导航:首页 > 数据处理 > 大数据需要什么基础

大数据需要什么基础

发布时间:2022-05-13 21:59:11

大数据的基础是什么

学习大数据需要的基础:
javaSE,EE(SSM)
90%的大数据框架都是java写的
如:MongoDB--最受欢迎的,跨平台的,面向文档的数据库

Hadoop--用Java编写的开源软件框架,用于分布式存储,并对非常大的数据集进行分布式处理。
Spark --Apache Software Foundation中最活跃的项目,是一个开源集群计算框架。
Hbase--开放源代码,非关系型,分布式数据库,采用Google的BigTable建模,用Java编写,并在HDFS上运行。
MySQL(必须需要掌握的)
SQLon Hadoop又分:
batch SQL(Hive):一般用于复杂的 ETL 处理,数据挖掘,高级分析。
interactive SQL:交互式 SQL 查询,通常在同一个表上反复的执行不同的查询
operation SQL:通常是单点查询,延时要求小于 1 秒,该类系统主要是HBase。
Linux
大数据的框架安装在Linux操作系统上

⑵ 学大数据需要什么条件

作者:加米谷大数据老师
链接:https://www.hu.com/question/63581136/answer/1142926675
来源:知乎
着作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

目前大多数的招聘企业,对于大数据人才要求必须是大专学历以上,而且大专学历还要求是理工科相关专业的,如果是本科及本科以上的,则对专业要求适当的放宽。大数据学习没有你想象的那么困难,零基础也是可以学习的。同时大数据分为两大方向:大数据开发和数据分析
这两大方向的对于基础知识的要求不同,数据分析偏向应用层面,对于编程要求不高,相较而言对于基础知识这块要求低一点。
下面我们结合大数据开发和数据分析的课程内容来具体说明大数据学习要具备什么基础知识。
下面是大数据开发的课程内容:
阶段一:静态网页基础(主要学习HTML和CSS)
阶段二:JavaSE+javaWEB
阶段三:JAVA高阶应用
阶段四:javaEE
阶段五:Linux和Hadoop
阶段六:大数据数据库
阶段七:实时数据采集
阶段八:Spark数据分析
从上面的课程内容看,大数据开发学习要掌握java、linux、hadoop、storm、flume、hive、Hbase、spark等基础知识。
数据分析的课程内容:
阶段一:Mysql
阶段二:Python开发基础
阶段三:Python高阶编程
阶段四:数据分析基础知识
阶段五:数据挖掘
阶段六:机器学习
阶段七:业务分析
阶段八:项目实战(挖掘和业务分析)
阶段九:大数据分析
数据分析课程跟大数据开发不同,需要掌握的基础知识也不同,数据分析需要掌握的基础有:数据库、python、spss、MongDB、smartbi、tableau、r语言以及数据建模等知识。
以上就是大数据要掌握的基础知识,只有掌握了这些知识,才能够找到一份好的大数据工作。大数据技术可以应用在各个领域,比如公安大数据、交通大数据、医疗大数据、就业大数据、环境大数据、图像大数据、视频大数据等等,应用范围非常广泛,大数据技术已经像空气一样渗透在生活的方方面面。大数据技术的出现将社会带入了一个高速发展的时代,这不仅是信息技术的终极目标,也是人类社会发展管理智能化的核心技术驱动力。

⑶ 学大数据需要具备什么基础

大数据领域目前有很多发展方向,不同的方向需要不同的知识基础,初学者可以根据自身的实际情况进行选择。

从目前大数据领域的技术岗位划分来看,涉及到大数据开发、大数据分析和大数据运维,其中大数据开发比较注重程序设计基础,大数据分析需要具有扎实的数学和统计学基础,而大数据运维则需要具有一定的网络知识基础。

定义

对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

⑷ 大数据分析需要学习什么知识呀

数据分析所需要学习掌握的知识:

对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。

而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。

对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。

数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。

当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。

对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。

对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。

对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。

数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。

对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。

数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。

对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。

⑸ 学习大数据需要什么基础

1、了解大数据理论

要学习大数据你至少应该知道什么是大数据,大数据一般运用在什么领域。对大数据有一个大概的了解,你才能清楚自己对大数据究竟是否有兴趣,如果对大数据一无所知就开始学习,有可能学着学着发现自己其实不喜欢,这样浪费了时间精力,可能还浪费了金钱。所以如果想要学习大数据,需要先对大数据有一个大概的了解。

2、java

90%的大数据框架都是Java写的。如:

