据和业务的桥梁。再沟通中,我们不要固执己见,要采取他人的意见,尤其是智者的意见,可以帮我们降低犯错率,提高分析正确率,这样我们的分析才会更有说服力。
4、技术能力
我们自己了解到的,相关技术像Excel,MySql,Python,SPSS等这些工具。我们如果刚刚步入数据分析工作,其实Excel就已经足够了。如果我们想更深层次的掌握,可以学习Python,R,SPSS等这些。他们提供的强大的挖掘功能和图形能力。尤其是R,Python引用他们的库非常方便,而已技术也很成熟。
2. 如何成为一个数据分析师需要具备哪些技能
成为一名数据分析师所需要具备的技能总结:
数学知识
对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。
而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。
分析工具
对于分析工具,SQL是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。
编程语言
数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。
当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
业务理解
对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。
对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。
逻辑思维
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。
数据可视化
数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。
对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。
协调沟通
数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。
对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。
3. 数据分析需要掌握哪些知识
1、数学知识。
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。
2、分析工具。
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
3、编程语言。
对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。
4. 做一名数据分析师要具备什么能力
编觉得最重要的一点就是,我们得清楚企业对数据分析师的基础技能需求是什么。这样我们才能有的放矢。我大抵总结如下:
(1)SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示
(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等
之后,怎么安排自己的业余时间就看个人了。总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
如果是实在不懂,还可以去网上找些视频课程看。切记,第一步是必不可少的,是数据分析的基础。
5. 数据分析需要具备什么能力
主要是先要最分析的对象有一定的研究和了解,然后进行深入的分析,这样才会更大程度的实现利益最大化。
6. 数据分析师需要掌握哪些能力需要做哪些准备
数学知识
对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。
而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。
分析工具
对于分析工具,SQL是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。
编程语言
数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。
当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
业务理解
对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。
对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。
逻辑思维
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。
数据可视化
数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。
对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。
协调沟通
数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。
对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。
7. 入行数据分析必须具备哪些能力
1.业务理解能力,作为企业的数据分析师一定要深入理解业务和产品的定位、以及商业逻辑和业务动态,明确数据分析的目的,用哪个数据将结果展现出来,为下一步驱动业务的增长做铺垫。
2.过硬的个人技能,懂得数据采集、数据清洗、数据分析,熟练使用Excel、SQL,Python 等工具。
3.思考能力,虽然数据分析师习惯用数据证明,但是千万不能将其理解成只是简单的数据展示,需要多思考为什么分析、分析的对不对、是否还有其他数据、数据展现的问题是什么、以及问题背后的逻辑是什么等。
4.沟通交流能力,作为数据分析师,不只是与数据打交道,还要有优秀的与人、与其他部门的沟通交流能力。
关于入行数据分析必须具备哪些能力,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
8. 成为数据分析师需要具备哪些能力
数学知识
对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。
而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。
分析工具
对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。
编程语言
数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。
当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
业务理解
对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。
对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。
逻辑思维
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。
数据可视化
数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。
对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。
协调沟通
数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。
对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。
9. 合格的数据分析师需要具备哪些能力
1.业务能力
只要真的在实践领域从事过数据分析工作,就会明白所有分析的重中之重都是业务知识本身。而业务知识的学习和掌握,需要的积累之深,培养一个业务专家,需要的周期之长,都远远超过后面所说的那些基本技能,成为业务专家实属不易,数据分析师其实是之于业务专家之上的更深层次的思考和总结,否则,谁指导谁都是个问题。业务学习的方式很多,比如将以前的分析报告和取数案例都拿过来研究一下,不懂就问,总是一个渐进的过程,但需要时间和行业的沉淀。数据分析师最需要不断提升的能力就是行业和业务知识,没有之一。
2.思考能力
数据总是在那里,它不会说话,你不仅要基于业务能力理解它,还要学会推演和分析,从中发现规律,迅速定位某个商业问题的关键属性和决定因素,形成自己独创性的见解,所谓心思缜密,滴水不漏,没有思考逻辑没有数据分析。而要形成独特的见解,则来自于个人不断的学习和思考,这里的学习更多的强调是跨领域和专业,思考则更多的强调养成思考的习惯。
思考本身是一种实践,它可以将你的知识更加系统化和深入化,数据分析一定程度上是用来验证思路和启发灵感的,“数据分析”从来不是“数据分析”本身,而是以“数据分析”为手段和表象,对业务的深刻理解、思考和判断。 3.沟通能力
数据分析贯穿BIT、数据、技术、业务整个链条,数据分析师将BIT最终转化成决策者理解的语言,跨越的流程很长,你需要面对不同的岗位,碰到不同的角色,采用不同的语言,表达你的要求和获得你需要的东西,成为数据和业务的桥梁,没有足够的沟通能力很难。同时,但如果你容易听取他人的意见,特别是智者的意见,则可以帮你找到另一条出路,你犯错的概率就会降低,相应的,你的分析就更有力量和说服力。
4.数据学习
业务学习有一个毛病,比如你看案例,往往接触到的数据或使用的数据是局部的,因此,你的视野会受局限,在大多数公司里,很多数据分析师其实缺乏全局的数据视野,因为他不知道到底有多少数据,因此,永远只能在已知的数据里转圈圈,当然,可能也够了,但我这里要说得是做得最好。
当然,大多数数据分析师可能不需要进行系统数据学习,反正实践中慢慢熟悉好了,但自顶向下的数据学习方式可以让你有一个更好的基础和更全局的数据视野。5.技术学习
有几个层面的东西要学,依赖于实际的场景和你希望达到的阶段:首先,你要学会从数据库或者其它源头获取数据,很多数据分析师仍然依赖于IT人员获取数据,但大数据时代,真的有必要自己动手了,因为依赖他人效率太低了,起码你要会SQL,SQL甚至基本上是为统计取数而生的方便工具,图形化的透视方式也远远没有SQL的表达能力强,这是基本功。
其次,你要会一些数据分析工具,EXCEL是最基本的,其实大多数数据分析基于EXCEL应付已经绰绰有余了,EXCEL的图形表达能力也已经够强。
以上层层递推,其实数据分析师每在IT上前进一步,带来的效益是几何级的,比如你懂Hadoop,那么,你就可能离大数据更近一点。