●MongoDB--最受欢迎的,跨平台的,面向文档的数据库。

●Hadoop--用Java编写的开源软件框架,用于分布式存储,并对非常大的数据集进行分布式处理。

●Spark --Apache Software Foundation中最活跃的项目,是一个开源集群计算框架。

Hbase--开放源代码,非关系型,分布式数据库,采用Google的BigTable建模,用Java编写,并在HDFS上运行。

需要了解java设计与编程思想;Java面向对象;Java高级;Web前端开发;HTML基础;CSS3;JS脚本编程;JavaEE程序开发;JavaWeb后端开发。

3、 MySQL(必须需要掌握的)

4、Linux

大数据的框架安装在Linux操作系统上

5、Hadoop,Scala, HBase, Hive, Spark

在学习的过程中,投入时间和精力,以兴趣来驱动学习。代码实战是必须的,看的是别人的代码,动手写出来的才是自己的。

以上就是学习大数据需要什么基础的详细内容

⑹ 学习大数据需要什么基础

学习大数据需要的基础:

学习大数据开发技术相关的开发技术知识体系是比较庞大的,对于大数据的学习来说学,确实逻辑思维能力是更重要的。基础知识是可以通过学习进行弥补的,大数据培训则成为小伙伴比较靠谱的学习方式。在大数据培训班第一阶段就是基础内容的学习。

不同的大数据培训机构在课程内容上侧重点可能会有所不同,所以在培训周期上也会有所差异。硅谷大数据培训班,学习课程内容除了第一阶段学习Java语言基础之外,还要学习HTML、CSS、Java、JavaWeb和数据库、Linux基础、Hadoop生态体系、Spark生态体系等课程内容。

项目实战对学习大数据的同学来说是一个必须经过的过程。学习大数据的同学只有经过项目实战训练,才能在面试和后期工作中从容应对,这是一个很重要的过程。

当然了,项目实战训练时间与项目的难度、项目的数量相关,项目难度较大、项目较多,当然学习的时间会更长。

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

⑺ 想要学习大数据,应该怎么入门

记住学到这里可以作为你学大数据的一个节点。

Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。

Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。

Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。

Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。

Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。

Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。

Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。

Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

⑻ 学大数据需要什么基础知识和能力

1.计算机基本理论知识

了解计算机的基本原理,计算机的发展历史等计算机的基本常识和理论。

示例说明

总结:以上条件并不是一定要达到很高的标准,只要基本都熟悉,都有印象,能够简单运用即可。

⑼ 学大数据需要什么基础

说到大数据,肯定少不了分析软件,这应该是大数据工作的根基,但市面上很多各种分析软件,如果不是过来人,真的很难找到适合自己或符合企业要求的。小编通过各大企业对大数据相关行业的岗位要求,总结了以下几点:
(1)SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示
(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等
对于学习大数据,总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
当然,学习数学与应用数学、统计学、计算机科学与技术等理工科专业的人确实比文科生有着客观的优势,但能力大于专业,兴趣才会决定你走得有多远。毕竟数据分析不像编程那样,需要你天天敲代码,要学习好多的编程语言,数据分析更注重的是你的实操和业务能力。如今的软件学习都是非常简单便捷的,我们真正需要提升的是自己的逻辑思维能力,以及敏锐的洞察能力,还得有良好的沟通表述能力。这些都是和自身的努力有关,而不是单纯凭借理工科背景就可以啃得下来的。相反这些能力更加倾向于文科生,毕竟好奇心、创造力也是一个人不可或缺的。

⑽ 大数据需要什么基础

学习大数据要有一定的编程基础,这是大数据大部分岗位都需要的。目前从事大数据方向的程序员比较普遍使用的语言有四种,分别是Python、Java、Scala和R,这四种语言都有一定的应用场景,不同岗位的程序员使用的语言也稍有不同。

阅读全文

与大数据需要什么基础相关的资料

热点内容
微数据在哪里查找 浏览:990
新长兴市场什么时候能通气 浏览:177
游戏代码程序员多久能看懂 浏览:780
市场策划怎么操作 浏览:683
数控车床用u盘拷程序用多少g的 浏览:46
广东移动音乐信息费是什么 浏览:669
社保卡记录的什么信息 浏览:325
作为产品经理如何提升技术思维 浏览:52
vr代理如何用 浏览:534
微商代理的特约是什么 浏览:219
镇雄政府部门大数据局是什么职能 浏览:352
电脑开机数据已损坏是什么原因 浏览:928
应用网络技术的前提条件是什么 浏览:988
电子产品什么时间是淡季买划算 浏览:914
游戏金币交易怎么交税 浏览:561
重农产品是什么 浏览:622
张婷的产品是什么 浏览:398
有什么技术类培训班 浏览:96
怎么手动注册程序 浏览:200
柳州去拉堡农贸市场怎么去 浏览:867